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Abstract Cholinergic dysfunction is strongly implicated in dystonia pathophysiology. Previously

(Pappas et al., 2015;4:e08352), we reported that Dlx5/6-Cre mediated forebrain deletion of the

DYT1 dystonia protein torsinA (Dlx-CKO) causes abnormal twisting and selective degeneration of

dorsal striatal cholinergic interneurons (ChI) (Pappas et al., 2015). A central question raised by that

work is whether the ChI loss is cell autonomous or requires torsinA loss from neurons synaptically

connected to ChIs. Here, we addressed this question by using ChAT-Cre mice to conditionally

delete torsinA from cholinergic neurons (‘ChAT-CKO’). ChAT-CKO mice phenocopy the Dlx-CKO

phenotype of selective dorsal striatal ChI loss and identify an essential requirement for torsinA in

brainstem and spinal cholinergic neurons. ChAT-CKO mice are tremulous, weak, and exhibit trunk

twisting and postural abnormalities. These findings are the first to demonstrate a cell autonomous

requirement for torsinA in specific populations of cholinergic neurons, strengthening the

connection between torsinA, cholinergic dysfunction and dystonia pathophysiology.

DOI: https://doi.org/10.7554/eLife.36691.001

Introduction
Multiple lines of evidence implicate striatal cholinergic dysfunction in dystonia pathophysiology

(Pappas et al., 2015; Albin et al., 2003; Eskow Jaunarajs et al., 2015; Pappas et al., 2014). The

symptoms of DYT1 dystonia, caused by a loss of function mutation in the gene encoding torsinA

(Ozelius et al., 1997), are reduced by antimuscarinic treatments (e.g., trihexyphenidyl)(Burke et al.,

1986). Antimuscarinic agents also reduce motor (Pappas et al., 2015) and electrophysiological

(Maltese et al., 2014) abnormalities in DYT1 mouse models. Striatal cholinergic dysfunction is a

common feature of multiple DYT1 animal models (Pappas et al., 2015; Martella et al., 2009;

Pisani et al., 2006; Sciamanna et al., 2012a; Sciamanna et al., 2012b), and experimental ablation

of striatal cholinergic interneurons (ChI) can lead to abnormal postures (Kaneko et al., 2000).

We demonstrated previously that deletion of torsinA from forebrain GABAergic and cholinergic

neurons (using Dlx5/6-cre; ‘Dlx-CKO’) causes highly selective degeneration of dorsal striatal ChI

roughly coincident with the juvenile onset of abnormal limb clasping and twisting movements

(Pappas et al., 2015). Selective ChI abnormalities are also present in postmortem tissue from DYT1

subjects (Pappas et al., 2015). Abnormal movements in Dlx-CKO mice are reduced by clinically rele-

vant antimuscarinic treatments, strengthening model therapeutic validity and suggesting shared
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pathophysiology with human dystonia. This work highlights the importance of elucidating the mech-

anism of selective ChI loss. A critical first step toward this goal is to determine whether the ChI loss

observed in Dlx-CKO mice results from a cell autonomous role of torsinA in these cells or, alterna-

tively, whether loss of torsinA from synaptically connected cells is also required. The major aim of

these studies was to address this fundamental question.

To determine whether torsinA-related ChI loss is cell autonomous, we generated and character-

ized cholinergic neuron selective conditional torsinA knockout mice (ChAT-CKO). We find that

ChAT-CKO mice phenocopy the selective degeneration of dorsal striatal ChI observed in Dlx-CKO

mice (basal forebrain neuron numbers are normal in both models). Assessment of non-forebrain cho-

linergic populations demonstrates that pedunculopontine and laterodorsal tegmental brainstem cho-

linergic neurons, and spinal motor neurons also require torsinA for survival or normal function.

ChAT-CKO mice exhibit severe motor and postural abnormalities that are distinct from Dlx-CKO

mice. These findings are the first to establish a cell autonomous requirement for torsinA in ChI, as

well as identifying additional vulnerable cholinergic neuron populations. This in vivo study fundamen-

tally advances and expands understanding of the requirement of torsinA for normal cholinergic sys-

tem function, opening new directions for the study of mechanisms contributing to selective neuronal

dysfunction in dystonia.

Results and discussion
To determine if ChI neurodegeneration is a cell autonomous effect of torsinA loss, we conditionally

deleted torsinA from cholinergic neurons (Chat-IRES-Cre+, Tor1aFlx/-; ‘ChAT-CKO’ mice; Cre-recom-

binase expression occurs before birth and is completely selective for cholinergic neurons; Figure 1—

figure supplement 1 [Madisen et al., 2010]). Unilateral unbiased stereology of ChAT-immunoreac-

tive neurons in the dorsal striatum from 1 year old mice demonstrates a ~ 34% reduction in the num-

ber of dorsal striatal ChI in ChAT-CKO mice compared to control mice (Figure 1A,B). This finding

was confirmed in an independent cohort using bilateral unbiased stereology (48% reduction; Fig-

ure 1—figure supplement 2A). The number of striatal non-cholinergic neurons was not different

from controls (Figure 1—figure supplement 2B,C), demonstrating that there are no secondary cell

loss effects of ChI degeneration, and that torsinA loss of function-mediated neurodegeneration is

highly specific. These findings establish a cell autonomous torsinA requirement for ChI survival.

ChI cell loss is strikingly selective in Dlx-CKO mice, occurring primarily in the dorsal aspects of the

striatum, with approximately six times greater cell loss in the dorsolateral compared to ventromedial

striatum (57% vs 9% cell density reduction in Dlx-CKO mice; [Pappas et al., 2015]). To examine if

the cell autonomous ChI degeneration in ChAT-CKO mice follows a similar subregion-selective pat-

tern, we determined the density of ChAT-immunoreactive neurons in each quadrant of the dorsal

striatum (as previously [Pappas et al., 2015]). Significant reductions in ChI number were limited to

the dorsolateral and dorsomedial segments of the dorsal striatum (72% and 54% cell density reduc-

tions in dorsolateral and dorsomedial, vs 12% and �4% in ventrolateral and ventromedial segments;

Figure 1C). This topographic pattern of cell loss was present throughout the entire rostro-caudal

extent of the striatum (Figure 1C,D, Figure 1—figure supplement 3). The dorsolateral selectivity of

ChI neuron loss is highly relevant, as the dorsolateral striatum is a key motor circuit node functionally

integrated according to topographic inputs, whereas ventromedial striatal neurons are connected in

associative and limbic circuits (Alexander et al., 1986; Haber, 2016; Parent and Hazrati, 1995). In

contrast, the basal forebrain contains cholinergic projection neurons subserving cognitive and atten-

tional control (Hasselmo and Sarter, 2011; Ballinger et al., 2016), which do not degenerate in

either model (Figure 1E,F). Conditional deletion of torsinA from forebrain cholinergic neurons there-

fore mimics the region-selective vulnerability observed in Dlx-CKO mice, demonstrating a cell auton-

omous requirement for torsinA in select cholinergic populations. To determine if differing time

courses of torsinA loss (via differing torsinA half lives) contributes to selective vulnerability, we

assessed torsinA levels in dorsal vs ventral striatal ChI at P0. Surprisingly, despite uniform prenatal

Cre recombinase expression and preferential loss of dorsal ChI, torsinA levels were reduced to a

greater extent in ventral ChI (dorsal ChI contained 82% of control torsinA levels, while ventral ChI

had ~52% remaining; Figure 1—figure supplement 4). Non-vulnerable basal forebrain cholinergic
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Figure 1. Conditional cholinergic neuron deletion of torsinA causes cell autonomous loss of striatal cholinergic neurons. (A) Unilateral stereological

quantification of the number of ChAT-positive neurons in the striatum of ChAT-CKO and control mice (One-way ANOVA F(3,28) = 3.589, p=0.02,

Dunnett’s multiple comparisons test: adjusted p value = 0.049; ‘WT’=Tor1aFlx/+; ‘Cre Control’=ChAT-Cre+, Tor1a Flx/+; ‘Het Control’=Tor1 aFlx/-; ‘ChAT-

CKO’=ChAT-Cre+, Tor1aFlx/-). (B) ChAT immunohistochemistry of coronal sections containing dorsal striatum from WT and ChAT-CKO mice

(cc = corpus callosum). (C) Percent reduction in cell density by striatal quadrant (DL = dorsolateral; DM = dorsomedial, VL = ventrolateral,

VM = ventromedial). (D) Significant ChI loss is selective for dorsal striatal quadrants. Cell density quantification in control and ChAT-CKO striatal

quadrants (Two-way ANOVA main effect of genotype F(3,112) = 24.02, p<0.0001; main effect of quadrant F(3,112)=8.398, p<0.0001; interaction

F(9,112)=8.11, p<0.0001. Post-hoc Tukey’s multiple comparisons test). (E) Basal forebrain neurons are spared in ChAT-CKO mice. Stereological

quantification of P75-immunoreactive basal forebrain cholinergic neurons in the nucleus basalis of meynert (NBM), medial septum/nucleus of the

vertical limb of the diagonal band (MS/VDB), and globus pallidus (GP). No differences in the number of cholinergic neurons was observed (NBM,

Figure 1 continued on next page
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neurons exhibited 49% of control torsinA immunoreactivity (Figure 1—figure supplement 5). These

findings demonstrate that a more rapid loss of torsinA during development does not contribute to

the unique vulnerability of dorsal ChI.

TorsinA deletion is restricted to forebrain structures in Dlx-CKO mice. In contrast, ChAT-CKO

mice lack torsinA in all cholinergic neurons throughout the neuraxis, enabling us to assess the impact

of torsinA loss in additional cholinergic populations. Unbiased stereology of ChAT-immunoreactive

neurons in the brainstem demonstrates significantly fewer cholinergic neurons in the pedunculopon-

tine (PPN) and laterodorsal tegmental (LDT) nuclei in 1 year old Chat-CKO mice (Figure 2A–D). The

PPN and LDT also contain GABAergic, and glutamatergic neurons (Mena-Segovia, 2016), which sig-

nificantly outnumber cholinergic neurons (Mena-Segovia et al., 2009; Wang and Morales, 2009).

Unbiased stereology of NeuN +neurons in PPN and LDT showed no significant change in the overall

number of neurons (Figure 2A,C). Because cholinergic neurons are a minority of cells in the PPN

and LDT, it is possible that a significant reduction of this small sub-population cannot be detected

when assessed by counting overall NeuN +neuron number. It is also possible that PPN and LDT cho-

linergic neurons exhibit reduced ChAT expression rather than actual cell loss. Regardless, either pos-

sibility demonstrates a cell autonomous role for torsinA for normal function of these cells. These

findings also indicate that the loss or dysfunction of brainstem cholinergic neurons does not have

deleterious effects on the viability of surrounding neurons. Consistent with this finding, there was no

evidence of reactive microgliosis or astrogliosis in the brainstem (Figure 2—figure supplement 1).

Quantification of the number of spinal motor neurons (C3-C5; [Kim et al., 2017]) demonstrated sig-

nificantly fewer motor neurons in ChAT-CKO mice (Figure 2E,F).

The identification of cholinergic dysfunction or loss in PPN and LDT is notable, as considerable

data implicate these cells in motor and postural control. PPN and LDT cholinergic neurons are dis-

tributed in a rostrocaudal continuum in the brainstem, forming a coordinated functional unit (Mena-

Segovia, 2016; Mena-Segovia and Bolam, 2017). PPN and LDT cholinergic neurons topographically

innervate the striatum and striatal-projecting thalamic and midbrain dopamine neurons

(Dautan et al., 2014), such that rostral PPN modulates motor-related circuits, LDT innervates limbic

circuits, and caudal PPN targets both regions (Mena-Segovia, 2016; Xiao et al., 2016) via both

direct and indirect inputs. Consistent with a central role in modulating locomotor activity, optoge-

netic stimulation of PPN cholinergic neurons alters locomotion speed, while stimulation of adjacent

glutamatergic neurons induces locomotion (Xiao et al., 2016; Roseberry et al., 2016; Capelli et al.,

2017). Cholinergic PPN lesion alone or in combination with dopaminergic denervation impairs gait

and causes postural abnormalities in primates (Grabli et al., 2013; Karachi et al., 2010). In rodents,

cholinergic-selective PPN lesion impairs performance on the accelerating rotarod and alters sensori-

motor gating (MacLaren et al., 2014a; MacLaren et al., 2014b), while non-specific PPN ablation

alters gait (Blanco-Lezcano et al., 2017) and impairs reversal learning (Syed et al., 2016). Human

neuroimaging and postmortem studies also provide support for a connection between PPN choliner-

gic integrity and motor function. PPN cholinergic loss is linked to gait abnormalities in Parkinson dis-

ease (Karachi et al., 2010; Bohnen et al., 2009), and brainstem lesions (including PPN loss) can

Figure 1 continued

t(13)=1.684, p=0.11; MS/VDB, t(13)=1.537, p=0.148; GP, t(13)=0.5, p=0.625). (F) P75 immunohistochemistry of sagittal sections containing basal forebrain

cholinergic neuron populations. i.c. = internal capsule, ST = striatum.

DOI: https://doi.org/10.7554/eLife.36691.002

The following figure supplements are available for figure 1:

Figure supplement 1. ChAT-Cre is expressed prenatally.

DOI: https://doi.org/10.7554/eLife.36691.003

Figure supplement 2. Independent cohort confirmation of selective striatal cholinergic neuron loss in ChAT-CKO mice.

DOI: https://doi.org/10.7554/eLife.36691.004

Figure supplement 3. ChAT-positive neurons are reduced in a topographic pattern throughout the rostrocaudal extent of the dorsal striatum.

DOI: https://doi.org/10.7554/eLife.36691.005

Figure supplement 4. Time course of torsinA protein loss in dorsal and ventral striatum.

DOI: https://doi.org/10.7554/eLife.36691.006

Figure supplement 5. Time course of torsinA protein loss in basal forebrain.

DOI: https://doi.org/10.7554/eLife.36691.007
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Figure 2. ChAT-CKO mice have significantly fewer brainstem and spinal cord cholinergic neurons. (A,B) Stereological quantification of ChAT-positive or

NeuN-positive neurons in the pedunculopontine nucleus (PPN) of control and ChAT-CKO mice (ChAT; t(14)=4.531, p=0.0005. NeuN; t(14)=0.095, p=0.92).

(C,D) Stereological quantification of ChAT-positive or NeuN-positive neurons in the laterdorsal tegmental nucleus (LDT) of control and ChAT-CKO mice

(ChAT; t(14)=3.571, p=0.003. NeuN; t(14)=1.934, p=0.073). (E,F) Quantification of the number of ChAT-positive neurons in the cervical spinal cord of

control and ChAT-CKO mice (t(6)=3.654, p=0.0107). Scale bars = 100 mm.

DOI: https://doi.org/10.7554/eLife.36691.008

The following figure supplement is available for figure 2:

Figure supplement 1. Absence of gliosis in the brainstem of ChAT-CKO mice.

DOI: https://doi.org/10.7554/eLife.36691.009
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Figure 3. Motor behavior is severely disrupted in ChAT-CKO mice. (A) Representative image of a control and ChAT-CKO mouse demonstrates severe

kyphosis and unkempt coat. (B) ChAT-CKO mice exhibit significantly increased kyphotic curvature during locomotion (Mann-Whitney U = 35, p<0.0001).

(C) ChAT-CKO mice exhibit a significantly reduced latency to fall during forelimb suspension (Mann-Whitney U = 71.5, p<0.0001). (D, E) ChAT-CKO

mice are hypoactive in the open field (horizontal movement, t(23)=2.345, p=0.028; vertical rears, welch-corrected t(15.1) = 2.345, p=0.033). (F) Performance

on the accelerated rotarod does not significantly differ from controls (two-way repeated measures ANOVA, genotype, F(1,43)=0.75, p=0.389; trial,

F(9,387)=55.63, p<0.0001; interaction, F(9,387)=1.194, p=0.297). (G - I) ChAT-CKO mouse gait is abnormal during locomotion (paw angle, two-way ANOVA

main effect of genotype, F(1,56)=30.54, p<0.0001, main effect of limb F(3,56)=51.02, p<0.0001, interaction F(3,56)=13.51, p<0.0001, post-hoc Sidak’s

multiple comparisons test. Stance width, t(14)=3.329, p=0.005. Stride length, two-way ANOVA genotype F(1,28)=3.164, p=0.086, limb F(1,28)=0.02,

p=0.887, interaction F(1,28)=0.0001, p=0.989).

DOI: https://doi.org/10.7554/eLife.36691.010

The following video and figure supplements are available for figure 3:

Figure supplement 1. Representative examples of control and ChAT-CKO spinal cords demonstrate significant kyphotic curvature.

DOI: https://doi.org/10.7554/eLife.36691.011

Figure supplement 2. ChAT-CKO mice are significantly hypoactive.

DOI: https://doi.org/10.7554/eLife.36691.012

Figure 3—video 1. Representative video demonstrating tremulousness, kyphosis, and hyperactivity in ChAT-CKO mice, as compared to controls.

DOI: https://doi.org/10.7554/eLife.36691.013

Figure 3 continued on next page
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result in complex dystonia (Jankovic and Patel, 1983; LeDoux and Brady, 2003; Loher and Krauss,

2009; Zweig et al., 1988; Mente et al., 2018). Systematic cholinergic brainstem cell counts have

not been performed in DYT1 dystonia postmortem samples; most studies have failed to demon-

strate neuronal inclusions or overt cell loss in this region (Paudel et al., 2014; Pratt et al., 2016;

McNaught et al., 2004).

Motor behavior is severely disrupted in ChAT-CKO mice, but is distinct from the Dlx-CKO pheno-

type (Figure 3; Table 1). ChAT-CKO pups are initially indistinguishable from littermates, but at

approximately 4 weeks of age develop a hunched posture, have unkempt fur, and exhibit reduced

responsiveness to handling (Figure 3A, Figure 3—figure supplement 1). Whereas normal mice

exhibit a slight dorsal spinal curvature at rest, ChAT-CKO mice exhibit severe kyphosis, including

during locomotion (assessed by two observers blind to experimental conditions; Figure 3B; Fig-

ure 3—figure supplement 1; Figure 3—video 1) (Guyenet et al., 2010). ChAT-CKO mice also

exhibit signs of weakness, including a significantly reduced ability to hang by the forelimbs

(Figure 3C), tremulous movements, labored breathing (Figure 3—video 1), and significantly

reduced horizontal and vertical movement in the open field (Figure 3D,E, Figure 3—figure supple-

ment 2). Remarkably, performance on the accelerating rotarod during two days of training appears

normal (Figure 3F). The normal rotarod behavior differs from models of motor neuron and neuro-

muscular disease, suggesting that neuromuscular weakness is modest in ChAT-CKO, and less likely

to contribute to other behavioral phenotypes (e.g., postural abnormality). The gait of ChAT-CKO

mice is also significantly altered (Figure 3G–I). This constellation of behavioral phenotypes is distinct

from Dlx-CKO mice (Table 1), in which loss of dorsal striatal ChI is associated with a set of persistent

abnormal action-induced motor behaviors, including limb clasping and trunk twisting during tail sus-

pension and open field hyperactivity (Pappas et al., 2015). ChAT-CKO mice did not exhibit fore- or

hindlimb clasping during tail suspension, but did exhibit tremulousness and trunk twisting (15 CKO,

19 heterozygous, 22 Cre control, and 19 wild type mice observed; Figure 3—video 2). These results

suggest that dorsal striatal ChI neurodegeneration may not, by itself, be sufficient to cause limb

clasping during tail suspension. However, the co-occurrence of brainstem and spinal cord

Figure 3 continued

Figure 3—video 2. ChAT-CKO exhibit twisting and tremulousness, but not limb clasping during tail suspension.

DOI: https://doi.org/10.7554/eLife.36691.014

Table 1. Behavioral properties of Dlx-CKO and ChAT-CKO mice.

Motor function Dlx-CKO ChAT-CKO

Pappas et al., 2015 eLife 4:e08352 present manuscript

Tail suspension Trunk twisting Trunk twisting

Forelimb clasping -

Hindlimb clasping -

- Tremulousness

Open field Hyperactivity Hypoactivity

Rotarod Normal Normal

Response to handling Exaggerated Reduced

Weakness, latency to fall Grid hang reduction Wire hang reduction

Gait Normal by eye Abnormal by eye

Slightly reduced stance width Increased stance width

- Increased paw angle

Overt postural abnormalities - Severe kyphosis

Tremulous movement - Severe

Labored breathing - Severe

DOI: https://doi.org/10.7554/eLife.36691.015
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Table 2. Vulnerability of cholinergic populations.

(*)=Unconfirmed by independent marker.

Cre expression Cell death vulnerability

Cholinergic population Dlx-Cre ChAT-Cre Dlx-Cre ChAT-Cre

Dorsolateral striatum
(including dorsal caudate
putamen)

Confirmed Confirmed Severe Severe

Dorsomedial striatum
(including ventral caudate
putamen)

Confirmed Confirmed Mild Spared

Nucleus accumbens Confirmed Confirmed - -

Basal forebrain Confirmed Confirmed Spared Spared

Cholinergic Brainstem Absent Confirmed n/a Severe (*)

Primary Motor Neurons Absent Confirmed n/a Moderate

DOI: https://doi.org/10.7554/eLife.36691.016

Table 3. Properties of cholinergic neuronal populations.

‘Nucleus Basalis Complex’=Nucleus Basalis of Meynert, Horizontal limb of the diagonal band of Broca, Ventral Pallidum, Magnocellular

Preoptic Area, Substantia Inominata, Nucleus of the Ansa Lenticularis. ‘Septa”l = Medial Septum, Vertical Limb of the Diagonal Band

of Broca. ‘Cholinergic Brainstem’=Pedunculopontine Nucleus, Laterodorsal Tegmental Nucleus (Pappas et al., 2015; Mena-

Segovia and Bolam, 2017; Gonzales and Smith, 2015; Manns et al., 2000; Unal et al., 2012; Petzold et al., 2015; Kanning et al.,

2010; Kreitzer, 2009; Zaborszky et al., 2012; Garcia-Rill, 1991; Semba et al., 1988; Semba and Fibiger, 1992; Phelps et al.,

1990a; Phelps et al., 1988; Phelps et al., 1990b; Phelps et al., 1989; Aroca and Puelles, 2005; Schambra et al., 1989).

Cholinergic
population

Neuronal
class

Firing
properties Efferent projections Afferent inputs

Birth
date/
final
mitosis

Embryonic
origin

ChAT
expression

Dorsolateral
striatum
(including
dorsal caudate
putamen)

Interneuron tonically
active, 2–10
Hz baseline
firing rate

Local - striatal spiny
projection neurons and
fast spiking interneurons

Thalamus, sensorimotor cortex, striatal
spiny projection neurons, striatal
interneurons

E12-
E15

MGE ~E16

Dorsomedial
striatum
(including
ventral caudate
putamen)

Interneuron tonically
active, 2–10
Hz baseline
firing rate

Local - striatal spiny
projection neurons and
fast spiking interneurons

Thalamus, association cortices, striatal
spiny projection neurons, striatal
interneurons

E12-
E15

MGE ~E16

Nucleus
accumbens

Interneuron tonically
active, 0.6–
12 Hz
baseline
firing rate

Local - striatal spiny
projection neurons and
fast spiking interneurons

Thalamus, frontal cortex, striatal spiny
projection neurons, striatal interneurons

E12-
E15

MGE ~E16

Basal forebrain Projection
neuron

Tonic/burst,
subtype
dependent

Cortex (Nucleus Basalis
Complex), Hippocampus
(Septal)

Medulla, locus ceruleus, substantia nigra,
ventral tegmental area, hypothalamic
nuclei, nucleus accumbens, amygdala,
local intrinsic GABAergic and
glutamatergic collaterals

E11-
E15

POA/MGE ~E15-16

Cholinergic
Brainstem

Projection
neuron

episodic Midbrain, superior
colliculus, thalamus,
globus pallidus,
hypothalamus, septum,
striatum, cortex

Brainstem reticular formation, midbrain
central gray, lateral hypothalamus-zona
incerta, cortex, amygdala, basal forebrain,
basal ganglia output nuclei, brainstem
and spinal cord sensory nuclei

E12-
E13

Ventral
rhombomere
1 (r1)

Primary Motor
Neurons

Projection
neuron

subtype
dependent

Muscle Motor Cortex, local spinal cord
interneurons and sensory neurons

E11-
E12

Ventral spinal
cord
progenitor
domains

E13
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neurodegeneration and tremulousness in ChAT-CKO mice could modify a clasping phenotype and

therefore limit this strength of this conclusion.

While no single system or experimental approach can fully model a disease, the extreme postural

abnormalities (kyphosis and twisting) in ChAT-CKO mice are reminiscent of Oppenheim’s original

description of dystonia (Klein and Fahn, 2013), suggesting that a constellation of cholinergic abnor-

malities may contribute to such a phenotype. The abnormal gait, tremulous movement, weakness,

labored breathing, and appearance of reduced muscle mass in ChAT-CKO mice are consistent with

brainstem and spinal cord pathology, yet the time course of ChAT-CKO abnormalities (beginning

during development) differ from motor neuron and neuromuscular disease models, in which behav-

ioral phenotypes typically emerge in adulthood (9–11 months of age; (Dickinson and Meikle, 1973;

Bridges et al., 1992; Deconinck et al., 1997; Grady et al., 1997; Laws and Hoey, 2004; Liu et al.,

2016; Sopher et al., 2004; Monks et al., 2007). Early motor behavioral manifestations also occur in

Dlx-CKO and other DYT1 models, emphasizing the importance of torsinA function during develop-

ment and maturation at behavioral (Pappas et al., 2015; Liang et al., 2014), cellular (Pappas et al.,

2018), and molecular levels (Tanabe et al., 2016).

These findings establish a cell autonomous requirement of torsinA for the normal function and

survival of distinct populations of cholinergic neurons. Comparison of basic cellular properties

between susceptible and invulnerable cholinergic neuron populations does not identify obvious pat-

terns driving selective vulnerability (Tables 2 and 3). Within the striatum, dorsal ChI are highly vulner-

able to cell death, while ventral ChI are spared. It is unclear whether molecular differences within

different ChI populations drive vulnerability, or if differences in connectivity or response to inputs

contributes to their loss; these possibilities are not mutually exclusive. While often considered a sin-

gle neuronal class, an existing and enlarging literature demonstrates that dorsal and ventral striatal

ChI exhibit significant differences in morphology, regulation, and receptor expression (reviewed in

[Gonzales and Smith, 2015]), as well as differing firing patterns during behavioral tasks (Yarom and

Cohen, 2011) and responses to serotonergic input (Virk et al., 2016). These differences implicate

the presence of multiple ChI subclasses, though it is important to note that the spared ‘ventral’ pop-

ulation here represents the ventral part of the dorsal striatum, not the nucleus accumbens. Thala-

mostriatal and corticostriatal input is highly topographic (Alexander et al., 1986; Smith et al.,

2004), raising the possibility that aberrant input from different thalamic nuclei or cortical regions (or

aberrant response to that input) could alter the susceptibility of dorsal vs ventral ChI. It is likely that

a combination of these and other factors plays a role in the differential susceptibility of cholinergic

neuronal populations, including their molecular profiles (e.g., protective factors in some neurons,

susceptibility factors in others), the response to afferent inputs, and their inherent physiological

properties.

These studies greatly strengthen the connection between torsinA and cholinergic dysfunction,

demonstrating that specific cholinergic populations exhibit a cell autonomous selective vulnerability

to torsinA deficiency, while others – basal forebrain and ventral striatum – are spared. These findings

open novel avenues of study aimed at defining the molecular mechanisms responsible for this cell

autonomous selective vulnerability, and circuit-level analyses to ameliorate the effects of cholinergic

neurotransmission abnormalities.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Gene
(Mus musculus)

Tor1a NA NCBI Gene: 30931;
MGI:1353568

Encodes TorsinA

Strain, strain
background(M. musculus)

ChAT-Cre Jackson Laboratories Stock ID 006410 Chattm2(cre)Lowl; (Chat-IRES-Cre)

Strain, strain
background(M. musculus)

Tor1aFlx/Flx Jackson Laboratories Stock ID 025832 Tor1atm3.1Wtd

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain, strain
background(M. musculus)

Tor1a-/- Jackson Laboratories Stock ID 006251 Tor1atm1Wtd

Antibody Choline
Acetyltransferase

Millipore AB144P RRID: AB_2079751 1:100

Antibody P75 Neurotrophin
Receptor

Santa Cruz sc6188 RRID: AB_2267254 1:100

Antibody NeuN Cell Signaling #12943 RRID: AB_2630395 1:500

Antibody GFAP Cell Signaling #3670P RRID: AB_561049 1:1000

Antibody Iba-1 Wako 019–19741 RRID: AB_839504 1:500

Antibody TorsinA Abcam ab34540 RRID: AB_2240792 1:100

Antibody anti-mouse ThermoFisher
A-31571

RRID: AB_162542 1:800

Antibody anti-rabbit ThermoFisher
A-21206

RRID: AB_2535792 1:800

Antibody anti-rabbit ThermoFisher
A-31572

RRID: AB_162543 1:800

Antibody anti-goat ThermoFisher
A-21432

RRID: AB_2535853 1:800

Antibody anti-goat Jackson
Immunoresearch
705-065-003

RRID: AB_2340396 1:800

Commercial assay
or kit

ABC HRP Kit
(Standard)

Vector Laboratories Pk-6100 Vectastain elite
ABC kit

Animals
ChAT-CKO mice were generated by crossing Chattm2(cre)Lowl mice (Rossi et al., 2011) with Tor1aFlx/

Flx mice (Liang et al., 2014), using the breeding strategy described in (Pappas et al., 2015), and

maintained as previously described (Pappas et al., 2015).

Sample size estimation
Sample sizes for histological and behavioral studies were determined by performing a power analysis

of the open field or striatal cholinergic stereological data (mean and std. dev.) from (Pappas et al.,

2015), an alpha of 0.01, and beta of 0.1. (Kane SP. Sample Size Calculator. ClinCalc: http://clincalc.

com/stats/samplesize.aspx). Experimental cohorts were generated accordingly.

Table 4. Antibodies used for immunohistochemistry.

Level Antigen Host Conjugated Dilution Source

Primary Choline Acetyltransferase Goat - 1:100 Millipore AB144P

Primary P75 Neurotrophin Receptor Goat - 1:100 Santa Cruz sc6188

Primary NeuN Rabbit - 1:500 Cell Signaling #12943

Primary GFAP Mouse - 1:1000 Cell Signaling #3670P

Primary Iba-1 Rabbit - 1:500 Wako 019–19741

Primary TorsinA Rabbit - 1:100 Abcam ab34540

Secondary anti-mouse Donkey Alexafluor-647 1:800 ThermoFisher A-31571

Secondary anti-rabbit Donkey Alexafluor-488 1:800 ThermoFisher A-21206

Secondary anti-rabbit Donkey Alexafluor-555 1:800 ThermoFisher A-31572

Secondary anti-goat Donkey Alexafluor-555 1:800 ThermoFisher A-21432

Secondary anti-goat Donkey biotin 1:800 Jackson Immunoresearch 705-065-003

DOI: https://doi.org/10.7554/eLife.36691.018
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Imaging and stereology
Brain sections were generated and stained with immunohistochemistry using the methods described

in (Pappas et al., 2015; Pappas et al., 2018). Antibodies and reagents are listed in Table 4. Sec-

tions were observed with epifluorescence or brightfield microscopy (Pappas et al., 2018), and unbi-

ased stereological cell counting was performed with StereoInvestigator software using the Optical

Fractionator probe (specific parameters in Table 5). Striatal cell density was quantified as done previ-

ously (Pappas et al., 2015). Spinal cord neurons were quantified as described in (Kim et al., 2017).

Behavioral analysis
Tail suspension, forelimb wire suspension, open field, accelerating rotarod, and gait analysis were

performed as described in (Pappas et al., 2015). Kyphosis severity was scored as described in

(Guyenet et al., 2010).

Statistical analysis
t-tests, one-way, or two-way ANOVA with posthoc corrections for multiple comparisons were per-

formed to compare experimental groups (details in each figure legend). If variances were signifi-

cantly different between groups, non-parametric tests were performed.
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