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Abstract Disorders of consciousness are a heterogeneous mixture of different diseases or

injuries. Although some indicators and models have been proposed for prognostication, any single

method when used alone carries a high risk of false prediction. This study aimed to develop a

multidomain prognostic model that combines resting state functional MRI with three clinical

characteristics to predict one year-outcomes at the single-subject level. The model discriminated

between patients who would later recover consciousness and those who would not with an

accuracy of around 88% on three datasets from two medical centers. It was also able to identify the

prognostic importance of different predictors, including brain functions and clinical characteristics.

To our knowledge, this is the first reported implementation of a multidomain prognostic model

that is based on resting state functional MRI and clinical characteristics in chronic disorders of

consciousness, which we suggest is accurate, robust, and interpretable.

DOI: https://doi.org/10.7554/eLife.36173.001

Introduction
Severe brain injury can lead to disorders of consciousness (DOC). Some patients recover conscious-

ness after an acute brain insult, whereas others tragically fall into chronic DOC. The latter cannot

communicate functionally or behave purposefully. Most patients remain bedridden, and require

laborious care. The medical community is often confronted with an inability to meet

the expectations of the chronic DOC patients’ families. The social, economic, and ethical consequen-

ces are also tremendous (Bernat, 2006). In parallel, although more validations are required, recent

pilot studies have proposed new therapeutic interventions, which challenge the existing practice of

early treatment discontinuation for a chronic DOC patient (Schiff et al., 2007; Corazzol et al.,

2017; Yu et al., 2017). However, before using these novel therapeutic interventions, clinicians first

need to determine whether the patient is a suitable candidate. The availability of an accurate and
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robust prognostication is therefore a fundamental concern in the clinical management of chronic

DOC patients, as medical treatment, rehabilitation therapy and even ethical decisions depend on

this information.

To date, the prognostication for a DOC patient is based on physician observation of the patient’s

behavior over period that is sufficient to allow determination of whether there is any evidence of

awareness. On the one hand, a patient’s motor impairment, sensory deficit, cognitive damage, fluc-

tuation of vigilance and medical complications could give rise to misjudgments; on the other hand,

for the assessor, a lack of knowledge regarding DOC, poor training and non-use of adequate behav-

ioral scales are additional elements that may contribute to a high possibility of mistakes. Conse-

quently, careful and repeated behavioral assessments are considered to be particularly important for

a precise diagnostic and prognostic judgment (Wannez et al., 2017). Nonetheless, behavioral

assessments are inevitably subjective and vulnerable to a variety of personal interferences

(Giacino et al., 2009). Physicians and scientists have therefore been seeking accurate and objective

markers for diagnosis and prognosis (Demertzi et al., 2017; Noirhomme et al., 2017).

Several pioneering studies have suggested that the etiology, incidence age and duration of DOC

are important indicators for prognosis (Multi-Society Task Force on PVS, 1994). Specifically,

patients who have non-traumatic brain injury are expected to have a worse functional recovery than

traumatic brain injury patients, and young patients were considered more likely to have a favorable

outcome than older ones. During the recent decades, some pilot prognostic models have also been

explored that are based on features of neurological examination (Zandbergen et al., 1998;

Booth et al., 2004; Dolce et al., 2008), abnormalities detected with electroencephalogram (EEG)

and evoked potentials (Steppacher et al., 2013; Kang et al., 2014; Hofmeijer and van Putten,

2016; Chennu et al., 2017), anatomical and functional changes identified with brain computed

tomography (CT), positron emission tomography (PET) and magnetic resonance imaging (MRI)

(Maas et al., 2007; Sidaros et al., 2008; Neuro Imaging for Coma Emergence and Recovery Con-

sortium et al., 2012; Luyt et al., 2012; Stender et al., 2014; Wu et al., 2015), and physiological

and biochemical disturbances at both the brain and body levels (Kaneko et al., 2009;

Rundgren et al., 2009). Despite many efforts, however, identifying efficient biomarkers for the early

eLife digest Severe brain injury can lead to disorders of consciousness (DOC), such as a coma.

Some patients regain consciousness after injury, while others do not. Those who do not recover are

unable to communicate or move in purposeful ways, and need long-term care. It can be difficult for

physicians to predict which patients will mend. This is mainly based on their observations of the

patient’s behavior over time. But such perceptions are subjective and vulnerable to errors. More

accurate and objective methods are needed.

Several studies suggest that the cause of the injury, the age of the person at the time of injury,

and how long the person has had a DOC may predict recovery. Recent studies have shown that

using a brain-imaging tool called resting state functional magnetic resonance imaging (fMRI) to

measure communication between different parts of the brain may help to calculate the likelihood of

recovery.

Now, Song, Yang et al. show that combining resting state fMRI with three pieces of clinical

information may help to better predict who will improve. Song et al. created a computer model that

forecasts recovery from DOC based on fMRI results, the cause of the person’s injury, their age at the

time of injury, and how long they have had impaired consciousness. The model could tell which

patients would regain consciousness 88% of the time for 112 patients from two medical centers. It

also identified several patients who got better despite initial predictions from doctors that they

would not.

The experiments show that combining multiple types of information can better predict which

patients with DOC will convalesce. Larger studies are needed to confirm that the computer model is

reliable. If they do, the model may one day help physicians and families to better plan and manage

patients’ care.

DOI: https://doi.org/10.7554/eLife.36173.002
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prediction of outcome is still challenging and requires additional research. One of the reasons for

this is that the DOC could have many different causes and could be associated with several neuro-

pathological processes and different severities, such that any method when used alone carries the

risk of false prediction (Bernat, 2016; Rossetti et al., 2016).

Recently, resting state functional MRI (fMRI) has been widely used to investigate the brain func-

tions of DOC patients. Research suggests that these patients demonstrate multiple changes in brain

functional networks, including the default mode (Vanhaudenhuyse et al., 2010; Silva et al., 2015),

executive control (Demertzi et al., 2014; Wu et al., 2015), salience (Qin et al., 2015; Fischer et al.,

2016), and sensorimotor (Yao et al., 2015), auditory (Demertzi et al., 2015), visual

(Demertzi et al., 2014a) and subcortical networks (He et al., 2015). The within-network and

between-network functional connectivity appeared to be useful indicators of functional brain dam-

age and the likelihood of consciousness recovery (Silva et al., 2015; Di Perri et al., 2016). Taken

together, these studies suggest that the brain networks and functional connectivity detected with

resting state fMRI could be valuable biomarkers that can be used to trace the level of consciousness

and predict the possibility of recovery.

With advances in medicine, prognostication of a DOC patient has moved toward a multidomain

paradigm that combines clinical examination with the application of novel technologies

(Gosseries et al., 2014). Multidomain assessment has the potential to improve prediction accuracy.

More importantly, it can provide reassurances about the importance of each predictor for prognosti-

cation by offering concordant evidence (Stevens and Sutter, 2013; Rossetti et al., 2016). More

than 20 years ago, the Multi-Society Task Force on persistent vegetative state (PVS) suggested that

the etiology, incidence age and duration of DOC could help to predict the outcome (Multi-

Society Task Force on PVS, 1994), and numerous studies have subsequently validated the clinical

utility of these features (Jennett, 2005; Bruno et al., 2012; Estraneo et al., 2013; Celesia, 2016).

Therefore, it is possible that a multidomain model that combines these clinical characteristics and

resting state fMRI data could improve prognostic predictions at an individual level and could lead to

the early identification of patients who could recover consciousness.

The present work had two major objectives. The first aim was to develop an approach to predict

the prognosis of an individual DOC patient using clinical characteristics and resting state fMRI. The

second aim, building on the first, was to further explore the different prognostic effects of these clin-

ical and brain imaging features.

Materials and methods
The study paradigm is illustrated in Figure 1. Resting state fMRI and clinical data from DOC patients

were collected at the so-called T0 time point when the patients’ vital signs and consciousness level

had stabilized and a diagnosis had been made. Outcomes were assessed at least 12 months after

this T0 time point; at a time referred to as the T1 time point. The principal scales included the Coma

Recovery Scale Revised (CRS-R) and the Glasgow Outcome Scale (GOS). Instead of predicting diag-

nosis, this study used the outcome as a target for regression and classification. Using the resting

state fMRI and clinical data from the T0 time point in a training dataset, a regression model was first

developed to fit each patient’s CRS-R score at the T1 time point, after which the optimal cut-off

value for classifying individual patients on the basis of consciousness recovery was calculated. In this

way, we set up the prognostic regression and classification model. Two independent testing data-

sets were then used to validate the model.

Subjects
This study involved three datasets. The datasets referred to as ‘Beijing 750’ and ‘Beijing HDxt’ were

both collected in the PLA Army General Hospital in Beijing, and the same medical group diagnosed

and managed the patients. However, the MRI scanners and imaging acquiring protocols were differ-

ent for these two datasets: the ‘Beijing HDxt’ cohort was scanned with a GE signa HDxt 3.0T scanner

between May 2012 and December 2013, whereas the ‘Beijing 750’ cohort was scanned with a GE

Discovery MR750 3.0T scanner between January 2014 and May 2016. The dataset referred to as

‘Guangzhou HDxt’ was collected from the Guangzhou General Hospital of Guangzhou Military Com-

mand in Guangzhou, and the MRI data were obtained with a GE signa HDxt 3.0T scanner between

April 2011 and December 2014.
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The inclusion criterion was that the patients should be at least 1 month after the acute brain insult

so that they met the DOC diagnosis. Patients were excluded when there was an unstable level of

consciousness (continuous improvement or decline within the two weeks before the T0 time point),

uncertain clinical diagnosis (ambiguity or disagreement between examiners), contraindication for

MRI or large focal brain damage (>30% of total brain volume).

A total of 160 DOC patients were initially enrolled in this study. Eleven patients were excluded

due to large local brain lesions or movement artifacts during MRI scanning. Nine patients died dur-

ing the period of the follow-up, 16 patients were lost to follow-up, and for 12 patients no definite

outcome information was collected at the 12-month endpoint of the follow-up. Thus, according to

the inclusion and exclusion criteria and the follow-up results, the ‘Beijing 750’ dataset included 46

vegetative state/unresponsive wakefulness syndrome (VS/UWS) patients and 17 minimally conscious

state (MCS) patients. The ‘Beijing HDxt’ dataset contained 20 VS/UWS patients and 5 MCS patients,

and the ‘Guangzhou HDxt’ dataset contained 16 VS/UWS patients and 8 MCS patients.

The demographic and clinical characteristics of the patients are summarized in Table 1, with addi-

tional details provided in Appendix 1—table 1, 2 and 3. The ‘Beijing 750’ dataset also included 30

healthy participants, and the ‘Beijing HDxt’ dataset included 10 healthy participants. All of the

healthy participants were free of psychiatric or neurological history. These healthy participants are

referred to as ‘normal controls’. See Appendix 1—table 4 and 5 for details.

As the ‘Beijing 750’ dataset involved more patients than the other two datasets, it was used as

the training dataset for model development and internal validation, whereas the ‘Beijing HDxt’ and

‘Guangzhou HDxt’ datasets were only used for external validation. The study was approved by the

Ethics Committee of the PLA Army General Hospital (protocol No: 2011–097) and by the Ethics

Committee of the Guangzhou General Hospital of Guangzhou Military Command (protocol No:

jz20091287). Informed consent to participate in the study was obtained from the legal surrogates of

the patients and from the normal controls.

Figure 1. Conceptual paradigm of the study. CRS-R: Coma Recovery Scale Revised scale; GOS: Glasgow Outcome Scale.

DOI: https://doi.org/10.7554/eLife.36173.003
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Table 1. Demographic and clinical characteristics of the patients in the three datasets.

Beijing_750
(n = 63)

Beijing_HDxt
(n = 25)

Guangzhou_HDxt
(n = 24)

Gender, M/F 36/27 18/7 14/10

Etiology

Trauma/Stroke/Anoxia 17/21/25 12/6/7 8/0/16

Age at the T0 (years)

Mean (SD) 42.8 (13.8) 40.7 (15.2) 39.3 (16.9)

Range 18.0 ~ 71.0 18.0 ~ 68.0 15.0 ~ 78.0

Time to MRI (months)

Range 1.0 ~ 77.0 1.0 ~ 44.0 1.0 ~ 10.0

Mean (SD) 7.4 (12.8) 5.4 (8.4) 2.3 (2.4)

Median 3.0 3.0 1.5

Band

[1,3] 32 13 20

(3,6] 15 8 2

(6,12] 11 3 2

>12 5 1 0

Follow-up time (months)

Range 12.0 ~ 51.0 14.0 ~ 53.0 27.0 ~ 78.0

Mean (SD) 21.0 (9.8) 41.7 (8.4) 52.2 (14.5)

Median 15.0 43.0 53.0

Band

[12,24] 38 2 0

(24,48] 24 20 8

>48 1 3 16

Diagnosis at T0

MCS/VS 17/46 5/20 8/16

CRS-R total score

Mean (SD) 7.3 (2.9) 6.5 (2.3) 7.1 (4.1)

Range 3.0 ~ 18.0 3.0 ~ 14.0 3.0 ~ 17.0

Outcome at T1

CRS-R total score

Mean (SD) 9.9 (5.1) 12.7 (6.4) N/A

Range 3.0 ~ 22.0 5.0 ~ 23.0 N/A

GOS score

GOS = 5 0 0 0

GOS = 4 5 5 1

GOS = 3 8 7 5

GOS <= 2 50 13 18

Abbreviations: CRS-R, Coma Recovery Scale–Revised; GOS, Glasgow Outcome Scale; MCS, minimally conscious

state; N/A, not available; SD, standard deviation; VS, vegetative state/unresponsive wakefulness syndrome.

DOI: https://doi.org/10.7554/eLife.36173.004
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Clinical measurements
Diagnosis and consciousness assessments
The diagnosis of each patient in the three datasets was made by experienced physicians according

to the CRS-R scale (Multi-Society Task Force on PVS, 1994; Bernat, 2006; Magrassi et al., 2016).

In the ‘Beijing 750’ and ‘Beijing HDxt’ datasets, the patients underwent the evaluations at least twice

weekly within the 2 weeks before the MRI scanning (i.e. the T0 time point). The highest CRS-R score

was considered as the diagnosis. The CRS-R includes six subscales that address auditory, visual,

motor, oromotor, communication, and arousal functions, which are summed to yield a total score

ranging from 0 to 23.

Outcome assessments
All patients were followed up at least 12 months after MRI scanning, according to the protocols for

DOC described in a number of previous studies (Neuro Imaging for Coma Emergence and Recov-

ery Consortium et al., 2012; Luyt et al., 2012; Stender et al., 2014; Pignat et al., 2016). Basically,

follow-up interviews were performed in four ways, including outpatient visit, assessments by local

physicians, home visit, and telephone/video review. Whenever possible, signs of responsiveness

were detected or reported, the patient was evaluated either in the unit or at home by the hospital

staff. In cases where no change was signaled, patients were examined twice by one hospital physi-

cian via telephone/video reviews at the end of the follow-up process.

For the training dataset, ‘Beijing 750’, two outcome scales were assessed: the GOS and CRS-R.

The GOS is one of the most commonly reported global scales for functional outcome in neurology,

and provides a measurement of outcome ranging from 1 to 5 (1, dead; 2, vegetative state/minimally

conscious state; 3, able to follow commands/unable to live independently; 4, able to live indepen-

dently/unable to return to work or school; 5, good recovery/able to return to work or school).

Although simple to use and highly reliable, the GOS score cannot provide detailed information

about individual differences in consciousness level for DOC patients. By contrast, the CRS-R score

can assist with prognostic assessment in DOC patients (Giacino and Kalmar, 2006). The six sub-

scales in the CRS-R comprise hierarchically arranged items that are associated with brain stem, sub-

cortical and cortical processes. The lowest item on each subscale represents reflexive activity,

whereas the highest items represent cognitively mediated behaviors. In order to simplify

the modeling, we hypothesized that the higher the total CRS-R score at the follow-up, the better the

outcome for the patient. We developed a regression model to fit each patient’s CRS-R score at the

T1 time point based on their clinical characteristics and resting state fMRI data, and designed a clas-

sification model to predict consciousness recovery or not for each patient. The classification accuracy

was assessed by comparing the predicted label and the actual GOS score, that is, ‘consciousness

recovery’ (GOS � 3) versus ‘consciousness non-recovery’ (GOS � 2).

The testing dataset ‘Beijing HDxt’ involved both the GOS scores and the CRS-R scores at the T1
time point for each patient. The testing dataset ‘Guangzhou HDxt’ measured the GOS scores, but

not the CRS-R scores at the T1 time point.

MRI acquisition
All of the participants in the three datasets were scanned with resting state fMRI and T1-weighted

3D high-resolution imaging. During the MRI scanning, the participants did not take any sedative or

anesthetic drugs. The resting state fMRI scan was obtained using a T2*-weighted gradient echo

sequence, and a high-resolution T1-weighted anatomical scan was obtained to check whether the

patients had large brain distortion or focal brain damage. For the training dataset, ‘Beijing 750’, the

resting state fMRI acquisition parameters included TR/TE = 2000/30 ms, flip angle = 90˚, axial 39 sli-

ces, thickness = 4 mm, no gap, FOV = 240 � 240 mm, matrix = 64 � 64, and 210 volumes (i.e. 7

min). For the testing dataset, ‘Beijing HDxt’, the resting state fMRI acquisition parameters were as

follows: axial 33 slices, TR/TE = 2000/30 ms, flip angle = 90˚, thickness = 4 mm, no gap,

FOV = 220 � 220 mm, matrix = 64 � 64, and 240 volumes (i.e. 8 min). For the testing dataset,

‘Guangzhou HDxt’, the resting state fMRI acquisition parameters included axial 35 slices, TR/

TE = 2000/30 ms, flip angle = 90˚, thickness = 4 mm, no gap, FOV = 240 � 240 mm,

matrix = 64 � 64, and 240 volumes (i.e. 8 min).
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Data analysis
The data analysis pipeline is illustrated in Figure 2.

Imaging preprocessing
Preprocessing and connectivity calculation were performed in the same way for the training dataset

and the two testing datasets. All resting-state fMRI scans were preprocessed using SPM8 (SPM,

RRID:SCR_007037) and in-house Matlab codes. Specifically, the first five volumes of each subject

were discarded. The remaining resting-state fMRI volumes were corrected for slice timing differen-

ces and realigned to the first volume to correct for inter-scan movements. The functional images

were then spatially smoothed with a Gaussian kernel of 6 � 6 � 6 mm full-width at half maximum.

Linear regression was used to remove the influence of head motion, whole brain signals and linear

trends. The variables regressed out included 12 motion parameters (roll, pitch, yaw, translation in

three dimensions and their first derivatives), the average series of the signals within the brain, and

the regressors for linear trends.

Figure 2. Data analysis pipeline. All datasets involved in this study included resting state fMRI and clinical data. For the fMRI data in the training

dataset, data analysis first encompassed preprocessing and imaging feature selection and extraction. Partial least square regression was then used to

generate the regression model using the selected imaging features and clinical features in the training dataset. In this way, a prediction score that

depicts the possibility of consciousness recovery was computed for each patient. The optimal cut-off value for classifying an individual patient as

responsive or non-responsive was then calculated, and the prognostic classification model was obtained. The two testing datasets were only used to

validate externally the regression and classification model.

DOI: https://doi.org/10.7554/eLife.36173.005
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Motion artifact is increasingly recognized as an important potential confound in resting state fMRI

studies. Any particular motion may produce a wide variety of signal changes in the fMRI data, and

may thus introduce complicated shifts in functional connectivity analysis. This problem was particu-

larly serious for the DOC patients, as they were unlikely to follow the experimental instructions and

control their head motion. To balance the demands of noise reduction and data preservation, we

censored volumes that preceded or followed any movement (framewise displacement, FD) greater

than 1.5 mm. The FD is a summarization of the absolute values of the derivatives of the translational

and rotational realignment estimates (after converting the rotational estimates to displacement at 50

mm radius) (Power et al., 2015). The head motion measures were achieved in the preprocessing

step of realignment using SPM. To obtain reliable Pearson’s correlations for functional connectivity,

the patients with less than 50 volumes worth of remaining data were excluded. More information

about the analysis and validation of controls for motion-related artifacts are provided in Appendix 4.

Finally, to reduce low-frequency drift and high-frequency noise, band-pass filtering (0.01–0.08 Hz)

was only performed on volumes that survived motion censoring.

Definition of networks and regions of interest
As noted in the introduction, multiple functional brain networks are disrupted in DOC patients.

Among these impaired networks, six (the default mode, executive control, salience, sensorimotor,

auditory, and visual networks) show system-level damages and significant correlations with behav-

ioral assessments (Demertzi et al., 2014, 2015). We therefore defined a total of 22 regions of inter-

est (ROIs) to probe these six brain networks. The definitions of the 22 ROIs were based on the

results of a series of previous brain functional studies (Seeley et al., 2007; Raichle, 2011;

Demertzi et al., 2015), and their names and Montreal Neurological Institute (MNI) coordinates are

listed in Appendix 2.

The connection templates of the six brain networks were first investigated within the normal con-

trol group. In addition to the above-mentioned preprocessing stages, the resting state fMRI scans of

the normal controls in the training dataset were transformed into MNI standard space. For each of

the six networks, time series from the voxels contained in the various ROIs were extracted and aver-

aged together. The averaged time series were then used to estimate whole-brain correlation r maps

that were subsequently converted into normally distributed Fisher’s z-transformed correlation maps.

Group functional connectivity maps for each of the six networks were then created with a one-sam-

ple t test (see Appendix 3 for details). Notably, the T map included both positive and negative val-

ues. We used the six T maps as the brain connection templates of the corresponding brain networks

in the healthy population, which would assist to define one type of imaging features, that is the con-

nection feature of the ROI. More information about the connection features of the ROIs are provided

in the following section.

The conventional fMRI preprocess normalizes individual fMRI images into a standard space

defined by a specific template image. Our goal was to extend this conventional approach to gener-

ate a functional connectivity image for each patient in his/her own imaging space. During the pre-

processing of each patient’s fMRI scans, the 22 ROIs and six brain connection templates were

therefore spatially warped to individual fMRI space and resampled to the voxel size of the individual

fMRI image. We also developed tools to check the registration for each subject visually, some exam-

ples of which are provided in Appendix 5 and Supplementary file 1.

Calculation of imaging features
We designed two types of imaging features from the resting state fMRI, one being the functional

connectivity between each pair of 22 ROIs, and the other being the spatial resemblance between

the functional connection patterns of each ROI and the brain connection templates across the whole

brain. The functional connectivity was based on the Pearson’s correlation coefficients, while the spa-

tial resemblance was conceptually similar to the template-matching procedure (Greicius et al.,

2004; Seeley et al., 2007; Vanhaudenhuyse et al., 2010). The basis of template matching is that

the greater the spatial consistency that exists between the template of a brain network and a spe-

cific connectivity map (for example, a component in an independent component analysis), the stron-

ger the possibility that the connectivity map belongs to that brain network. Here, for each ROI of an

individual DOC patient, we first computed the Pearson’s correlation coefficients between the time-
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course of the ROI and that of each voxel within the brain so as to obtain a functional connectivity

map, and subsequently converted the functional connectivity map to a normally distributed Fisher’s

z transformed correlation map. Next, we calculated the Pearson’s correlation coefficients between

the Fisher’s z transformed correlation map and the corresponding brain connection template

wrapped to individual fMRI space across each voxel within the brain. A greater correlation coefficient

between the two maps suggests that there is more spatial resemblance between the functional con-

nectivity map of the ROI and the normal brain connection template. Our assumption was that the

more spatial consistency that existed between the connectivity map of the ROI in a DOC patient and

the brain connection template, the more intact the corresponding brain function of the ROI in this

individual. In this way, we defined the connection feature of the ROI with the spatial resemblance.

Overall, for each participant in this study, there were 231 (22 � 21/2) functional connectivity fea-

tures and 22 brain area connection features.

Imaging feature selection
Feature selection techniques have been widely adopted in brain analysis studies, in order to produce

a small number of features for efficient classification or regression, and to reduce overfitting and

increase the generalization performance of the model (Fan et al., 2007; Dosenbach et al., 2010;

Drysdale et al., 2017). Feature ranking and feature subset selection are two typical feature selection

methods (Guyon and Elisseeff, 2003). Feature subset selection methods are generally time consum-

ing, and even inapplicable when the number of features is extremely large, whereas ranking-based

feature selection methods are subject to local optima. Therefore, these two feature selection meth-

ods are usually used jointly. Here, we first used a correlation-based feature selection technique to

select an initial set of features, and then adopted a feature subset selection method for further

selection.

As a univariate method, correlation-based feature selection is simple to run and understand, and

measures the linear correlation between each feature and the response variable. Here, the image

features (i.e. functional connectivity features and brain area connection features) that significantly

correlated to the CRS-R scores at the T1 time point across the DOC patients in the training dataset

were retained for further analysis.

Competitive adaptive reweighted sampling coupled with partial least squares regression (CARS-

PLSR, http://libpls.net/) was then used for further feature subset selection (Li et al., 2009, 2014).

Briefly, CARS-PLSR is a sampling-based feature selection method that selects the key informative

variables by optimizing the model’s performance. As it provides the influence of each variable with-

out considering the influence of the remainder of the variables, CARS-PLSR is efficient and fast

in carrying out feature selection (Mehmood et al., 2012), and has therefore been used to explore

possible biomarkers in medicine (Tan et al., 2010) and for wavelength selection in chemistry

(Fan et al., 2011). Using CARS-PLSR, we selected a subset of key informative imaging features.

Notably, both the correlation-based and CARS-PLSR feature selection methods filtered the fea-

tures from the original feature set without any transformations. This made the prognostic regression

model easier to interpret, as the imaging predictors were associated with either brain regions or

functional connectivity.

Prognostic modeling and assessments of predictor importance
PLSR is able to handle multicollinearity among the predictors well (Wold et al., 2001;

Krishnan et al., 2011). It was therefore used to generate the prognostic regression model in the

training dataset ‘Beijing 750’. Given that clinical characteristics—including the etiology, incidence

age and duration of DOC—have been verified as useful prognostic indicators, we designated the

selected imaging features and the three clinical characteristics at the T0 time point as independent

co-variates and the CRS-R score at the T1 time point as the dependent variable. Among the three

clinical characteristics, the incidence age and duration of DOC were quantitative variables, whereas

the etiology was a qualitative variable. In accordance with a previous study (Estraneo et al., 2010),

we categorized the etiology into three types: traumatic brain injury, stroke and anoxic brain injury.

Thus, two dummy variables for etiology were designed and included in the model. Prior to model

training, all involved predictors were centered and normalized (i.e. transformed into Z-scores). The

prognostic regression model therefore took the imaging and clinical features as input and returned
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a predicted score as output. In the training dataset ‘Beijing 750’, we used cross-validation to decide

that the number of latent variables for PLSR was three. To evaluate the regression model, the coeffi-

cient of determination R2 between the predicted scores and the CRS-R scores at the T1 time point

was calculated, and the Bland-Altman plot was used to measure the agreement between them.

Next, receiver operating characteristic (ROC) curves were plotted for the predicted scores. The

optimal cut-off value for classifying an individual patient as having recovered consciousness or not

was appointed to the point with the maximal sum of true positive and false negative rates on the

ROC curve. Individual patients were classified as exhibiting recovery of consciousness if their pre-

dicted scores were higher than or equal to the cut-off value, otherwise as consciousness non-recov-

ery. The classification accuracy was calculated by comparing the predicted label and the actual GOS

score,that is ’consciousness recovery’ (GOS � 3) versus ‘consciousness non-recovery’ (GOS � 2).

As model interpretation is an important task in most applications of PLSR, there has been consid-

erable progress in the search for optimal interpretation methods (Kvalheim and Karstang, 1989;

Kvalheim et al., 2014). In this study, using the Significant Multivariate Correlation (sMC) method

(Tran et al., 2014), we assessed predictor importance in the prognostic regression model. The key

points in sMC are to estimate the correct sources of variability resulting from PLSR (i.e. regression

variance and residual variance) for each predictor, and use them to determine statistically a variable’s

importance with respect to the regression model. The F-test values (termed the sMC F-values) were

used to evaluate the predictors’ importance in the prognostic regression model.

Internal validation of model
The prognostic regression model was internally validated using bootstrap

sampling (Steyerberg, 2008). Specifically, bootstrap samples were drawn with replacement from

the training dataset ‘Beijing 750’ such that each bootstrap sampling set had a number of observa-

tions equal to that of the training dataset. Using a bootstrap sampling set, correlation-based feature

selection and CARS-PLSR were first used to select the feature subset, after which the PLSR was used

to generate a prognostic model. We then applied the model to the bootstrap sampling set and the

original training dataset, and calculated the coefficient of determination R2 of each of the two data-

sets. The difference between the two coefficients of determination was defined as the optimism.

This process was repeated 1000 times to obtain a stable estimate of the optimism. Finally, we sub-

tracted the optimism estimate from the coefficient of determination R2 of the ‘Beijing 750’ training

dataset to obtain the optimism-corrected performance estimate.

In addition, out-of-bag (OOB) estimation was used as an estimate of model classification perfor-

mance in the training dataset (James et al., 2013). Specifically, for the original training dataset x, we

left out one sample at a time and denoted the resulting sets by x(–1),..., x(n). From each leave-one-out

set x(–i), 1000 bootstrap learning sets of size n–1 were drawn. On every bootstrap learning set gener-

ated from x(–i), we carried out feature selection, built a PLSR regression and classification model, and

applied the model to the test observation xi. A majority vote was then made to give a class predic-

tion for observation xi. Finally, we calculated the accuracy for the whole training dataset x.

External model validation
External validation is essential to support the general applicability of a prediction model. We

ensured external validity by testing the model in two testing datasets, neither of which included sam-

ples that were considered during the development of the model. First, using the prognostic regres-

sion model, we calculated one predicted score for each patient in the two testing datasets. As the

‘Beijing HDxt’ dataset assessed the patients’ CRS-R scores at the T1 time point, we calculated the

coefficient of determination R2 between the predicted scores and the patients’ CRS-R scores at this

time point. The Bland-Altman plot was also determined. Finally, the patients in the two testing data-

sets were assessed as achieving consciousness recovery or not on the basis of the cut-off threshold

obtained using the training dataset. The performance of the classification, including the accuracy,

sensitivity and specificity, was determined.
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Comparison between single-domain model and combination model
Using the modeling and validation method described above, we examined the predictability and

generalizability in the two testing datasets on the basis of the clinical features alone or the imaging

features alone.

In addition, to compare the two types of single-domain models and the combination model, we

used bootstrap resampling to obtain the distribution of the prediction accuracies in the two testing

datasets based on each of the three types of models. We first resampled with replacement from the

training dataset, and built a regression and classification model based on the clinical features alone,

the neuroimaging features alone, or the combination of the two-domain features. We then tested

the classification accuracy in the two testing datasets using the three types of models. In this way,

we obtained the distribution of the prediction accuracies using each of the three types of models.

Next, we used repeated measures ANOVA to determine whether or not the performances of the

three types of models were the same; we also used 	, the root-mean-square standardized effect, to

report the effect sizes of the mean differences between them.

Comparison between the proposed modeling method and linear SVM
We compared the prediction performances between the proposed modeling method and linear

SVM. The code for SVM was downloaded from LIBSVM (LIBSVM, RRID:SCR_010243). The 253 imag-

ing features and the four clinical features were integrated into one feature vector. No feature selec-

tion was adopted in the linear SVM-based classification. The patients with GOS �3 were labeled as

1, with the others being designated as �1 (i.e. GOS �2).

Similarly, the OOB estimation process was used to estimate the performance of linear SVM in the

training dataset ‘Beijing 750’. Next, using all the samples in the training dataset ‘Beijing 750’, we

trained a linear SVM-based classifier and then tested the predictive accuracy in the two testing

datasets.

Results

Imaging feature selection
Correlation-based feature selection
Using the training dataset, we found that some imaging features significantly correlated to the

CRS-R scores at the T1 time point. For example, the connection features of some brain areas, includ-

ing the anterior medial prefrontal cortex (aMPFC), posterior cingulate cortex/precuneus (PCC) and

right lateral parietal cortex in the default mode network, and the dorsal medial prefrontal cortex

(DMPFC) and left lateral superior parietal cortex in the executive control network, displayed signifi-

cant correlations to the CRS-R T1 scores across the DOC patients. We also found numerous exam-

ples of significant correlation between functional connectivity and the CRS-R score at the T1 time

point, with these functional connectivities being distributed both within and between brain networks.

More information about the correlations between the imaging features and the CRS-R scores at the

T1 time point are provided in Appendix 6.

CARS-PLSR feature selection
Figure 3 shows the final imaging features selected with CARS-PLSR. Specifically, the brain area con-

nection features included the aMPFC and PCC in the default mode network, and the DMPFC in the

executive control network. The functional connectivity features included the connectivity between

the aMPFC in the default mode network and the DMPFC in the executive control network, as well as

between the middle cingulate cortex in the auditory network and the right lateral primary visual cor-

tex in the visual network. More information about the feature selection by bootstrapping is provided

in Appendix 7.

Prognostic regression model and predictor importance
The prognostic regression model is presented in Figure 4. On the basis of the regression formula,

we noted some interesting findings. First, there were both positive and negative weights. In particu-

lar, the weights were all positive for the three brain area connection features, whereas the weight for
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Figure 3. Imaging features involved in the prognostic regression model. DMN.aMPFC, anterior medial prefrontal

cortex in the default mode network; DMN.PCC, posterior cingulate cortex/precuneus in the default mode network;

ExecuContr.DMPFC, dorsal medial prefrontal cortex in the executive control network; Auditory.MCC, middle

Figure 3 continued on next page
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the functional connectivity feature between the aMPFC in the default mode network and the DMPFC

in the executive control network was negative. Interestingly, this connection had the maximum sMC

F-value as shown in Figure 4B. In addition, the age and the anoxic etiology had negative weights,

and the age predictor had the largest sMC F-value among the four clinical features.

Prognostic classification model and internal validation
Figure 5A presents the predicted score for each patient in the training dataset. As shown in

Figure 5B, there was good agreement between the CRS-R scores at the T1 time point and the pre-

dicted scores. The apparent coefficient of determination R2 was equal to 0.65 (permutation test,

p=0.001), and the Bland-Altman plot verified the consistency between the predicted and achieved

scores (one sample T test, p = 1.0). The prognostic regression model was internally validated using

bootstrapping. The optimism-corrected coefficient of determination R2 was equal to 0.28.

Figure 5C illustrates the number and proportion of DOC patients in different bands of predicted

scores. We found that the proportion of the patients with a ‘consciousness recovery’ outcome in the

patient cohorts rose in conjunction with an increase in the predicted score. The higher the predicted

Figure 3 continued

cingulate cortex in the auditory network; Visual.R.V1, right lateral primary visual cortex in the visual network. DMN.

aMPFC—ExecuContr.DMPFC: the functional connectivity between DMN.aMPFC and ExecuContr.DMPFC;

Auditory.MCC—Visual.R.V1: the functional connectivity between Auditory.MCC and Visual.R.V1.

DOI: https://doi.org/10.7554/eLife.36173.006

Figure 4. Prognostic regression model. In the three subplots, each color denotes a particular predictor. (A) Regression formula. (B) Predictor

importance for each predictor in prognostic regression model. The vertical axis represents the sMC F-test value. The larger the sMC F-value, the more

informative the predictor with respect to the regression model. (C) The imaging features in the model are rendered on a 3D surface plot template in

medial view.

DOI: https://doi.org/10.7554/eLife.36173.007
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Figure 5. The performance of the prediction model on the training dataset. (A) Individual predicted scores for each DOC patient in the training

dataset. The CRS-R score at the T0 time point is shown on the x axis and the predicted score on the y axis. The patients diagnosed as VS/UWS at the T0
time point are shown to the left of the vertical red solid line, whereas the patients diagnosed as MCS at this time point are shown to the right. The

purplish red pentagram, imperial purple triangle and blank circle mark the patients with a GOS score �4,=3 and�2, respectively, at the T1 time point.

Figure 5 continued on next page
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score, the higher the proportion of patients who exhibited a favorable outcome. Figure 5D shows

the area under the ROC curve (AUC = 0.96, 95% CI = 0.89–0.99). On the basis of the ROC curve for

the training dataset, a threshold 13.9 was selected as the cut-off point to classify the recovery of

individual patients. In other words, if the predicted score for a patient was equal to or larger than

13.9, the classification model designated the label ‘consciousness recovery’ for this patient, other-

wise ‘consciousness non-recovery’. The classification accuracy was assessed by comparing the pre-

dicted and actual outcomes, that is ’consciousness recovery’ (GOS � 3) versus ’ consciousness non-

recovery’ (GOS � 2). Using this method, the classification accuracy in the training dataset was up to

92%. Specifically, the sensitivity was 85%, the specificity was 94%, the positive predictive value (PPV)

was 79%, the negative predictive value (NPV) was 96%, and the F1 score was 0.81.

The OOB was able to provide the mean prediction error on each training sample and to estimate

the generalizability of our method in the training dataset. Using the OOB estimation, we found that

the prediction accuracy in the training dataset ‘Beijing 750’ was 89%, and the sensitivity, specificity,

PPV and NPV were 69%, 94%, 100%, and 87%, respectively.

External validation of the model
The performance of the prediction model on the two testing datasets is illustrated in Figure 6. As

we assessed the CRS-R scores at the T1 time point for the patients in the ‘Beijing HDxt’ dataset, we

calculated the coefficient of determination R2 between these scores and the predicted scores. The

R2 was equal to 0.35 (permutation test, p=0.005), with the Bland-Altman plot verifying the consis-

tency between the predicted and actual scores (one sample T test, p=0.89). Using the predicted

score 13.9 as the threshold, we then tested the classification accuracy on the two testing datasets.

We found that, for the ‘Beijing HDxt’ dataset, the prediction accuracy was up to 88% (sensitivity:

83%, specificity: 92%, PPV: 92%, NPV:86%, F1 score: 0.87; permutation test, p<0.001), while for the

‘Guangzhou HDxt’ dataset it was also up to 88% (sensitivity: 100%, specificity: 83%, PPV: 67%,

NPV: 100%, F1 score: 0.80; permutation test, p<0.001). Notably, our model demonstrated good sen-

sitivity and specificity for both the ‘subacute’ patients (i.e. duration of unconsciousness �3 months)

and those in the chronic phase (i.e. duration of unconsciousness >3 months), as shown in Figure 7.

More interestingly, for the testing dataset ‘Beijing HDxt’, eight DOC patients who were initially diag-

nosed as VS/UWS subsequently recovered consciousness. Using the proposed model, we could suc-

cessfully identify seven of these and there was only one false-positive case. That is, for the VS/UWS

patients, the model achieved 90.0% accuracy (sensitivity: 87.5%, specificity: 91.7%, PPV: 87.5%,

NPV: 91.7%, F1 score: 0.875).

To test robustness, we evaluated whether the present prognostic regression model generalized

to the healthy subjects scanned in the ‘Beijing 750’ training dataset (n = 30) and to the ‘Beijing

HDxt’ testing dataset (n = 10). We found that both the healthy subjects and the ‘consciousness

recovery’ patients had significantly higher predicted imaging subscores than the ‘consciousness non-

recovery’ patients (two-sample T test, p<0.05). Additional information is provided in Appendix 8.

Comparison of the single-domain and combination models
When only the clinical features were used to build the predictive model, the prediction accuracy for

the ‘Beijing HDxt’ dataset was 68% (sensitivity: 58%, specificity: 77%, PPV: 70%, NPV: 67%, F1
score: 0.64), whereas for the ‘Guangzhou HDxt’ dataset, it was 83% (sensitivity: 100%, specific-

ity: 78%, PPV: 60%, NPV: 100%, F1 score: 0.75). When only the imaging features were involved in

the model, the prediction accuracy for the ‘Beijing HDxt’ dataset was 80% (sensitivity: 67%,

Figure 5 continued

(B) Agreement between the CRS-R scores at the T1 time point and the predicted scores. The left panel shows the correlation between the CRS-R scores

at the T1 time point and the predicted scores, and the right panel shows the differences between them using the Bland-Altman plot. (C) Bar chart

showing the numbers or proportions of DOC patients in each band of predicted scores. In these two panels, the y axis shows the predicted score. (D)

The area under the receiver-operating characteristic (ROC) curve. The star on the curve represents the point with the maximal sum of true positive and

false negative rates on the ROC curve, which were chosen as the cut-off threshold for classification. Here, the corresponding predicted score = 13.9.

DOI: https://doi.org/10.7554/eLife.36173.008
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Figure 6. The performance of the prediction model on the two testing datasets. (A) The individual predicted

score (top panel) and agreement between the CRS-R scores at the T1 time point and the predicted scores (bottom

panel) for the testing dataset ‘Beijing HDxt’. (B) The individual predicted score for each DOC patient in the testing

dataset ‘Guangzhou HDxt’. The legend description is the same as for Figure 5.

DOI: https://doi.org/10.7554/eLife.36173.009
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specificity: 92%, PPV: 89%, NPV: 75%, F1 score: 0.76), whereas for the ‘Guangzhou HDxt’ dataset, it

was 79% (sensitivity: 100%, specificity: 72%, PPV: 55%, NPV: 100%, F1 score: 0.71).

Using bootstrapping, we obtained the distribution of the prediction accuracies in the two testing

datasets with each of the three types of models. In the ’Beijing HDxt’ testing dataset, the

Figure 7. The sensitivity and specificity in the ‘subacute’ patients (i.e. duration of unconsciousness T0 �3 months)

and those in the chronic phase (i.e. duration of unconsciousness T0 >3 months), respectively.

DOI: https://doi.org/10.7554/eLife.36173.010
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means�standard deviations of the distribution of the prediction accuracies were 0.815�0.050,

0.811�0.044, and 0.666�0.037 for the combination model, the model using imaging features alone,

and the model using clinical features alone, respectively. We found that there were significant differ-

ences between the means of the classification accuracies using the three types of models (repeated

measures ANOVA, p<0.001). Subsequently, we conducted pairwise comparisons. We found that

there was significant difference between the combination model and the model s using the imaging

feature alone (paired sample t-test, p=0.001) or using the clinical feature alone (paired sample t-test,

p<0.001). We also found that there was significant difference between the model using the imaging

feature alone and the model using the clinical feature alone (paired sample t-test, p<0.001). Using

effect-size analysis, we found that there was a mean difference of 	=0.004 (95% CI = [0.002, 0.007])

between the combination method and the method using only imaging features, and 	=0.149 (95%

CI = [0.147, 0.152]) between the combination method and the method using only clinical features.

We also observed a mean difference of 	 = 0.145 (95% CI = [0.142, 0.147]) between the methods

using only imaging features and only clinical features.

In the ’Guangzhou HDxt’ testing dataset, the mean�standard deviation of the distribution of the

prediction accuracies was 0.863�0.051, 0.783�0.044, and 0.829�0.086 for the combination model,

the model using imaging features alone, and the model using clinical features alone, respectively.

Similarly, we found that there were significant differences between the mean of the classification

accuracies using the three types of models (repeated measures ANOVA, p<0.001), and there was

significant difference between the combination model and the models using imaging features alone

(paired sample t-test, p<0.001) or using clinical features alone (paired sample t-test, p<0.001). Using

effect-size analysis, we found a mean difference of 	 = 0.080 (95% CI = [0.076, 0.084]) between the

combination model and the model using the imaging features alone, and 	 = 0.034 (95%

CI = [0.028, 0.040]) between the combination model and the model using only clinical features. We

also observed a mean difference of 	 = –0.046 (95% CI = [–0.053, –0.040]) between the model using

imaging features alone and that using only clinical features.

Therefore, in both testing datasets, the combination of imaging and clinical features demon-

strated higher accuracy than the use of the single domain features alone. In addition, use of the

imaging features alone had higher predictive power in comparison to use of the clinical features

alone in the ‘Beijing HDxt’ dataset, whereas the opposite condition was observed in the ‘Guangzhou

HDxt’ dataset, suggesting that the two testing datasets might be heterogeneous. More information

about the single-domain models are provided in Supplementary file 2.

Comparison between the proposed modeling method and linear SVM
Using the OOB estimation, we found that the accuracy of the linear SVM-based classification method

in the training dataset ‘Beijing 750’ was 83% (sensitivity: 31%, specificity: 96%, PPV: 100%, NPV:

81%), which was lower than the accuracy of our proposed modeling method (i.e. accuracy: 89%, sen-

sitivity: 69%, specificity: 94%, PPV: 100%, NPV: 87%). On the other hand, the linear SVM-based clas-

sification method achieved an accuracy of 76% (sensitivity: 58%, specificity: 92%, PPV: 88%, NPV:

71%) and 88% (sensitivity: 100%, specificity: 83%, PPV: 67%, NPV: 100%) in the ‘Beijing HDxt’ testing

dataset and the ‘Guangzhou HDxt’ testing dataset, respectively. That is, the accuracy in the ‘Beijing

HDxt’ testing dataset was lower than that in our method, whereas the accuracy in the ‘Guangzhou

HDxt’ testing dataset was similar to that of our approach. Therefore, taking together the perfor-

mance comparisons in both the training dataset and the two testing datasets, we believe that our

method based on feature selection and PLSR should have higher prediction accuracy and better

generalizability in comparison to linear SVM.

Discussion
In this paper, we describe the development of a prognostic model that combines resting state fMRI

with three clinical characteristics to predict one-year outcomes at the single-subject level. The model

discriminated between patients who would later recover consciousness and those who would not

with an accuracy of around 88% in three datasets from two medical centers. It was also able to iden-

tify the prognostic importance of different predictors, including brain functions and clinical charac-

teristics. To our knowledge, this is the first reported implementation of a multidomain prognostic

model that is based on resting state fMRI and clinical characteristics in chronic DOC. We therefore
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suggest that this novel prognostic model is accurate, robust, and interpretable. For research only,

we share the prognostic model and its Matlab code at a public download resource (https://github.

com/realmsong504/pDOC; copy archived at https://github.com/elifesciences-publications/pDOC).

Brain functions are mediated by the interactions between neurons within different neural circuits

and brain regions. Functional imaging can detect the local activity of different brain regions and

explore the interactions between them, and has demonstrated potential for informing diagnosis and

prognosis in DOC. On the one hand, many studies have focused on one modality of brain functional

imaging, such as PET (Phillips et al., 2011), SPECT (Nayak and Mahapatra, 2011), task fMRI

(Owen et al., 2006; Coyle et al., 2015), or resting state fMRI (Demertzi et al., 2015; Qin et al.,

2015; Wu et al., 2015; Roquet et al., 2016). On the other hand, some cross-modality studies have

compared the diagnostic precision between imaging modalities, for example, comparing PET imag-

ing with task fMRI (Stender et al., 2014) or comparing PET, EEG and resting state fMRI

(Golkowski et al., 2017). In our study, by combining brain functional networks detected from resting

state fMRI with three clinical characteristics, we built a computational model that allowed us to make

predictions regarding the prognosis of DOC patients at an individual level. We compared the mod-

els separately using only the imaging features or only the clinical characteristics and found that the

combination of these predictors achieved greater accuracy. This validated the need for the use of

accumulative evidence stemming from multiple assessments, each of which has different sensitivity

and specificity in detecting the capacity for recovery of consciousness (Demertzi et al., 2017). Vali-

dations in additional and unseen datasets were also undertaken to evaluate the feasibility of the pre-

dictive model. Our results showed about 88% average accuracy across the two testing datasets, and

good sensitivity and specificity in both the ‘subacute’ patients (i.e. 1 months � duration of

unconsciousness � 3 months) and those in the prolonged phase (i.e. duration of unconsciousness >3

months), which suggested good robustness and the generalizability of our model.

Further, the sensitivity of 83% and 100% obtained across the two testing datasets demonstrated

a low false-negative rate, which would avoid predicting non-recovery in a patient who can actually

recover. Our method successfully identified 16 out of the total 18 patients who later recovered con-

sciousness in the two testing datasets. In parallel, the specificity across the two testing datasets was

up to 92% and 83%, respectively. Taken together, these results suggest that our method can pre-

cisely identify those patients with a high-potential for recovery consciousness and concurrently

reduce false positives in predicting low-potential patients. In addition, although it has been widely

considered that the prospect of a clinically meaningful recovery is unrealistic for prolonged DOC

patients (Wijdicks and Cranford, 2005), our model correctly predicted 9 out of 10 DOC patients

with longer than or equal to three months duration of DOC who subsequently recovered conscious-

ness, including three patients with DOC longer or equal to 6 months duration, suggesting that it can

also be applied to prolonged DOC patients.

According to the surviving consciousness level, DOC patients can be classified into distinct diag-

nostic entities, including VS/UWS and MCS. As MCS is often viewed as a state with a potentially

more favorable outcome (Luauté et al., 2010), a misdiagnosis of VS/UWS could heavily bias the

judgment of the prognosis, the medical treatment options and even the associated ethical decisions.

Some influential studies have found that a few VS/UWS patients exhibit near-normal high-level corti-

cal activation in response to certain stimuli or commands (Owen et al., 2006; Monti et al., 2010),

and that late recovery of responsiveness and consciousness is not exceptional in patients with VS/

UWS (Estraneo et al., 2010). Instead of predicting diagnosis, this study used one-year outcome as a

target for regression and classification. Our method, which is based on the combined use of clinical

and neuroimaging data, successfully identified seven out of the eight VS/UWS patients in the testing

dataset who were initially diagnosed as VS/UWS but subsequently achieved a promising outcome.

By analyzing the sMC F-value for each predictor in the regression model, we investigated the

prognostic effects of these predictors. In particular, the sMC F-value of the incidence age was

greater than that of the other clinical characteristics, suggesting that incidence age might be the

most important predictor among the clinical characteristics. Notably, the sMC F-value for the imag-

ing features as a whole seemed to be greater than that for the clinical features, as shown in

Figure 4B. We therefore speculate that the patient’s residual consciousness capacity, indicated by

brain networks and functional connectivity detected from resting state fMRI, might have a stronger

prognostic effect than their clinical characteristics.
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Some previous studies have shown that the resting state functional connectivity within the default

mode network is decreased in severely brain-damaged patients, in proportion to their degree of

consciousness impairment, from locked-in syndrome to minimally conscious, vegetative and coma

patients (Vanhaudenhuyse et al., 2010). Moreover, the reduced functional connectivity within the

default mode network, specifically between the MPFC and the PCC, may predict the outcome for

DOC patients (Silva et al., 2015). Our model also validates that the aMPFC and PCC in the default

mode network play important roles in predicting prognosis.

Above all, we found that the functional connectivity between the aMPFC and the DMPFC had the

maximum sMC F-value in the prognostic regression model. The aMPFC is one of the core brain areas

in the default mode network, whereas the DMPFC is located in the executive control network. Previ-

ous studies have demonstrated that this functional connectivity is negative connectivity in normal

healthy populations, with the anti-correlation being proposed as one reflection of the intrinsic func-

tional organization of the human brain (Fox et al., 2005). The default mode network directly contrib-

utes to internally generated stimulus-independent thoughts, self-monitoring, and baseline

monitoring of the external world, while the executive control network supports active exploration of

the external world. Correct communication and coordination between these two intrinsic anti-corre-

lated networks is thought to be very important for optimal information integration and cognitive

functioning (Buckner et al., 2008). A recent study reported that negative functional connectivities

between the default mode network and the task-positive network were only observed in patients

who recovered consciousness and in healthy controls, whereas positive values were obtained in

patients with impaired consciousness (Di Perri et al., 2016). Further, our regression model suggests

that the anti-correlations between these two diametrically opposed networks (i.e. the default mode

network and the executive control network) should be the most crucial imaging feature for predict-

ing the outcomes of the DOC patients. We therefore conclude that our prognostic model has good

interpretability, and that it not only verifies the findings of previous studies but also provides a win-

dow to assess the relative significance of various predictors for the prognosis of DOC patients.

This study involved two testing datasets, which were found to be quite different, as shown in

Table 1. First, the distributions of the etiology of the patients were remarkably different in the two

datasets. The numbers of patients suffering from trauma/stroke/anoxia were 12/6/7 and 8/0/16 in

the ‘Beijing HDxt’ and ‘Guangzhou HDxt’ datasets, respectively. The outcomes were also different.

In the ‘Beijing HDxt’ dataset, 12 out of the total 25 patients recovered consciousness, compared

with six out of the total 24 patients in the ‘Guangzhou HDxt’ dataset. Given that the characteristics

of the two medical centers and their roles in the local health care system are different, we speculate

that this could be one of the main reasons why the enrolled patient populations were heteroge-

neous. As described in the Introduction, DOC can have many causes and can be associated with sev-

eral neuropathological processes and different severities, leading to the suggestion that information

from different domains should be integrated to improve diagnosis and prognostication (Ber-

nat, 2016). Our study demonstrates that the combination of imaging and clinical features can

achieve a better performance than the use of single domain features.

However, some caution is warranted. First, although this study involved 112 DOC patients,

the number of patients who would later recover consciousness was relatively low (i.e. 31/112). So, a

much larger cohort will be needed for further validation. Second, the PPVs for the two testing data-

sets were remarkably different, with that for the ‘Guangzhou HDxt’ dataset being relatively low (67%

versus 91%). Although our method predicted that nine patients in this dataset would recover con-

sciousness, only six of them did (i.e. GOS �3), with the other three remaining unconscious at the

end of the follow-up (i.e. GOS �2). Given that many additional factors are associated with the out-

come of DOC patients, including medical complications, nutrition and so on, future work will need

to integrate more information in order to provide more precise predictions. Third, the signal-to-

noise ratio of resting state fMRI can influence functional connectivity analysis, so calibrations will be

necessary when applying the predictive model across different sites, including standardizing the MRI

acquisition protocols (e.g. scanner hardware, imaging protocols and acquisition sequences) and the

patients’ management strategies (see Appendix 10 for more information). Finally, a DOC patient’s

prognosis can be considered according to at least three dimensions: survival/mortality, recovery of

consciousness, and functional recovery. This study focused on predicting recovery of consciousness,

and the patients who died during the follow-up were excluded. In the future, we will consider more

outcome assessments, including survival/mortality and functional recovery.
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In summary, our prognostic model, which combines resting state fMRI with clinical characteristics,

is proposed to predict the one-year outcome of DOC patients at an individual level. The average

accuracy of classifying a patient as ‘consciousness recovery’ or not was around 88% in the training

dataset and two unseen testing datasets. Our model also has good interpretability, thereby provid-

ing a window to reassure physicians and scientists about the significance of different predictors,

including brain networks, functional connectivities and clinical characteristics. Together, these advan-

tages could offer an objective prognosis for DOC patients that will optimize their management and

deepen our understanding of brain function during unconsciousness.
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Corazzol M, Lio G, Lefevre A, Deiana G, Tell L, André-Obadia N, Bourdillon P, Guenot M, Desmurget M, Luauté
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Appendix 1

DOI: https://doi.org/10.7554/eLife.36173.014

Demographic and clinical characteristics of patients and
normal controls in this study
The diagnosis in this study was made by experienced physicians according to the CRS-R scale.

Patients were diagnosed as MCS when they demonstrated at least one of the following

behaviors: (1) following simple commands; (2) yes/no responses (gestural or verbal); (3)

intelligible verbalization; (4) purposeful behavior in response to an environmental stimulus; (5)

vocalization or gestures in direct response to questions; (6) reaching for objects that

demonstrates a clear relationship between the position of the object and the direction of the

movement; (7) touching or holding objects; (8) following or staring at an object in direct

response to its movement. Emergence from the MCS was signaled by the return of functional

communication and/or object use.

In this study, the patients underwent the CRS-R assessments twice weekly (or more) within

the two weeks before MRI scanning. So, the CRS-R was generally administered about 4–5

times for each patient. The highest CRS-R score was considered as the diagnosis and listed in

the following tables. T0: the time point of the MRI scanning; T1: the time point of follow-up.
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Appendix 1—table 4. Demographic of healthy controls in the ‘Beijing_750’ dataset.

Alias Gender Age Handedness

NC001 F 40 Right

NC002 M 50 Right

NC003 F 34 Right

NC004 M 25 Right

NC005 M 28 Right

NC007 F 24 Right

NC008 F 47 Right

NC009 F 22 Right

NC010 F 60 Right

NC012 F 26 Right

NC013 M 21 Right

NC014 F 27 Right

NC015 M 40 Right

NC016 M 44 Right

NC017 F 22 Right

NC018 M 50 Right

NC019 M 27 Right

NC020 F 43 Right

NC021 F 25 Right

NC022 M 54 Right

NC023 F 52 Right

NC026 M 46 Right

NC027 F 52 Right

NC028 M 29 Right

NC029 F 46 Right

NC030 M 44 Right

NC031 M 30 Right

NC032 M 31 Right

NC033 M 32 Right

NC034 M 30 Right

DOI: https://doi.org/10.7554/eLife.36173.018
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Appendix 1—table 5. Demographic of healthy controls in the ‘Beijing_HDxt’ dataset.

Alias Gender Age Handedness

NC001_HDxt M 44 Right

NC002_HDxt M 42 Right

NC003_HDxt M 30 Right

NC004_HDxt M 40 Right

NC005_HDxt M 30 Right

NC006_HDxt M 30 Right

NC007_HDxt F 58 Right

NC008_HDxt F 54 Right

NC009_HDxt F 41 Right

NC010_HDxt F 41 Right

DOI: https://doi.org/10.7554/eLife.36173.019
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Appendix 2

DOI: https://doi.org/10.7554/eLife.36173.020

Brain networks and regions of interest in this study
The six brain networks investigated in this study and the names of regions of interest (ROI).

The Appendix 2—table 1 represented the six brain networks, the name of ROIs, the peak

coordinates in the Montreal Neurological Institute (MNI) space and the corresponding

references. All of ROI were defined as a spherical region with a radius of 6 mm at the center of

the peak coordinates of the ROI.

Appendix 2—table 1. Brain networks and ROIs in this study.

Brain
network ROI name

ROI
abbreviation

Peak MNI
coordinates References

Default
mode

(Raichle, 2011; Demertzi et al.,
2015)

Anterior medial pre-
frontal cortex

aMPFC �1 54 27

Posterior cingulate
cortex/precuneus

PCC 0 –52 27

Left lateral parietal
cortex

L.LatP �46 –66 30

Right lateral parietal
cortex

R.LatP 49 –63 33

Executive
control

(Seeley et al., 2007;
Raichle, 2011)

Dorsal medial PFC DMPFC 0 27 46

Left anterior prefron-
tal cortex

L.PFC �44 45 0

Right anterior pre-
frontal cortex

R.PFC 44 45 0

Left superior parietal
cortex

L. Parietal �50 –51 45

Right superior parie-
tal cortex

R. Parietal 50 –51 45

Salience (Seeley et al., 2007;
Raichle, 2011; Demertzi et al.,
2015)

Left orbital frontoin-
sula

L.AIns �40 18 –12

Right orbital fron-
toinsula

R.AIns 42 10 –12

Dorsal anterior cin-
gulate

dACC 0 18 30

Sensorimotor (Raichle, 2011; Demertzi et al.,
2015)

Left primary motor
cortex

L.M1 �39 –26 51

Right primary motor
cortex

R.M1 38 –26 51

Supplementary mo-
tor area

SMA 0 –21 51

Auditory (Raichle, 2011; Demertzi et al.,
2015)

Appendix 2—table 1 continued on next page
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Appendix 2—table 1 continued

Brain
network ROI name

ROI
abbreviation

Peak MNI
coordinates References

Left primary auditory
cortex

L.A1 �62 –30 12

Right primary audi-
tory cortex

R.A1 59 –27 15

Middle cingulate
cortex

MCC 0 –7 43

Visual (Demertzi et al., 2015)

Left primary visual
cortex

L.V1 �13 –85 6

Right primary visual
cortex

R.V1 8 –82 6

Left associative vi-
sual cortex

L.V4 �30 –89 20

Right associative vi-
sual cortex

R.V4 30 –89 20

DOI: https://doi.org/10.7554/eLife.36173.021

Song et al. eLife 2018;7:e36173. DOI: https://doi.org/10.7554/eLife.36173 39 of 53

Research article Human Biology and Medicine Neuroscience

https://doi.org/10.7554/eLife.36173.021
https://doi.org/10.7554/eLife.36173


Appendix 3

DOI: https://doi.org/10.7554/eLife.36173.022

Brain functional network templates
Although the neurobiological implications of the spontaneous neuronal activity are not very

clear, spontaneous fluctuations in the blood oxygenation level-dependent signal have been

found to be coherent within a variety of functionally relevant brain regions, which are denoted

as representing a ‘network’. Moreover, several networks have been found to be spatially

consistent across different healthy subjects (Damoiseaux et al., 2006). Researchers suggested

that the brain networks assessed by resting state fMRI may reflect an intrinsic functional

architecture of the brain (Raichle, 2011). As mentioned in the manuscript, multiple networks

were reported to be disrupted in the DOC patients. Here, the connection templates of the six

brain networks were investigated within the healthy control group of the ‘Beijing 750’ dataset.

This study focused on the cortex, so six functional networks were investigated, including

the default mode network, the executive control network, salience, and the sensorimotor,

auditory, and visual networks. Group functional connectivity maps for each of the six networks

were created with a one-sample t test as shown in the following Appendix 3—figure 1. These

templates were separately shown on the brain surface using the SurfStat toolbox (SurfStat,

RRID:SCR_007081). The color bar representes the T value.
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Appendix 3—figure 1. The six brain functional network templates in this study.

DOI: https://doi.org/10.7554/eLife.36173.023
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Appendix 4

DOI: https://doi.org/10.7554/eLife.36173.024

Quality control for resting state functional connectivity
During the MRI scanning, the foam pad and headphones were used to reduce head motion

and scanner noise. The normal controls were instructed to keep still with their eyes closed, as

motionless as possible and not to think about anything in particular. The same instructions

were given to the patients but due to their consciousness and cognitive impairments, we could

not fully control for a prolonged eye-closed yet awake scanning session. The Appendix 4—

figure 1 showed cumulative distribution of head motion per volume (framewise displacement)

for normal controls and the patients. The Appendix 4—figure 2 showed the results of control

quality of resting state fMRI in this study. The Appendix 4—figure 3 showed the histogram of

the remaining number of fMRI volumes after scrubbing.

Appendix 4—figure 1. Cumulative distribution of head motion per volume (framewise displace-

ment) for normal controls and DOC patients separately in the training dataset ‘Beijing 750’ (A1),

the testing dataset ‘Beijing HDxt’ (A2), and the testing dataset ‘Guangzhou HDxt’ (A3). The

normal controls were shown in left column, whereas the DOC patients were shown in right

column. No healthy control data were available for the Guangzhou centre. In both patients

and controls, head position was stable to within 1.5 mm for the vast majority (>95%) of brain

volumes.

DOI: https://doi.org/10.7554/eLife.36173.025
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Appendix 4—figure 2. Correlations between motion artifact and neuroanatomical distance

between the ROIs in this study. Prior studies have shown that motion artifacts tend to vary with

neuroanatomical distance between brain nodes. Here, we conducted quality control analyses

as described in the previous study (Power et al., 2015). Specifically, we computed

correlations between head motion (mean FD) and each resting state functional connectivity

(RSFC) feature and plotted them as a function of neuroanatomical distance (mm) for subjects

in the training dataset ‘Beijing 750’ (B1), the testing dataset ‘Beijing HDxt’ (B2), and the

testing dataset ‘Guangzhou HDxt’ (B3). Smoothing curves (in red) were plotted using a

moving average filter.

DOI: https://doi.org/10.7554/eLife.36173.026
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Appendix 4—figure 3. Histogram of the remaining number of fMRI volumes after scrubbing for

each population, specifically ‘Beijing 750’ datatset (C1), ‘Beijing HDxt’ dataset (C2), and

‘Guangzhou HDxt’ dataset (C3).

DOI: https://doi.org/10.7554/eLife.36173.027
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Appendix 5

DOI: https://doi.org/10.7554/eLife.36173.028

Warped regions of interest and brain network templates
The conventional fMRI preprocess normalizes individual fMRI images into a standard space

defined by a specific template image. This study generated a functional connectivity image for

each patient in his/her own fMRI space. During the preprocessing of each patient’s fMRI scans,

the 22 ROIs and the six brain network templates were spatially warped to individual fMRI

space and resampled to the voxel size of the individual fMRI image. To ensure the registration,

we developed some tools to check the transformed ROIs and brain network templates

visually for each subject in this study.

Supplementary file 1 illustrated some examples of the warped ROIs in the default mode

network (DMN) for the three DOC patients with a GOS score of 2,3 or 4, respectively.

In addition, as a reference, we showed these figures for one normal control. The ROIs in the

DMN include the anterior medial prefrontal cortex (aMPFC), the posterior cingulate cortex/

precuneus (PCC), the left lateral parietal cortex (L.LatP), the right lateral parietal cortex (R.

LatP). The details about these four ROIs are listed in Appendix 2, and the brain network

template of the DMN is provided in Appendix 3.
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Appendix 6

DOI: https://doi.org/10.7554/eLife.36173.029

Correlations between imaging features and CRS-R scores
at T1.
In addition, Appendix 6—figure 1 illuminated these brain area connection features and their

Pearson’s correlations to the CRS-R scores at the T1 time point.

Appendix 6—figure 1. The brain area connection features sorted by their Pearson’s correlations

to the CRS-R scores at the T1 time point in the training dataset ‘Beijing 750’.

DOI: https://doi.org/10.7554/eLife.36173.030

In addition, Appendix 6—figure 2 illuminates the functional connectivity features that were

significantly correlated to the CRS-R scores at the T1 time point.

Appendix 6—figure 2. The functional connectivity features sorted by their Pearson’s correla-

tions to the CRS-R scores at the T1 time point across the DOC patients in the training dataset
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‘Beijing 750’.

DOI: https://doi.org/10.7554/eLife.36173.031

Appendix 6—figure 3 showed these significant functional connectivity features in a Circos

manner. The red links represent the within-network functional connectivity, while the blue links

represent the inter-network functional connectivity. The width of a link is proportional to the

strength of the functional connectivity.

Appendix 6—figure 3. The Circos map for the functional connectivity features that were signifi-

cantly correlated to the CRS-R scores at the T1 time point across the DOC patients in the train-

ing dataset ‘Beijing 750’.

DOI: https://doi.org/10.7554/eLife.36173.032

Appendix 6—table 1. The brain area connection features and their Pearson’s correlations to

the CRS-R scores at the T1 time point across the DOC patients in the training dataset ‘Beijing

750’.

ROI name Pearson’s correlation coefficient and p value

** DMN.aMPFC r = 0.514, p=0.000

** ExecuContr.L.Parietal r = 0.429, p=0.000

** DMN.PCC r = 0.420, p=0.001

** DMN.R.LatP r = 0.407, p=0.001

** ExecuContr.DMPFC r = 0.405, p=0.001

* ExecuContr.R.Parietal r = 0.363, p=0.003

* Sensorimotor.SMA r = �0.332, p=0.008

* ExecuContr.R.PFC r = 0.320, p=0.011

* Auditory.R.A1 r = 0.315, p=0.012

* DMN.L.LatP r = 0.298, p=0.018

* ExecuContr.L.PFC r = 0.291, p=0.021

* Sensorimotor.L.M1 r = 0.267, p=0.035

Appendix 6—table 1 continued on next page
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Appendix 6—table 1 continued

ROI name Pearson’s correlation coefficient and p value

Auditory.L.A1 r = 0.206, p=0.105

Salience.R.AIns r = �0.187, p=0.142

Sensorimotor.R.M1 r = 0.167, p=0.191

Visual.L.V4 r = �0.151, p=0.236

Salience.dACC r = �0.104, p=0.418

Salience.L.AIns r = 0.075, p=0.560

Visual.R.V1 r = 0.065, p=0.611

Auditory.MCC r = 0.053, p=0.682

Visual.R.V4 r = �0.031, p=0.809

Visual.L.V1 r = �0.028, p=0.830

**: p<0.05, FDR corrected; *: p<0.05, uncorrected.

DOI: https://doi.org/10.7554/eLife.36173.033

Appendix 6—table 2. Functional connectivity features and their Pearson’s correlations to the

CRS-R scores at the T1 time point across the DOC patients in the training dataset ‘Beijing

750’.

Functional connectivity Pearson’s correlation coefficient and p-value

† DMN.aMPFC - ExecuContr.DMPFC r = �0.489, p=0.000

* DMN.L.LatP - Visual.L.V4 r = �0.421, p=0.001

* Auditory.MCC - Visual.R.V1 r = 0.375, p=0.002

* ExecuContr.R.PFC - ExecuContr.R.Parietal r = 0.361, p=0.004

* ExecuContr.DMPFC - Auditory.MCC r = �0.351, p=0.005

* ExecuContr.L.PFC - Salience.dACC r = �0.335, p=0.007

* Sensorimotor.R.M1 - Sensorimotor.SMA r = �0.330, p=0.008

* Sensorimotor.R.M1 - Auditory.L.A1 r = 0.319, p=0.011

* Salience.dACC - Visual.R.V1 r = 0.319, p=0.011

* ExecuContr.DMPFC - Sensorimotor.L.M1 r = �0.310, p=0.013

* DMN.R.LatP - Visual.R.V4 r = �0.306, p=0.015

* ExecuContr.L.Parietal - Sensorimotor.L.M1 r = �0.302, p=0.016

* DMN.aMPFC - Salience.dACC r = �0.292, p=0.020

* DMN.aMPFC - Sensorimotor.L.M1 r = �0.286, p=0.023

* DMN.aMPFC - DMN.PCC r = 0.275, p=0.029

* ExecuContr.R.Parietal - Visual.R.V4 r = �0.270, p=0.033

* DMN.aMPFC - Sensorimotor.R.M1 r = �0.268, p=0.034

* ExecuContr.R.Parietal - Sensorimotor.R.M1 r = �0.263, p=0.037

* Sensorimotor.L.M1 - Sensorimotor.SMA r = �0.261, p=0.039

* DMN.R.LatP - Sensorimotor.R.M1 r = �0.261, p=0.039

* ExecuContr.R.Parietal - Visual.L.V4 r = �0.257, p=0.042

* Salience.dACC - Visual.L.V4 r = 0.256, p=0.043

* ExecuContr.DMPFC - Sensorimotor.R.M1 r = �0.255, p=0.043

* DMN.aMPFC - Visual.L.V1 r = 0.251, p=0.047

* Salience.R.AIns - Sensorimotor.L.M1 r = 0.250, p=0.049

* DMN.L.LatP - Sensorimotor.SMA r = 0.248, p=0.050
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Specifically, the functional connectivity features were the functional connectivity between any pair of

ROIs. As there were more than 200 functional connectivity features, because of space limitations,

only the functional connectivity features that were significantly correlated to the CRS-R scores at the

T1 time point are shown. **: p<0.05, FDR corrected; *: p<0.05, uncorrected.

DOI: https://doi.org/10.7554/eLife.36173.034
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Appendix 7

DOI: https://doi.org/10.7554/eLife.36173.035

Histogram depicting the imaging features included in
CARS-PLSR models
We resampled 1000 times with replacement from the training dataset ‘Beijing 750’. In each

bootstrap sampling set, the CARS-PLSR was used for imaging feature subset selection. We

then summarized the numbers of each imaging feature that was included in the CARS-PLSR

model. Appendix 7—figure 1 shows the histogram depicting the imaging features included in

CARS-PLSR models. The horizontal bar represents the number.

Appendix 7—figure 1. Histogram depicting the imaging features included in CARS-PLSR

models.

DOI: https://doi.org/10.7554/eLife.36173.036
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Appendix 8

DOI: https://doi.org/10.7554/eLife.36173.037

Validations in healthy controls
To test robustness, we evaluated whether the prognostic regression model generalized to the

normal controls (NC) in the training dataset ‘Beijing 750’ (n = 30) and the testing dataset

‘Beijing HDxt’ (n = 10). No normal control data were available in the Guangzhou centre. As the

NC subjects did not have the clinical characteristics, we calculated the subscores using the

imaging features alone and then compared these subscores to those of the DOC patients.

Appendix 8—figure 1 showed the imaging subscores for all of the subjects in the three

datasets. We would like to emphasize that the normal controls in the training dataset were

only used to establish the brain network templates, and not for any training.

Appendix 8—figure 1. The imaging subscores for all of the subjects in the three datasets.

DOI: https://doi.org/10.7554/eLife.36173.038

We found that (1) in the training dataset ‘Beijing 750’, the NC subjects had significantly

larger imaging subscores in comparison to both the DOC patients with consciousness recovery

and the DOC patients with consciousness non-recovery (one-way ANOVA, p<0.05, multiple

comparison corrected), and that the DOC patients with consciousness recovery had

significantly larger imaging subscores in comparison to the DOC patients with consciousness

non-recovery (one-way ANOVA, p<0.05, multiple comparison corrected); (2) in the testing

dataset ‘Beijing HDxt’, the NC subjects had significantly larger imaging subscores in

comparison to the DOC patients with consciousness non-recovery (one-way ANOVA, p<0.05,

multiple comparison corrected), and the DOC patients with consciousness recovery had

significantly larger imaging subscores in comparison to the DOC patients with consciousness

non-recovery (one-way ANOVA, p<0.05, multiple comparison corrected); (3) in the testing

dataset ‘Guangzhou HDxt’, the imaging subscores of the DOC patients with consciousness

recovery were significantly larger than that of DOC patients with consciousness non-recovery

(two-sample t-tests, p<0.05).
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Appendix 9

DOI: https://doi.org/10.7554/eLife.36173.039

Variations across different sites
To investigate variations across different sites, we did two experiments using the normal

control (NC) subjects in this study. First, we explored whether the predicted imaging

subscores of the NC subjects were significantly different between the training dataset ‘Beijing

750’ (n = 30) and the testing dataset ‘Beijing HDxt’ (n = 10). We found that there was no

significant difference between the two groups (two-sample T test, p=0.24). The distribution is

shown in Appendix 9—figure 1.

Appendix 9—figure 1. The distribution of the predicted imaging subscores of the healthy con-

trols at different sites.

DOI: https://doi.org/10.7554/eLife.36173.040

Second, we investigated the relationships between the fMRI signal-to-noise ratio (SNR) and

the predicted imaging subscores. Different MRI acquisition protocols (e.g. scanner hardware,

imaging protocols and acquisition sequences) can influence the imaging SNR. But, it is not

trivial to estimate the SNR in resting-state fMRI because the noise is complex and also differs

spatially. Here, we calculated the temporal SNR (tSNR) as the ratio between the mean fMRI

signal and its temporal standard deviation in each voxel (Welvaert and Rosseel, 2013), and

then averaged across all voxels in each region of interest (ROI) (Gardumi et al., 2016;

Hay et al., 2017). As there were 22 ROIs in this study, the median of these 22 ROI tSNR

values was used as the measure for evaluating the SNR of the fMRI. We then correlated the

median tSNR with the predicted imaging subscores across all of the NC subjects (n = 40), and

found that there were significant correlations between them (Pearson’s correlation r = 0.36,

p=0.024) as shown inAppendix 9—figure 2.
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Appendix 9—figure 2. The correlations between the fMRI signal-to-noise ratio (SNR) and the

predicted imaging subscores in the healthy controls.

DOI: https://doi.org/10.7554/eLife.36173.041

From the above two experiments, we found that (1) the fMRI tSNR could be one of

influencing factors in the application of the presented model; (2) the predicted imaging

subscores for the NC subjects could be approximate across different sites when the tSNR was

proximity. Therefore, we suggested that our presented model can be applied to different

centers, although the calibration might be required. Further, the tSNR in fMRI is not only

associated with instrumental noise but also modulated by subject-related noise, such as

physiological fluctuations and motion artifacts (Huettel et al., 2009). Therefore, we suggest

that, on the one hand, the quality of imaging acquisition, including MRI scanner and imaging

sequence/parameters, need to be guaranteed; and on the other hand, scanning protocols is

required to be standardized to reduce the subject-related noise during the scanning.
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