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Abstract We studied resting-state oscillatory connectivity using magnetoencephalography in

healthy young humans (N = 183) genotyped for APOE-e4, the greatest genetic risk for Alzheimer’s

disease (AD). Connectivity across frequencies, but most prevalent in alpha/beta, was increased in

APOE-e4 in a set of mostly right-hemisphere connections, including lateral parietal and precuneus

regions of the Default Mode Network. Similar regions also demonstrated hyperactivity, but only in

gamma (40–160 Hz). In a separate study of AD patients, hypoconnectivity was seen in an extended

bilateral network that partially overlapped with the hyperconnected regions seen in young APOE-e

4 carriers. Using machine-learning, AD patients could be distinguished from elderly controls with

reasonable sensitivity and specificity, while young APOE-e4 carriers could also be distinguished

from their controls with above chance performance. These results support theories of initial

hyperconnectivity driving eventual profound disconnection in AD and suggest that this is present

decades before the onset of AD symptomology.

DOI: https://doi.org/10.7554/eLife.36011.001

Introduction
Once established, the cognitive impairments characteristic of Alzheimer’s disease (AD) are irrevers-

ible (Herrup, 2015). To effectively identify measures to predict and prevent AD, it is vital to identify

biomarkers at an early age, before the presence of any symptoms, and one increasingly popular

route for this is neuroimaging of genetic risk groups. The greatest genetic risk factor for developing

late-onset AD is the apolipoprotein E4 (APOE-e4) allele (Corder et al., 1993; van der Flier et al.,

2011).

APOE consists of 299 amino acids divided into receptor-binding and lipid-binding regions and

has three isoforms (e2, e3 and e4) that only differ at two of the amino acids (112 and 158), both of

which are on the receptor-binding part of the protein. APOE has a crucial role in transporting choles-

terol and other lipids, both in plasma and in the brain, but it is its role in regulating amyloid-b that
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has received much attention, due to the latter’s apparently crucial role in AD (Reinvang et al., 2013;

Zhao et al., 2018). The pathological accumulation of amyloid-b could occur via multiple mechanisms

of over-production and/or impaired clearance (Zhao et al., 2018) and it appears that the presence

of the APOE-e4 isoform may differentially lead to one or more of these occurring. For example, com-

pared to APOE-e3, APOE-e4 stimulates increased recycling of the amyloid precursor protein (APP),

hence leading to an increase in amyloid-b production (Ye et al., 2005). This mostly appears to be via

modified interactions between APOE-e4 and the LRP1 receptor. Similarly, it has been shown that

APOE can bind to amyloid-b to form a complex that then promotes clearance via cell internalization

of this complex (Zhao et al., 2018). As the APOE-e4-amyloid-b complex is less stable than the other

isoforms, this may make it less effective in amyloid clearance. Finally, APOE-e4 may interfere with

protease-mediated clearance of amyloid-b via downregulation of, for example, insulin-degrading-

enzyme (IDE) (Du et al., 2009).

Whatever the precise mechanism, APOE-e4 carriers have a much increased risk of developing

sporadic AD (Corder et al., 1993), of progression to AD if diagnosed with mild cognitive

impairment (MCI) (Petersen, 1995), and to develop AD at an earlier age (Corder et al., 1993;

van der Flier et al., 2011) compared to non-carriers. Studying early effects of the APOE-e4 allele on

the brain may therefore reveal insights into the neural pathways leading to AD.

Within groups of AD patients and elderly controls, APOE-e4 carriers show alterations in brain

structure and function that follow similar patterns to those that characterise AD, but are stronger

than in non-carriers. Imaging studies show that APOE-e4 carriers present with more severely atro-

phied temporal areas (Filippini et al., 2009a; Filippini et al., 2009b; Juottonen et al., 1998), and

have elevated levels in temporo-parietal areas of the two main harmful brain deposits seen in AD:

the tau protein (Ossenkoppele et al., 2016), causing neurofibrillary tangles, and amyloid-b

(Drzezga et al., 2009), the peptide accumulating in the pathognomonic intercellular plaques.

Functional neuroimaging during a ‘resting state’ can show intrinsic fluctuations in levels of back-

ground brain activity. Fast fluctuations of rhythmic neural activity occur spontaneously and are

thought to underlie communication between brain areas (Schnitzler and Gross, 2005). These neural

oscillations, particularly in frequency bands such as the alpha band, have been linked to patterns of

white matter connectivity (Teipel et al., 2009). APOE plays a role in lipid transport, important for

myelination of white matter (Herrup, 2015). Studying neural oscillations in conjunction with variation

in this gene may therefore reveal important changes in neural connectivity. Neural oscillations can

be non-invasively measured in vivo in humans using electro- or magnetoencephalography (E/MEG),

which measure fluctuations in electric potentials or magnetic fields and hence directly reflect neural

activity at the scalp with high temporal resolution (Baillet, 2017).

To date, M/EEG studies in elderly APOE-e4 carriers have shown changes in the oscillatory alpha

band (Babiloni et al., 2006; Canuet et al., 2012; de Waal et al., 2013; Jelic et al., 1997;

Kramer et al., 2008; Ponomareva et al., 2008) and in the much lower-frequency delta band

(Cuesta et al., 2015; de Waal et al., 2013) in regions similar to those reduced in AD and MCI.

These findings suggest that the presence of an APOE-e4 allele is associated with differences in oscil-

latory brain function at a stage preceding AD symptomology, but it is not clear how early in the life

span this is established. One very small-sample study has measured MEG oscillations in healthy

young genotyped individuals, and found that low-frequency (theta) oscillations were increased in the

medial frontal cortex of APOE-e4 carriers, but did not investigate the alpha band, nor connectivity

between brain regions (Filbey et al., 2006).

Here, we used MEG to study resting-state neural activity non-invasively in a large sample of

healthy young individuals who were genotyped for APOE alleles (51 e4 carriers and 108 non-carriers).

We assessed whether and how background oscillatory neural activity and connectivity across the

whole brain in a range of frequencies is affected in young APOE-e4 carriers, decades before the

effects of ageing or potential onset of AD symptomology. To relate the significance of these findings

to brain dysfunction in AD, we further compared the young APOE-e4-related findings with resting-

state MEG data from patients with established AD and healthy age-matched controls. Finally, using

machine learning approaches, we assessed the diagnostic information content of these MEG-derived

static connectivity matrices by quantifying their accuracy in solving three problems: 1) Whether

young APOE-"4 carriers could be distinguished from young non-carriers, 2) Whether AD patients

could be distinguished from elderly controls and 3) Whether a classifier trained on identifying young

E4 carriers could identify AD patients, purely from their MEG connectivity matrices.
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Results

Participants
APOE-e4 carriers did not significantly differ from non-carriers in age, gender, years of education, hip-

pocampal volume, head motion during the recording or number of good-quality resting-state data

epochs included in the analysis (Table 1). Performance differed on only 1 out of 8 cognitive tasks,

the NAB Mazes task (reasoning and problem solving), where e4 carriers performed better than non-

carriers, but this result (p=0.03) did not survive a false-discovery-rate correction for multiple compari-

sons (Benjamini and Yekutieli, 2001). Similarly, within the 68 regions of the Desikan-Killiany gyral-

based atlas, there was no significant difference found in cortical thickness, volume or area, in any

region, when corrected for multiple comparisons.

APOE-e4 carrier versus non-carrier group differences in oscillatory
connectivity
Figure 1 shows differences in static oscillatory network connectivity for APOE-e4 carriers, compared

to controls. In the top row, it is clearly evident that, for the individual frequency bands, the beta

band has the greatest number of valid connections (224) and the highest number of edges (n = 13)

that exceed our initial thresholding criterion of p<0.05 (uncorrected). All of these edges show

increased connectivity in the beta band.

In the Combined maps, there are not only more edges than any of the individual bands (n = 282)

but this synthesised vector combination also shows enhanced sensitivity to cohort effects, with more

connections found to be significantly different at the edge-level (n = 31), the cluster-size level

Table 1. Participant demographics and statistical assessment of APOE-e4 group differences (two-sample t-tests).

All MEG datasets APOE-e4 carriers APOE-e4 non-carriers P value

Number 183 51 108

Male/female 60/123 18/33 36/72 0.81

Allele composition 41 e3e4
6 e4e4
4 e2e4

87 e3e3
17 e2e3
4 e2e2

Age* 24.5 ± 5.4 years 25.2 ± 6.8 years 24.2 ± 4.6 years 0.23

Years of education 16.4 ± 0.9 (N = 15) 17.0 ± 1.3 (N = 34) 0.13

Cognitive tasks:†

Trail making test
BACS symbol coding
HVLT-R (verbal learning)
WMS-III SS (spatial span)
Letter-number span
NAB mazes (reasoning)
BVMT-R (visual learning)
Category fluency

27.8 ± 10.1 (N = 47)
65.0 ± 8.7 (N = 48)
27.7 ± 3.9 (N = 48)
16.9 ± 3.4 (N = 47)
15.0 ± 2.9 (N = 48)
22.9 ± 3.0 (N = 48)
28.3 ± 5.5 (N = 48)
29.2 ± 6.8 (N = 47)

27.1 ± 8.8 (N = 98)
66.3 ± 9.1 (N = 100)
27.2 ± 4.3 (N = 100)
16.5 ± 3.5 (N = 99)
15.1 ± 2.8 (N = 100)
21.4 ± 4.3 (N = 100)
27.8 ± 5.1 (N = 100)
28.6 ± 6.9 (N = 100)

0.65
0.42
0.51
0.51
0.86
0.03
0.54
0.60

Hippocampal volume (L) absolute, relative‡ 4343 ± 408 mm3

2.734 ± 0.26
4362 ± 422 mm3

2.705 ± 0.24
4228 ± 394 mm3

2.746 ± 0.27
0.74
0.35

Hippocampal volume (R) absolute, relative‡ 4439 ± 368 mm3

2.797 ± 0.25
4417 ± 363 mm3

2.757 ± 0.23
4416 ± 345 mm3

2.798 ± 0.26
0.67
0.35

Total ICV 1596 ± 161 cm3 1618 ± 156 cm3

(N = 50)
1589 ± 166 cm3

(N = 106)
0.29

MEG head motion 0.28 ± 0.23 cm 0.32 ± 0.26 cm 0.27 ± 0.21 cm 0.18

MEG number of epochs 144.75 ± 7.63 144.25 ± 7.02 145.06 ± 7.75 0.53

*Values are represented as group mean ±SD.
†The MCCB includes tests of processing speed (BACS symbol coding, category fluency: animal naming, trail making test), working memory (WMS-III: spa-

tial span, letter-number span), verbal and visual learning, and reasoning and problem-solving skills (NAB mazes).
‡Relative left (L) and right (R) hippocampal volumes are calculated as absolute hippocampal volumes divided by total intracranial volume (ICV), multiplied

by 1000.

DOI: https://doi.org/10.7554/eLife.36011.002
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(n = 19) and after cohort resampling tests (n = 26). Again, the balance of the sign of the effect is

skewed towards hyperconnectivity in the majority of comparisons, although, interestingly, there is

some evidence of hypoconnectivity (blue lines) in left medial temporal regions, including the

hippocampus.

What can also be observed is a bias towards effects in the right hemisphere, with many of the sig-

nificantly different edges arising from the right parietal cortex, but also including medial precuneus

regions. These differences therefore at least partially overlap with posterior regions of the human

default-mode network (DMN). Finally, what is encouraging is that most of these significant differen-

ces are observable in the 95% confidence interval test using random sub-sampling of the cohort

Figure 1. Each column shows oscillatory amplitude correlations comparing APOE-e4 carriers and non-carriers for each of the five frequency ranges

where valid edges were found, and combined across frequency. The top row shows where there are ‘valid’ edge connections in either of the two

groups. Colours, with a key at the top of the figure, indicate regions of brain areas that the connections originate from. The numbers on the plots show

the number of valid edges found. Note that Low Gamma is not shown as no ‘valid’ edges were found. The second row shows the unpaired t-statistic for

APOE-e4 carriers compared to non-carriers. Increases are displayed in red and decreases in blue and only those connections significant at p<0.05

(uncorrected) are shown. The numbers on each plot (n+/n-) show the number of significant increases and decreases found in each map. Note that,

across all tests, only one edge connection, in the Theta band, was found to be significantly different when corrected for multiple comparisons (p<0.036,

right parietal). Using the cluster-level network-based size statistic, shown in the third row, significantly large clusters were found for the theta and

Combined maps. The bottom, fourth row, shows the results of the cohort random sampling analysis. Edges are only shown if they are within the 95%

confidence limit for APOE-e4 -related increases (red) or decreases (blue). Note that, in general, the predominant effect is for edges to show increases in

connectivity in APOE-e4 carriers, compared to non-carriers and that this is most clearly shown in the Combined map (right-hand column), in which the

most valid connections are identified and the most significant, and consistent, differences are seen. In all connection plots, line opacity indicates

relative connection strength within the plot (most opaque = strongest). Data and scripts needed to generate this figure can be found at http://dx.doi.

org/10.17605/OSF.IO/E4CJX.

DOI: https://doi.org/10.7554/eLife.36011.003
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(bottom row), suggesting that our results may well generalise to the wider population, rather than

being driven by a small number of cases, or controls, in our sample.

APOE-e4 carrier versus non-carrier group differences in oscillatory
activity
When we assessed activity across the brain using a voxelwise assessment of temporal variability in

the amplitude envelope at each location in the brain, the only differences found using TFCE (p<0.05

corrected) were in the two gamma ranges, 40–60 Hz and 60–140 Hz and are shown in Figure 2.

These were exclusively gamma hyperactivities in a right-lateralised profile, distributed over lateral

parietal, temporal and frontal regions. When a more conservative voxel-level threshold (p<0.05, cor-

rected) was applied, only one region survived in the 60–140 Hz range, localised over the right middle

and inferior frontal gyri.

In summary, gamma hyperactivities were found in mostly right-lateralised regions, some of which

also appear to show hyperconnectivity in the lower frequency ranges (principally beta and alpha).

This overlap is described graphically in the lower part of Figure 2.

Alzheimer’s disease versus elderly controls
Here, we compared our finding of a spatially-localised increase in functional brain connectivity in

young APOE-e4 carriers to connectivity changes in a cohort of AD patients, in which we have

recently reported strongly decreased alpha and beta-band oscillatory network activity in parieto-

temporal areas with MEG (Koelewijn et al., 2017), for AD patients compared to age-matched con-

trols. In our reanalysis of a subset of the same dataset, using the current pipeline (Figure 3) to com-

pare AD patients to age-matched controls, we show strongly decreased oscillatory connectivity in

predominantly parieto-temporal connections, with the most significant, and extensive, effects visible

in the Alpha and Beta ranges. Again, similar to the young APOE-e4 analysis, the most valid connec-

tions, and the most extensive pattern of significant differences, was observed in the synthesised vec-

tor combination of frequency-specific effects (right hand column). We also note that, in contrast to

the APOE-e4 analysis, most of the observed significant cohort differences are reduced connectivity,

i.e. hypoconnectivity, in AD compared to elderly controls.

Finally, when using the temporal standard-deviation of the oscillatory envelope to quantify activa-

tion at each AAL node, this cohort of patients did not show any significant differences, in any fre-

quency band, compared to their age-matched controls.

Comparing the effects in young APOE-e4 carriers to elderly patients
with Alzheimer’s disease
Figure 4 shows a comparison of effects, taken from the most sensitive Combined connectivity maps,

in order to directly visualise the overlap of statistical differences in the two experiments. In terms of

the connections identified as valid (top row of Figure 1, Figure 3 and Figure 4a), there are clear

similarities but also differences, principally in terms of the balance between parieto-occipital connec-

tivity and parieto-temporal-frontal connections. This may reflect differences due to the large discrep-

ancy in age between the two experimental cohorts. In terms of cohort effects, it can clearly be seen

that in the APOE-e4 comparison, young carriers mostly demonstrate hyperconnectivity in a right

dominant network, whilst in the AD comparison, more extensive bilateral decreases in connectivity

are seen. In Figure 4c we show this in more detail by displaying the unthresholded t-statistics for

each comparison and then comparing the magnitude of effect-sizes for the two groups in the scatter

plot. There is a clear negative correlation of effect sizes between the two experiments (r = �0.18,

p<3.6�10�6), confirming the fact that, on average, connections that show hyperconnectivity in

APOE-e4 carriers demonstrate hypoconnectivity in Alzheimer’s cases. However, there is clearly not a

perfect correspondence between the pattern of effects.

We can also perform a more conservative comparison of the effects in the two experiments by

restricting our analysis to those connections, and AAL regions, that show a significant effect in both

experiments. This is shown in Table 2. In the Alpha band there is a single occipital connection that

has reduced connectivity in both APOE-"4 carriers and AD. In the Beta band there is a single con-

nection from the medial precuneus region to right lateral parietal that shows hyperconnectivity in

APOE-"4 carriers and hypoconnectivity in people with AD, compared to their respective controls.
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Figure 2. Spatial distribution of differences in oscillatory activity, between young APOE-e4 carriers and their matched controls and the relationship with

hyper- and hypo- connectivity. Top panel shows differences in activity as a coloured overlay depicting unpaired t-statistics (thresholded at p<0.05,

corrected using TFCE), with yellow/orange representing greater activity in the APOE-e4 carriers. Significant effects were only found in the right

hemisphere and only for the two gamma ranges tested, 40–60 Hz and 60–140 Hz. The overlays are shown depicted on a template brain surface. The far-

right column shows the results for the 60–140 Hz comparison using a more stringent voxel-wise correction for multiple-comparisons. The bottom panel

shows the distribution of differences in both connectivity and activity, between APOE-e4 carriers and non-carriers, within each AAL node that shows any

significant effect. For clarity the left and right hemispheres are shown separately. Red lines show the number of significant connections to/from each

node that are of higher strength in APOE-e4 carriers, compared to non-carriers. Blue lines show the number of significant connections to/from each

AAL node that are weaker in APOE-e4 carriers. For the right hemisphere only, as effects were only found on the right, the green lines show the most

significant t-statistic found in each AAL region for the analysis of gamma activity. Positive values indicate that gamma activity, in either band, was higher

in APOE-e4 carriers compared to non-carriers. Note that connection numbers are the sum across all frequency ranges tested, with most of these

coming from the low frequencies – only one connection (FrontalInfTriL to TemporalPoleMidR) showed hyperconnectivity in the gamma range. In

contrast, only gamma showed hyperactivity, so the green lines/marker exclusively reflect right-hemisphere gamma hyperactivity. The spreadsheet used

to generate the graphs on this figure can be found at http://dx.doi.org/10.17605/OSF.IO/E4CJX.

DOI: https://doi.org/10.7554/eLife.36011.004
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Similarly, in the Combined analysis, there are three connections in the right lateral-parietal/temporal

region that show this same pattern of effects.

Machine-learning results
Table 3 shows the cross-validated results of the support-vector-machine (SVM) classification

tests. Using pooled classification, based on valid edges in all frequency ranges, the classifier was, on

average, able to distinguish AD patients from elderly controls with reasonable specificity and sensi-

tivity and a significant AUC of 77.6% (p<0.02). Performance classifying APOE-e4 carriers from non-

carriers was also significantly above the chance level of 50%, with an AUC of 63.5% (p<0.005). Inter-

estingly, when we trained a classifier to distinguish APOE-e4 carriers, using all data from the young

cohort, and then predict AD cases from controls, performance was significantly below chance, with

an AUC of 31.8%. If we assume that the classifier is predicting reverse labelling in the disease group,

this was equivalent to an AUC of 68.2% that is above chance, but only a trend to significance

(p<0.14). However, this apparent reversed labelling reinforces the principal findings of this paper

Figure 3. Each column shows oscillatory amplitude correlations comparing AD patients and matched elderly controls for each of the six frequency

ranges where valid edges were found, and combined across frequency, and the Combined map. The top row shows where there are ‘valid’ edge

connections in either of the two groups. Colours, with a key at the top of the figure, indicate regions of brain areas that the connections originate from.

The numbers on the plots show the number of valid edges found. The second row shows the unpaired t-statistic for AD compared to controls -

Increases are displayed in red and decreases in blue and only those connections significant at p<0.05 (uncorrected) are shown. The numbers on each

plot (n+/n-) show the number of significant increases and decreases found in each map. In terms of corrected significance only one connection each

reached the p<0.05 threshold in Beta, High-Gamma and Combined (not shown). Using the cluster-level network-based size statistic, shown in the third

row, significantly large clusters were found for the Delta, Alpha, Beta and Combined maps. The bottom row shows the results of the cohort random

sampling analysis. Edges are only shown if they are within the 95% confidence limit for AD-related increases (red) or decreases (blue). Note that, in

general, the predominant effect is for edges to show decreases in connectivity in AD patients, compared to controls, and that this is most clearly shown

in the Combined map (right-hand column), in which the most valid connections are identified and the most significant, and consistent, differences are

seen. Data and scripts needed to generate this figure can be found at http://dx.doi.org/10.17605/OSF.IO/E4CJX.

DOI: https://doi.org/10.7554/eLife.36011.005
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that APOE-e4 carrier status in young controls is principally revealed by hyperconnectivity,

whilst Alzheimer’s disease leads to hypoconnectivity in a larger, but overlapping, set of connections.

Figure 4. Comparison of connectivity differences in the two experiments, assessed using the Combined connectivity maps. (a) Replotting of the results

for the Combined maps, extracted from Figure 1 and Figure 2 and displayed in the same format. At the bottom of this panel, a conjunction analysis is

shown in which connections that meet the 95% confidence criterion for both experiments are displayed. Three connections survive this test and are

shown in blue to reflect the fact that the effects have opposite sign (see Table 2 for more details). (b) A comparison of connections surviving a 95%

confidence interval threshold, estimated using cohort resampling, for the APOE-e4 versus young controls experiment (top row) and the AD versus

elderly controls experiment (bottom row). Here we display the thresholded connections on both the circle plots (left column) and three views of a

template brain (columns 2–4). (c) A direct comparison of effect sizes. In the left column, unthresholded t-statistics are displayed for the two experiments,

with the opacity of the lines reflecting the magnitude of the t-statistic. In the middle, the two sets of t-statistics are multiplied together for display. In

this panel, strong lines represent connections with high t-statistics for both the APOE-e4 experiment and the AD experiment, with blue colours

representing connections which show opposite effect directions for example hyperconnectivity in APOE-e4 and hypoconnectivity in AD. In the right

panel, the scatter plot shows the effect-size (i.e. unpaired t-statistic, thresholded at p<0.05 uncorrected) for the AD versus elderly control experiment,

plotted against the effect-size for the APOE-e4 carriers versus non-carriers experiment. A clear negative relationship is observed. Data and scripts

needed to generate this figure can be found at http://dx.doi.org/10.17605/OSF.IO/E4CJX.

DOI: https://doi.org/10.7554/eLife.36011.007
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Discussion
In a large sample of young healthy APOE-e4 carriers, and using a conservative approach in which we

restrict our analysis to highly reproducible (top 20%) connections, we found consistent increases in

resting-state oscillatory activity and connectivity in a right-dominant network of parieto-occipital,

parieto-temporal and parieto-frontal connections. The largest and most consistent cluster of effects

arose in the beta-band, representing rhythmic synchronized activity thought to reflect global input

at the synapse (Schnitzler and Gross, 2005) and in our analysis of Combined connectivity maps.

These findings occurred in absence of cognitive or structural brain differences. We also showed that

those connections showing the largest average increases in connectivity tended to overlap with

those connections that showed decreased parieto-temporal connections in AD patients, and was

most profound in connections to/from right-hemisphere parietal areas. Our results therefore suggest

that the right parietal cortex is a particularly important area in the risk for, and development of, AD.

Although our study can only show an implied association between early hyperconnectivity and later

hypoconnectivity, we could speculate that an initial hyperconnectivity/hyperactivity centred around

(right) parietal cortex has a cascade of effects that may lead to eventual disconnection in AD.

Although initially a right-dominant effect, this may spread over time to more widespread effects

across the cortex and hemispheres. A larger study, using the methods we present here, over a wider

age-range, may shed further light on this.

Interestingly, when analysing activity differences in oscillatory envelopes, rather than connectivity,

the only significant differences found were APOE-e4 related hyperactivity in the gamma bands, both

40–60 Hz and 60–140 Hz. These gamma activity increases overlapped with those right-hemisphere

brain regions showing hyperconnectivity in the lower bands (alpha/beta). This result is consistent

with theories suggesting that gamma band oscillations mostly reflecting local, rather than global

processing, whilst alpha/beta underpin longer-range interactions (Donner and Siegel, 2011). Our

results are also consistent with a recent computational model in which it was shown that a realisti-

cally-coupled set of local gamma oscillators, at multiple simulated brain regions, led to long-range,

slowly varying, coupled amplitude-envelopes, but in the alpha/beta range (Cabral et al., 2014).

Finally, it has been suggested that higher-gamma band activity, such as our 60–140 Hz band, may

be correlated with neuronal spiking rates (Ray and Maunsell, 2011). If true then the higher gamma-

Table 2. Connections which show a statistically significant effect in both experiments.

Frequency
Range AAL Region 1 AAL Region 2

E4 carriers versus non-carriers (T-
statistic)

AD versus elderly controls (T-
statistic)

Alpha Cuneus left Lingual left �2.5 �1.8

Beta Parietal superior right Precuneus left +2.3 �2.3

Combined Occipital mid right Temporal inferior
right

+2.3 �2.2

Combined Supramarginal right Heschl right +2.5 �3.2

Combined Temporal Superior
right

Heschl right +3.0 �3.0

DOI: https://doi.org/10.7554/eLife.36011.006

Table 3. Leave-one-out Cross-validated performance of within experiment (top two rows) and cross-experiment (bottom row) SVM

classification tests.

Problem Performance using all valid features

Classify AD versus elderly controls eyes open Specificity/Sensitivity = 76.7 % / 65.3%
AUC = 77.6%, p<0.019

Classify E4 versus nonE4
eyes open

Specificity/Sensitivity = 56.8 % / 58.6%
AUC = 63.5%, p<0.005

Train on E4 versus nonE4 then classify AD versus elderly controls eyes open Specificity/Sensitivity = 36.4 % / 28.6%
AUC = 31.8% (68.2% using reversed labels)
p<0.14

DOI: https://doi.org/10.7554/eLife.36011.008
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band activity we see in APOE-e4 carriers may be a reflection of the neuronal hyperactivity, associ-

ated with increased amyloid-b, seen in rodent AD models (Stargardt et al., 2015).

The highly specific spatial patterns of increased resting-state oscillatory connectivity in young

APOE-e4 carriers, identifying the right parietal cortex as the most affected area, including inter-

hemispheric connections and connections to the precuneus, complement and extend current neuro-

physiology findings. MEG studies using Graph Theory network measures have also identified a loss

of connectivity in AD, with the parietal cortex as the most affected hub (de Haan et al., 2012b;

Tijms et al., 2013). Effects were found specifically in the beta band – thought to play an important

role in long-range functional connectivity (Schnitzler and Gross, 2005). Furthermore, previous EEG

studies on APOE-e4 have identified differences in power or connectivity in the alpha band, but these

have only been investigated in older participants (Babiloni et al., 2006; Canuet et al., 2012;

de Waal et al., 2013; Jelic et al., 1997; Kramer et al., 2008; Ponomareva et al., 2008). Using the

higher spatial resolution of MEG, Cuesta et al. (Cuesta et al., 2015) studied source-localised con-

nectivity in elderly participants with and without MCI, and found that APOE-e4 carriers showed dif-

ferences only in a much lower frequency band than alpha (delta, 1–4 Hz), focused around a frontal

brain hub. Cuesta et al. measured phase-based connectivity, using the phase-locking value, a very

different measure than the amplitude correlations we used, and more prone to source leakage arte-

facts (Colclough et al., 2016). Interestingly, in our previous study we found clear changes in oscil-

latory amplitude, but not phase correlations, in the brains of AD patients (Koelewijn et al., 2017),

though we did not investigate MCI patients. For these reasons, and to reduce multiple comparisons,

we did not investigate phase-based connectivity here.

To our knowledge, only one small MEG study (N = 8) has previously investigated young APOE-e4

carriers, and found increases in mainly medial-frontal theta-band (3.5–7 Hz) oscillatory power during

a working memory task (Filbey et al., 2006). This study did not investigate connectivity, nor analyse

the alpha or beta band. Of note is that many previous neuroimaging studies used very low numbers

of participants, with the resulting APOE-e4 carrier groups being typically below N = 20, with some

notable exceptions in elderly participants (Babiloni et al., 2006; de Waal et al., 2013;

Sheline et al., 2010). Our more highly-powered MEG study in young participants therefore provides

valuable, reliable, and unique insights into the early effects of APOE-e4 on oscillatory brain function.

Functional MRI (fMRI) resting-state studies typically show that the blood-oxygen-level-dependent

(BOLD) response within the default-mode network (DMN) is reduced in healthy ageing

(Damoiseaux et al., 2008). This reduction is accelerated in AD (Buckner et al., 2008) and is also

modified in elderly APOE-e4 carriers compared to non-carriers (Sheline et al., 2010). Filippini et al.

(Filippini et al., 2009a) previously investigated DMN BOLD activity in a small sample of young

APOE-e4 carriers versus non-carriers (N = 18 each) using an independent component analysis (ICA)

technique. They found increased co-activation of areas within the DMN for e4 carriers, which were

focused on hippocampal and frontal, but posterior regions were not significantly different. Further-

more, they also found an increase in the sensorimotor network. Despite the different spatial focus of

effects, these fMRI findings are similar to ours in that they reveal increased brain connectivity in

young APOE-e4 carriers. In a more recent resting state-fMRI study of older, but healthy, APOE-e4

carriers it was found that, as well as replicating Fillipini et al.’s finding of increased hippocampal

DMN connectivity, significant increases in network activity were also found for APOE-e4 carriers in

posterior regions of the DMN, including the precuneus, and lateral parietal regions as well as frontal

cortex (Westlye et al., 2011). Importantly, these frontal and posterior-lateral regions were only sig-

nificantly increased in the right hemisphere (their Figure 1D and Table 3), showing good concor-

dance with our findings of oscillatory hyperconnectivity in similar right-hemisphere regions. Finally,

we note that some recent task-based fMRI studies have also shown APOE-e4 carrier hyperactivity in

posterior parts of the DMN (Hodgetts et al., 2019; Shine et al., 2015). Interestingly, the authors of

these studies speculate that hyperactivity/hyperconnectivity of the DMN in these young APOE-e4

carriers may reflect reduced network efficiency/flexibility.

Note that in our cohort, and other previous studies, there is little or no evidence of cortical vol-

ume changes, including hypothesised hippocampal volume decreases (Filippini et al., 2009a;

Heise et al., 2011; O’Dwyer et al., 2012; Wishart et al., 2006), suggesting that changes in both

haemodynamic and oscillatory brain function can be detected before changes in brain structure in

the pathway of increased risk for AD (Figure 5, lower panel, (Hampel et al., 2011)).

Koelewijn et al. eLife 2019;8:e36011. DOI: https://doi.org/10.7554/eLife.36011 10 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.36011


Figure 5. Schematic representation of a speculated mechanism (top tow) and order of events (bottom row) in brain structure and function when a

healthy young individual develops Alzheimer’s disease. Our results are consistent with theories that APOE-e4 status may lead to early neuronal

hyperactivity/hyperconnectivity, either directly via modification of the excitation/inhibition balance (Nuriel et al., 2017) or linked with amyloid

deposition (Stargardt et al., 2015). Most biomarkers of disease show a progressive incline or decline, whereas our results suggest that functional

connectivity shows a profile of an early increase, before structural, cognitive and neurobiological markers are evident. Eventually a more profound

connectivity decrease is seen after a clinical diagnosis of Alzheimer’s disease has been established. Inspired by Hampel et al. (2011), Figure 4.

DOI: https://doi.org/10.7554/eLife.36011.009
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The results presented here are, of course, only correlational in nature but we can speculate, in the

presence of prior in-vitro and in-vivo animal studies, what underlying neurophysiological changes

underpin our hyperactivity and hyperconnectivity findings. It is known that increased amyloid-b is

somehow related to increased neural activity, although the sequence of cause and effect is not

known (Stargardt et al., 2015). For example, it was shown in a rodent disease model that during

Braak pre-symptomatic stages 0, I and II, amyloid-b starts to accumulate within neurons, whilst at the

same time synaptic activity rises within the neurons (i.e. hyperactivity). As the disease progresses to

Braak stage VI, and amyloid-b becomes significant enough to cause plaques, synaptic activity then

falls (i.e. hypoactivity). Interestingly, it appeared that the rise in amyloid-b appeared to be linked to

a reduction of activity in the Insulin-Degrading Enzyme (IDE).

However, what it is not clear is how APOE-e4 carrier status might lead to an increased risk of the

hyperactivity <>amyloid-b relationship described above in young or even middle-aged people.

Experimental studies have demonstrated that carrying the APOE-e4 allele leads to a wide range of

effects in the brain, including impaired myelination, mitochondrial dysfunction, reduced cholinergic

function and vascular pathology (Reinvang et al., 2013). Healthy elderly APOE-e4 carriers also show

increased uptake of amyloid-binding PET ligands (PiB) (Morris et al., 2010; Reiman et al., 2009).

Already in middle age, post-mortem studies of APOE-e4 carriers have shown an increase in senile

amyloid-b plaques (Kok et al., 2009), with some evidence of this even at ages as young as 30. It is

therefore reasonable for us to speculate that in our young cohort, although amyloid-b plaques may

not have yet developed, amyloid-b may be accumulating and, as in the rodent model, be associated

with neural hyperactivity (Figure 5, upper panel). The mechanism for how APOE-e4 carrier status

leads to increased amyloid-b deposition is complex and may involve multiple mechanisms, including

disruptions of amyloid-b clearance systems dependent on receptor-mediated, cerebrovascular or

proteolytic degradation (Kanekiyo et al., 2014; Zhao et al., 2018). For example, one study has

shown that APOE-e4 leads to reduced levels of insulin-degrading enzyme (IDE), one of the most

important enzymes for amyloid-b clearance (Du et al., 2009) and, as described above, is reduced

during pre-symptomatic stages in rodent disease models which also show synaptic hyperactivity

(Stargardt et al., 2015).

It has also been shown in a recent study, however, that neural hyperactivity can also occur in

APOE-e4 mouse models in the absence of overt amyloid or tau pathology (Nuriel et al., 2017) via a

mechanism in which APOE-e4 leads to an overall decrease in inhibition caused by a reduced respon-

siveness of excitatory neurons to GABAergic input. The authors therefore suggest that it is this

APOE-e4 related shift in the excitation/inhibition balance that leads to hyperactivity that later results

in increased amyloid deposition, and hence increased risk of AD.

It is important to note, though, that increased amyloid-b is not sufficient to cause AD (Her-

rup, 2015; Sheline et al., 2010) and the presence of APOE-e4 does not guarantee progression to

AD. It remains to be investigated what role other important factors for AD play in this cascade of

events, such as the tau protein (Ossenkoppele et al., 2016). Interestingly, PET studies of AD have

also demonstrated AD-related hypometabolism in bilateral parieto-temporal regions that are very

similar to the regions we report here (Kato et al., 2016).

Our findings therefore support theories based on rodent models (Stargardt et al., 2015), human

computational models (de Haan et al., 2012b) and MCI data (Maestú et al., 2015) that propose

that hyperactivity, ultimately related to hyperconnectivity, may be at the heart of brain dysfunction

that could eventually lead to AD, and provides compelling evidence that this may already happen in

early adulthood. Areas predisposed to hyperconnectivity are thought to be prone to yield increased

accumulation of amyloid-b (Myers et al., 2014), supported by longitudinal PET and fMRI studies

which found that hippocampal hyperactivation in elderly individuals leads to widespread increased

deposition of amyloid-b as well as hippocampal signal loss and memory decline, although these

studies found no effect of APOE-e4 (O’Brien et al., 2010) or there was insufficient power to test this

(Leal et al., 2017). The present study suggests that the parietal cortex is an important common early

focus for hyperconnectivity, possibly as part of the posterior DMN. Importantly, this hyperconnectiv-

ity is present during the task-free resting-state, both avoiding and highlighting the potential con-

found of baseline-level differences in task-based group studies.

One important methodological note, for future work, is that our exploratory analysis, in which we

combined the connectivity maps from different frequency bands using a vector sum approach,

revealed both more robust connectivity patterns across participants, with increased number of valid
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edge connections, and increased sensitivity to both APOE-e4 carrier effects and Alzheimer disease-

related changes in connectivity. This simple combination of effects may therefore be worth adding

to future studies in order to, potentially, provide increased sensitivity to disease-related

modulations.

In addition to classical statistics we used machine-learning classification approaches to investigate

how much discriminative information is present within these static oscillatory connectivity matrices.

Here, the support-vector-machine (SVM) was trained used a pooled set of features taken from all

valid connectivity edges from all frequency bands and the combined map. The SVM will, as part of

its decision boundary optimisation, choose the best weighting of all these features. When tested

using leave-one-out cross validation, the classifier was able to decode APOE-e4 carriers from con-

trols and AD patients from elderly controls, with significantly better than chance performance. In our

small AD cohort, prediction performance appeared close to 70%, however, given the low number of

participants in this study, this needs to be evaluated using a larger independent sample. Although

our results here must be considered preliminary, they are encouraging – particularly as the AD

patients in our study were relatively early in their diagnosis.

In the current study, we employed MEG to show patterns of oscillatory hyperactivity and hyper-

connectivity in neural activity in young-adult APOE-e4 carriers, identifying the right parietal cortex as

an important centre in these hyperconnectivity patterns. One particularly attractive feature of MEG

is that it provides non-invasive high-temporal and spatial-resolution measures of neurophysiology

that allow for comparison with cellular hyperactivity data in a translational context (Busche et al.,

2008), providing potential biomarkers for new therapeutic and preventative studies in the pathologi-

cal processes leading to AD. Finally, an important question is why and at what stage hyperconnectiv-

ity ‘collapses’ to convert to the profound disconnection and symptomology of AD, and what further

factors determine whether e4 carriers indeed go on to develop AD. Future studies focusing on the

often-neglected middle-age group, between the very young and the elderly, as well as longitudinal

studies will be invaluable to unravel the time course of these events.

Limitations of the study
There are several methodological limitations of this study that need to be acknowledged. Firstly, all

of the analyses we present here are associations or correlations than can only imply a link between

APOE-e4 status, hyperconnectivity and future risk of developing Alzheimer’s disease – no causal rela-

tionships can be proved in this type of study. Similarly, the partial spatial overlap between the hyper-

connectivity we observe in young APOE-e4 carriers, compared to their control group, and

hypoconnectivity shown in elderly AD patients, compared to their control group, is interesting but

again does not demonstrate a causal link or a direct trajectory. Longitudinal studies that use our

methods in individuals as they age, perhaps in older people with and without Mild Cognitive

Impairment (MCI), to see if conversion to AD can be predicted would be an exciting extension of

our work.

Although our young APOE-e4 sample size is larger (51 versus 108) than much of the previous

work in this field, it is still relatively small and our findings need replicating in an independent cohort.

Such cohorts are starting to become available as online resources (e.g. CamCAN, http://www.cam-

can.org/index.php?content=dataset) and it would be relatively straightforward to replicate our spe-

cific analysis pipeline, including our edge-thresholding procedure, to confirm the findings we report

here. Second, as this is an exploratory study, we did not perform an exhaustive test of all connectiv-

ity metrics we could have employed, such as phase-based measures and dynamic connectivity analy-

ses. We took the simplest possible measure – static oscillatory amplitude-amplitude envelope

correlation as this has previously demonstrated the best within-participant reproducibility

(Colclough et al., 2016) but this does not guarantee that such robust and repeatable measures are

the most sensitive to cohort differences. It is entirely possible that other measures, particularly time-

resolved dynamic connectivity analyses (Vidaurre et al., 2016), could be more sensitive and informa-

tive than the static amplitude-amplitude measure we used here.

Similarly, we took a conscious decision to only analyse connections that were assessed to be the

strongest and thus, the most repeatable, across participants in our cohorts. In a way, this is a form of

quality-control that rejects features (here connectivity edges) that are of low SNR and hence are

poorly estimated in individuals and we note that such a procedure is common in the application of

graph-theory methods for the analysis of network properties. It is entirely possible that we have
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chosen a procedure, and in particular a threshold (mean rank of 80%), that is sub-optimal for reveal-

ing cohort differences. This is particularly relevant for MEG in which SNR is region-dependent and

so we may have biased our analysis here to be more sensitive to superficial cortical regions (such as

the parietal lobes) whilst suppressing an analysis of poor SNR regions, such as deeper regions in the

brain. Future work could tune this parameter (as well as varying other parameters in our analysis

pipeline) to try and maximise detection and discriminability of cohort effects across the brain. How-

ever, it is worth noting that MEG source-localisation algorithms, including the beamformer we use

here, have non-uniform spatial resolution that means that regions with poor SNR, including deeper

regions, are poorly resolved and hence activity is spread over wider regions. By restricting our statis-

tical analyses to regions with higher SNR, we are protecting ourselves, somewhat, from localisation

errors that could result from this spatial spreading.

In common with previous studies, we used a procedure in which, after trial-rejection and beam-

former source localisation, trials were concatenated to form a continuous virtual-sensor timeseries

for subsequent analysis. One potential problem with this is that it introduces discontinuities in the

timeseries that could lead to sub-optimal estimations of connectivity. The precise impact of this is

difficult to predict as it depends on the exact temporal distribution of rejected trials. However, it is

likely to have the biggest impact on the very lowest frequencies, such as Delta, which only has rela-

tively few oscillatory cycles in each trial. In our experiment there was no significant difference in the

number of rejected trials between the groups (e.g. APOE-e4 carriers and their controls) but this con-

catenation procedure may have reduced our sensitivity to effects in the Delta and Theta ranges,

which showed relatively few robust connections compared to Alpha and Beta.

We chose to use a common anatomical parcellation, the AAL (Tzourio-Mazoyer et al., 2002)

atlas, which ourselves and other groups (Hillebrand et al., 2016; Hunt et al., 2016;

Koelewijn et al., 2017; Pang et al., 2016; Routley et al., 2017) have used in multiple MEG connec-

tivity analysis papers, including our recent paper on oscillatory dysconnectivity in AD

(Koelewijn et al., 2017). We therefore chose, a-priori, a commonly used atlas for our spatial reduc-

tion strategy. However, this atlas has 90 regions of largely varying size and shape and has been

defined without regard to the sensitivity profile of our MEG system to different regions of the brain.

We are therefore summarising activity, using a single virtual sensor, in what are large extended

regions of widely varying SNR. This will bias our results to detecting connectivity in certain regions

and may well be sub-optimal for detecting interactions between regions in which a finer, or coarser,

parcellation may well have been beneficial. The principled way forward here might be to derive par-

cellations that use information regarding the MEG lead-field and the resulting resolution kernels in

source-space (Farahibozorg et al., 2018).

A similar criticism might also be levelled at our source-leakage correction procedure in which we

have used multivariate orthogonalisation (Colclough et al., 2015) simultaneously across all 90 time-

courses to minimise all cross parcel correlations in the raw timeseries. This procedure may well be

most successful in conditioning, and hence detecting, high-SNR signals which will tend to be more

superficial signals with higher oscillatory power, such as the lateral parietal regions we describe in

this paper. This differential sensitivity, which stems fundamentally from the relative lack of depth-sen-

sitivity in MEG recordings but may be worsened by these analysis procedure choices, may well

explain why our findings do not fully match those found in previous fMRI studies (Filippini et al.,

2009a; Westlye et al., 2011), at least for deep and medial regions.

Materials and methods
In this paper we present the results of analysing two MEG resting-state experiments: 1) A study of

young healthy participants who have been genotyped for APOE-e4 and 2) A study of Alzheimer’s

disease (AD) patients compared to a matched cohort of elderly controls.

Participants in experiment 1: young APOE-"4 cohort
The APOE analysis was performed on resting-state MEG data acquired at CUBRIC as part of the

‘100 Brains’ and ‘UK MEG Partnership’ projects, which together yielded a total of 183 usable data-

sets. Inclusion criteria were aged 18–65, completed or be undertaking a degree, normal or cor-

rected-to-normal vision, and no history of neurological or neuropsychiatric disorder. Of the 183

participants, 51 participants were identified as heterozygote or homozygote APOE-e4 carriers, and
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108 as not carrying an e4 allele (demographic details in Table 1). Genotyping was unsuccessful in the

remaining 24 participants, who were excluded from analysis. All participants gave informed consent

according to the Declaration of Helsinki and all procedures were approved by the Ethics Committee

of the School of Psychology, Cardiff University (EC.12.01.10.3071).

APOE genotyping in Experiment 1
Genomic DNA was obtained from saliva using Oragene OG-500 saliva kits (DNA Genotek, Inc.,

Ontario, Canada). Genotyping was performed using custom Illumina HumanCoreExome-24 Bead-

Chip genotyping arrays, which contain approximately 500,000 common genetic variants (Illumina,

Inc., San Diego, CA). Quality control and imputation were implemented in plink 1.9 (Chang et al.,

2015). Individuals were excluded for any of the following reasons: 1) ambiguous sex (where samples

with undetermined X chromosome heterozygosity were excluded); 2) cryptic relatedness up to third-

degree relatives as ascertained using identity by descent; 3) genotyping completeness less than

98%; 4) non-European ethnicity admixture which was determined via population stratification, where

samples that clustered outside the CEU HapMap3 population using principal component analysis

were excluded; and 5) outliers from an autosomal heterozygosity filter. Single nucleotide polymor-

phisms (SNPs) were excluded where the minor allele frequency was less than 1%, if the call rate was

less than 98%, or if the c2 test for Hardy-Weinberg equilibrium had a p value less than 1e-6. A total

of 233,054 genotyped SNPs remained after quality control. Autosomal chromosomes were imputed

using the reference panel HRCv1.1 (hrc.r1.1.2016) using a mixed population panel (McCarthy et al.,

2016). Phasing was completed using Eagle v2.3 (Loh et al., 2016) and imputation was performed

using Mimimac3 (Das et al., 2016). Imputed data was converted to best-guess genotypes

(Chang et al., 2015) with multi-allelic sites removed. SNP filters for HWE (1e-6) and minor allele fre-

quency (1%) were re-applied. A total of 7,545,595 SNPs were successfully imputed. Variants rs7412

and rs429358 were used to estimate APOE genotype for all 183 individuals (Corneveaux et al.,

2010).

Experiment 1 young APOE-"4 cohort: data acquisition and analysis
Data acquisition
Five-minute whole-head MEG recordings were acquired at a 1200 Hz sample rate using a 275-chan-

nel CTF radial gradiometer system. An additional 29 reference channels were recorded for noise

cancellation purposes and the primary sensors were analysed as synthetic third-order gradiometers

(Vrba and Robinson, 2001). Subjects were seated upright in the magnetically shielded room with

their head supported with a chin rest to minimise movement. Participants were asked to rest and fix-

ate their eyes on a central red fixation point, presented on either a CRT monitor or LCD projector.

Horizontal and vertical electro-oculograms (EOG) were recorded to monitor eye blinks and eye

movements.

Participants also underwent a magnetic resonance imaging (MRI) session in which a T1-weighted

1 mm anatomical scan was acquired, using an inversion recovery spoiled gradient echo acquisition

(3T, General Electric).

Participants further performed the MATRICS Consensus Cognitive Battery (MCCB) (Kern et al.,

2008; Nuechterlein et al., 2008). Group performance was compared using two-sample t-tests,

excluding missing or incomplete data (leaving per task N = 47–48 for e4 carriers and N = 98–100 for

non-carriers, see Table 1).

MEG data analysis
MEG generates multi-dimensional data, which can be analysed in a large variety of ways. We sought

to conduct an analysis investigating only consistent functional connectivity across the brain, while

reducing noise. We focused on amplitude-amplitude connectivity of beamformer-derived oscillatory

source signals, one of the most robust and repeatable types of MEG connectivity measures

(Colclough et al., 2016), across six frequency bands and 90 AAL atlas brain areas. The analysis pipe-

line also allowed a voxelwise assessment of resting-state activity within each frequency band and is

displayed in Figure 6.

All datasets were down-sampled to 600 Hz, and filtered with a 1 Hz high-pass and a 150 Hz low-

pass filter. The datasets were then segmented into 2 s epochs. The data were visually inspected and
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epochs with major artefacts such as head movements, large muscle contractions, or ocular artefacts

were excluded from subsequent analysis.

To achieve MRI/MEG co-registration, fiduciary markers were placed at fixed distances from three

anatomical landmarks identifiable in the subject’s anatomical MR scan, and their locations were man-

ually marked in the MR image. Head localization was performed at the start and end of each

recording.

The MEG sensor data were source-localised using FieldTrip (RRID:SCR_004849) version 20161011

(Oostenveld et al., 2011), with an LCMV beamformer on a 6 mm grid, using a single-shell forward

model (Nolte, 2003), where the covariance matrix was constructed per each of the following fre-

quency bands: 1–4, 3–8, 8–13, 13–30, 40–60, and 60–140 Hz. For each band, the beamformer

weights were normalized using a vector norm (Hillebrand et al., 2012), data were normalized to the

MNI template, and reduced to 90 nodes following the Automatic Anatomical Labelling (AAL) atlas

Figure 6. Schematic overview of the analysis pipeline. Note that in the labelled circular plot (bottom right) the nodes are in approximate anatomical

locations as if the brain was viewed from above (left is left/right is right) and are coloured according to their originating lobes (Blue: frontal, Gold:

Insula/Anterior-Posterior cingulate, Purple: Medial temporal, Green: Temporal: Teal: Parietal and Sensorimotor, Maroon: occipital, Lilac: Precuneus.

When statistical effects are plotted, red represents cohort increases and blue cohort decreases.

DOI: https://doi.org/10.7554/eLife.36011.010
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(Tzourio-Mazoyer et al., 2002). The selection of one node per AAL region was achieved by per-

forming a frequency analysis on all virtual channels within the AAL region, and selecting the virtual

channel with the greatest temporal standard-deviation within the region. Epochs were concatenated

to generate a continuous virtual-sensor timecourse for each voxel and then band-passed into the rel-

evant frequency-band of interest (Delta: 1–4 Hz, Theta: 3–8 Hz, Alpha: 8–13 Hz, Beta-13–30 Hz, Low

Gamma: 40–60 Hz and High-Gamma: 60–140 Hz).

The resulting 90-node time series were orthogonalized to avoid spurious correlations using a mul-

tivariate regression approach known as symmetric orthogonalization (Colclough et al., 2015). The

data then underwent a Hilbert transform to obtain the oscillatory amplitude envelope, and were sub-

sequently despiked to remove artefactual temporal transients using a median filter, downsampled to

1 Hz and trimmed to avoid edge effects (removing the first 2 and last three samples). Amplitude cor-

relations were then calculated by correlating the 90 downsampled Hilbert envelopes to each other,

and converted to variance-normalized Z-scores by applying a Fisher transform. In addition to analy-

sing effects within each frequency band separately, we also synthesised a combined measure of con-

nectivity by calculating the vector-sum of all connectivity matrices, using the following formula for

each element (i,j) in the square connectivity matrix:

Combinedij ¼ sqrtðDeltaij
2 þThetaij

2 þAlphaij
2 þBetaij

2 þLowGammaij
2 þHighGammaij

2Þ

Assessment of activity differences
In order to assess possible cohort differences in oscillatory activity, rather than connectivity, we also

calculated a measure of temporal variance at each beamformer-reconstructed voxel in the brain, for

each separate frequency band, via an assessment of the amplitude envelopes. Due to large varia-

tions in signal sensitivity throughout the brain, beamformer reconstructions of virtual-sensors result

in signals in which the mean and temporal standard-deviation of the amplitude envelopes are highly

correlated and show large variations across the source space. For that reason, we choose to use a

normalized measure, the coefficient of variation, which is the simply the standard-deviation of the

amplitude envelope divided by the mean of the amplitude envelope. Using this measure, voxels

which show a high fractional temporal variability, compared to the mean, will have a high value,

whilst those voxels that are of more stable oscillatory power will have a low value. We note that the

measure is similar, by analogy, to common measures employed in BOLD fMRI, such as percentage-

change from baseline. The statistical significance of group-effects was assessed using univariate vox-

elwise unpaired t-tests of this activity measure and then correcting for multiple comparisons using

randomisation testing using FSL randomise (Nichols and Holmes, 2003; Singh et al., 2003;

Winkler et al., 2014). The latter procedure was performed using threshold-free cluster enhancement

(TFCE) and 5000 iterations, without variance smoothing. This procedure tests positive and negative

cohort contrasts separately so a null hypothesis corrected p-value of 0.025 was chosen, so as to

implement a corrected two-tailed test at p<0.05. Separately for each frequency band, thresholded

t-statistics are displayed on a template brain surface mesh, extracted using FreeSurfer.

Statistical analysis of group differences in connectivity
First, each participant’s connectivity matrix was z-scored to have zero mean and unit variance across

all connections, in order to correct for possible global differences, due to variability in data quality,

either across participants or cohorts (Siems et al., 2016). All subsequent analyses are therefore

assessments, at each connection edge, of the relative strength of connectivity, compared to the

mean, in each participant. This procedure has the advantage of ensuring that any systematic differ-

ences, either at the participant or cohort-level, are controlled for.

To avoid analysing noise, we then independently assessed which functional connections were con-

sistently present across all 159 datasets, for each frequency band and in the Combined maps. This

was done by calculating the rank of every connection in each participant’s connectivity map and

then averaging this map rank across all participants. The resulting average rank-map was thresh-

olded at 80%, such that we only consider as ‘valid’ these connectivity edges that are consistently in

the top 20%. Importantly, to ensure that large cohort differences are not missed, we performed this

assessment of valid connections separately for each cohort, and labelled connections as valid if they

passed our rank-mask threshold in either cohort. The remaining connections were discarded.
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We statistically tested the difference between groups using three different statistical approaches.

In the first, we used unpaired t-tests of the corrected Z-scores, at each of the ‘valid’ connectivity

edges, and looked for significant edges at both p<0.05 (uncorrected) and at p<0.05 (corrected using

a 5000-permutation test with omnibus thresholding).

Secondly, we tested for significant differences in connected network cluster size using methods

similar to those described in the NBS toolbox (Zalesky et al., 2010). Here, connection differences

are first thresholded at p<0.05 (uncorrected) before Matlab’s (RRID:SCR_001622) graph function is

used to convert this difference map to a binarized graph. Matlab’s conncomp function is then used

to find the largest connected cluster within this graph. The corrected significance of this largest clus-

ter is assessed using randomisation testing with 5000 iterations and thresholded at p<0.05 (cor-

rected). This network-based statistic has previously been shown to be more sensitive to cohort

effects than the simple mass-univariate testing we use in our first approach (Zalesky et al., 2010).

As previously described, we test positive and negative cluster sizes separately.

Thirdly, we tested the likely generalisation of our findings by assessing the confidence interval on

cohort-related increases and decreases in connectivity. This was done by randomly sampling half the

APOE-e4 carriers (i.e. N = 26) and half the non- APOE-e4 carriers (i.e. N = 54) and for each of the

valid edges in the map we tabulate whether the mean edge connectivity is increased or decreased

in the APOE-e4 group. This sampling strategy is repeated 5000 times and those edges that do not

have a consistent sign – either increases or decreases – on more than 95% of samples are discarded.

The end result is a set of connections that are robustly increased, or decreased, in the APOE-e4 car-

riers compared to non-carriers, irrespective of the specific individuals entered into the test.

This is an exploratory study that used previously collected data to search for differences related

to APOE-e4 carrier status. To our knowledge there has not been another published MEG study in

young volunteers but we can estimate statistical power based on other studies. Power was estimated

using the pwr function in R (Champely et al., 2018). The area under the curve (AUC) for APOE-e4

status, calculated in a recent Alzheimer’s disease case-control study (Escott-Price et al., 2015) was

transformed to Cohen’s d (Ruscio, 2008), yielding a moderate effect size (d = 0.653). For this effect

size, for our sample of 51 carriers and 108 non-carriers, we have approximately 87% power to detect

an effect of APOE-e4 status on our measures.

All network plots and brain connectivity diagrams were generated using custom in-house scripts

in Matlab (Shaw, 2019).

Supervised Machine-Learning analysis
An alternative way of investigating whether the static oscillatory connectivity matrices contain infor-

mation that distinguishes cases, compared to controls, is to attempt to train a classifier that can dis-

tinguish between the two groups. Here we used a support vector machine (SVM) (Boser et al.,

1992) analysis in which we took all valid edges, pooled across all estimated maps for each person

(Delta, Theta, Alpha, Beta, Low Gamma, High Gamma, Combined) and used these as features for

the SVM. Note that, in order to prevent biased performance, features were selected by taking the

top 20% of edges, estimated over the whole cohort so that features were not selected separately

from each group. In machine-learning it is important to use cross-validation to prevent over-fitting

(as we have more features than participants). Ideally this would be done by training on one dataset

and testing on another, but here we only have one dataset. We therefore used a Leave-One-Out

(LOO) sampling approach in which we randomly select one case (i.e. an APOE-e4 carrier) and one

control (i.e. a non-carrier) as our test sample and hence train the classifier using all other participants.

We then test how well this classifier performs on the two test participants we held back. This proce-

dure is repeated 5000 times to build up an estimate of how well the classifier can successfully cate-

gorise each participant. We then assess the accuracy of the classifier by pooling these out-of-training

estimates to obtain mean measures of Sensitivity (i.e. the true-positive rate), Specificity (true-nega-

tive rate) and the area under the receiver operating characteristic curve (AUC of the ROC). For this

binary classification the chance value for all of three measures is 0.5. One important note is that, for

the APOE-e4 experiment, we have a significantly unbalanced classification problem in that there are

twice as many non-carriers as carriers. This is important because the classifier could achieve a perfor-

mance of 66% by simply labelling all participants as non-carriers. We guard against this by taking a

conservative approach of balancing the classification, at each iteration, by only using a random sam-

ple of 50 non-carriers and 50-carriers to train the classifier and, in addition, reporting the three
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evaluation metrics we describe above. Finally, the performance of all classification analyses is ulti-

mately assessed using the AUC. To assess the statistical significance compared to chance, we use

random permutation (50,000 iterations) of the true labels to build an empirically estimated null distri-

bution of the AUC and then tested the achieved AUC against this.

Cortical volume analysis
To investigate whether brain structure was affected in APOE-e4 carriers, we performed cortical seg-

mentation using FreeSurfer v6.0 (RRID:SCR_001847, surfer.nmr.mgh.harvard.edu). We calculated

hippocampal volumes per hemisphere and total intracranial volume (ICV). Relative hippocampal vol-

umes were calculated by dividing hippocampal volumes by ICV. Following quality control, performed

using a protocol from ENIGMA (http://enigma.ini.usc.edu/) (Stein et al., 2012), volumes were

excluded for 1 e4 carrier and two non-carriers. Using the same data and analysis procedure, cortical

thickness, volume and area were also assessed within each of the subdivisions of the Desikan-Killiany

atlas (Desikan et al., 2006) included within FreeSurfer.

Alzheimer’s disease and elderly control cohort: MEG acquisition and
analysis
Recruitment, acquisition and pre-processing of the AD patients (N = 14, 5F/9M, mean age 77.7

years, Mini-Mental State Examination (MMSE) score 19–27, all fulfilled criteria for probable AD

[McKhann et al., 1984]) and age-matched controls (N = 11, 7F/4M, mean age 74.4 years, MMSE

score 28–30) has been described in detail previously (Koelewijn et al., 2017). In summary though,

for inclusion as probable AD, criteria were that dementia had been established by clinical and cogni-

tive assessment (ACE-R), that cognitive impairments were progressive and included episodic mem-

ory deficit and deficit in at least one other area of cognition, and there was no evidence of other

factors that could explain the dementia syndrome such as cerebrovascular disease identified from a

previous CT scan. The study was approved by the South-East Wales Research Ethics Committee (10/

WSE04/35), and all participants provided informed consent. The procedure was identical to the

APOE analysis, except that participants were asked to rest while opening and closing their eyes fol-

lowing an auditory verbal cue (24 � 15 s alternations in total). Each dataset was split into one eyes-

open and one eyes-closed dataset, following which the statistical analysis of AD patients, compared

to the matched elderly control sample, proceeded in exactly the same way as that described above

for the APOE-e4 study in young controls. Here, we report comparison results only for the eyes-open

resting data. This was done in order to compare the pattern of effects revealed by comparing young

APOE-e4 carriers to non-carriers with those obtained by comparing AD participants to an age-

matched sample of elderly controls in the same resting-state paradigm. Note that we have previ-

ously reported results from this AD-control comparison for eyes-open resting state using a different

analysis pipeline (Koelewijn et al., 2017) but, in that dataset, 14/16 AD patients and 11/21 controls

viewed a visual grating instead of a simple blank screen. In this analysis, we decided to only include

those participants who saw a visual grating during the eyes-open period, in order to make sure that

patient-related effects were not due to presence, or not, of the visual grating as this was not

matched across the cohorts. This means we have a reduced subset of those analysed previously

that is N = 14 AD patients and N = 11 elderly controls who all performed an identical version of the

resting-state paradigm.
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