Autophagy-dependent rRNA degradation is essential for maintaining nucleotide homeostasis during C. elegans development

  1. Yubing Liu
  2. Wei Zou
  3. Peiguo Yang
  4. Li Wang
  5. Yan Ma
  6. Hong Zhang
  7. Xiaochen Wang  Is a corresponding author
  1. Peking University, China
  2. National Institute of Biological Sciences, China
  3. Chinese Academy of Sciences, China

Abstract

Ribosome degradation through the autophagy-lysosome pathway is crucial for cell survival during nutrient starvation, but whether it occurs under normal growth conditions and contributes to animal physiology remains unaddressed. In this study, we identified RNST-2, a C. elegans T2 family endoribonuclease, as the key enzyme that degrades ribosomal RNA in lysosomes. We found that loss of rnst-2 causes accumulation of rRNA and ribosomal proteins in enlarged lysosomes and both phenotypes are suppressed by blocking autophagy, which indicates that RNST-2 mediates autophagic degradation of ribosomal RNA in lysosomes. rnst-2(lf) mutants are defective in embryonic and larval development and are short-lived. Remarkably, simultaneous loss of RNST-2 and de novo synthesis of pyrimidine nucleotides leads to complete embryonic lethality, which is suppressed by supplements of uridine or cytidine. Our study reveals an essential role of autophagy-dependent degradation of ribosomal RNA in maintaining nucleotide homeostasis during animal development.

Data availability

All data generated or analyses during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yubing Liu

    Peking University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Wei Zou

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Peiguo Yang

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Wang

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yan Ma

    National Institute of Biological Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Hong Zhang

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaochen Wang

    National Laboratory of Biomacromolecules, Chinese Academy of Sciences, Beijing, China
    For correspondence
    wangxiaochen@ibp.ac.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4344-0925

Funding

Ministry of Science and Technology of the People's Republic of China

  • Xiaochen Wang

National Science Foundation of China

  • Xiaochen Wang

Chinese Academy of Sciences

  • Xiaochen Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Noboru Mizushima, The University of Tokyo, Japan

Version history

  1. Received: March 12, 2018
  2. Accepted: August 12, 2018
  3. Accepted Manuscript published: August 13, 2018 (version 1)
  4. Version of Record published: August 20, 2018 (version 2)

Copyright

© 2018, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,524
    views
  • 575
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yubing Liu
  2. Wei Zou
  3. Peiguo Yang
  4. Li Wang
  5. Yan Ma
  6. Hong Zhang
  7. Xiaochen Wang
(2018)
Autophagy-dependent rRNA degradation is essential for maintaining nucleotide homeostasis during C. elegans development
eLife 7:e36588.
https://doi.org/10.7554/eLife.36588

Share this article

https://doi.org/10.7554/eLife.36588

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.