Ongoing, rational calibration of reward-driven perceptual biases

  1. Yunshu Fan
  2. Joshua I Gold
  3. Long Ding  Is a corresponding author
  1. University of Pennsylvania, United States

Abstract

Decision-making is often interpreted in terms of normative computations that maximize a particular reward function for stable, average behaviors. Aberrations from the reward-maximizing solutions, either across subjects or across different sessions for the same subject, are often interpreted as reflecting poor learning or physical limitations. Here we show that such aberrations may instead reflect the involvement of additional satisficing and heuristic principles. For an asymmetric-reward perceptual decision-making task, three monkeys produced adaptive biases in response to changes in reward asymmetries and perceptual sensitivity. Their choices and response times were consistent with a normative accumulate-to-bound process. However, their context-dependent adjustments to this process deviated slightly but systematically from the reward-maximizing solutions. These adjustments were instead consistent with a rational process to find satisficing solutions based on the gradient of each monkey's reward-rate function. These results suggest new dimensions for assessing the rational and idiosyncratic aspects of flexible decision-making.

Data availability

Raw data used during this study are included as the supporting files.

Article and author information

Author details

  1. Yunshu Fan

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2597-5173
  2. Joshua I Gold

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    Competing interests
    Joshua I Gold, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6018-0483
  3. Long Ding

    Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
    For correspondence
    lding@mail.med.upenn.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1716-3848

Funding

National Eye Institute (R01-EY022411)

  • Joshua I Gold
  • Long Ding

University of Pennsylvania (University Research Foundation Pilot Award)

  • Long Ding

Hearst Foundations (Graduate student fellowship)

  • Yunshu Fan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Latham, University College London, United Kingdom

Ethics

Animal experimentation: All training and experimental procedures were in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by the University of Pennsylvania Institutional Animal Care and Use Committee (#804726).

Version history

  1. Received: February 19, 2018
  2. Accepted: October 7, 2018
  3. Accepted Manuscript published: October 10, 2018 (version 1)
  4. Version of Record published: October 26, 2018 (version 2)
  5. Version of Record updated: February 5, 2024 (version 3)

Copyright

© 2018, Fan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,243
    Page views
  • 291
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yunshu Fan
  2. Joshua I Gold
  3. Long Ding
(2018)
Ongoing, rational calibration of reward-driven perceptual biases
eLife 7:e36018.
https://doi.org/10.7554/eLife.36018

Share this article

https://doi.org/10.7554/eLife.36018

Further reading

    1. Neuroscience
    Harry Clark, Matthew F Nolan
    Research Article

    Grid firing fields have been proposed as a neural substrate for spatial localisation in general or for path integration in particular. To distinguish these possibilities, we investigate firing of grid and non-grid cells in the mouse medial entorhinal cortex during a location memory task. We find that grid firing can either be anchored to the task environment, or can encode distance travelled independently of the task reference frame. Anchoring varied between and within sessions, while spatial firing of non-grid cells was either coherent with the grid population, or was stably anchored to the task environment. We took advantage of the variability in task-anchoring to evaluate whether and when encoding of location by grid cells might contribute to behaviour. We find that when reward location is indicated by a visual cue, performance is similar regardless of whether grid cells are task-anchored or not, arguing against a role for grid representations when location cues are available. By contrast, in the absence of the visual cue, performance was enhanced when grid cells were anchored to the task environment. Our results suggest that anchoring of grid cells to task reference frames selectively enhances performance when path integration is required.