1. Microbiology and Infectious Disease
Download icon

Unravelling the history of hepatitis B virus genotypes A and D infection using a full-genome phylogenetic and phylogeographic approach

  1. Evangelia-Georgia Kostaki
  2. Timokratis Karamitros
  3. Garyfallia Stefanou
  4. Ioannis Mamais
  5. Konstantinos Angelis
  6. Angelos Hatzakis
  7. Anna Kramvis
  8. Dimitrios Paraskevis  Is a corresponding author
  1. National and Kapodistrian University of Athens, Greece
  2. European University of Cyprus, Cyprus
  3. University of the Witwatersrand, South Africa
Research Article
  • Cited 9
  • Views 2,343
  • Annotations
Cite this article as: eLife 2018;7:e36709 doi: 10.7554/eLife.36709

Abstract

Hepatitis B virus (HBV) infection constitutes a global public health problem. In order to establish how HBV was disseminated across different geographic regions, we estimated the levels of regional clustering for genotypes D and A. We used 916 HBV-D and 493 HBV-A full-length sequences to reconstruct their global phylogeny. Phylogeographic analysis was conducted by reconstruction of ancestral states using the criterion of parsimony. The putative origin of genotype D was in North Africa/Middle East. HBV-D sequences form low levels of regional clustering for the Middle East and Southern Europe. In contrast, HBV-A sequences form two major clusters, the first including sequences mostly from sub-Saharan Africa, and the second including sequences mostly from Western and Central Europe. Conclusion: We observed considerable differences in the global dissemination patterns of HBV-D and HBV-A and different levels of monophyletic clustering in relation to the regions of prevalence of each genotype.

Data availability

All data (sequence alignments and additional pieces of information related to the accession numbers of sequences and their sampling areas) are available at Dryad (doi: 10.5061/dryad.bt4q242).

The following data sets were generated

Article and author information

Author details

  1. Evangelia-Georgia Kostaki

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  2. Timokratis Karamitros

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0841-9159
  3. Garyfallia Stefanou

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Ioannis Mamais

    Department of Health Sciences, School of Sciences, European University of Cyprus, Nicosia, Cyprus
    Competing interests
    The authors declare that no competing interests exist.
  5. Konstantinos Angelis

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  6. Angelos Hatzakis

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  7. Anna Kramvis

    Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  8. Dimitrios Paraskevis

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    For correspondence
    dparask@med.uoa.gr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6167-7152

Funding

Hellenic Scientific Society for the Study of AIDS and STDs

  • Evangelia-Georgia Kostaki
  • Timokratis Karamitros
  • Garyfallia Stefanou
  • Ioannis Mamais
  • Konstantinos Angelis
  • Angelos Hatzakis
  • Anna Kramvis
  • Dimitrios Paraskevis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carla Osiowy, University of Manitoba, Canada

Publication history

  1. Received: March 15, 2018
  2. Accepted: July 28, 2018
  3. Accepted Manuscript published: August 7, 2018 (version 1)
  4. Version of Record published: August 31, 2018 (version 2)
  5. Version of Record updated: September 5, 2018 (version 3)

Copyright

© 2018, Kostaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,343
    Page views
  • 329
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Marco Jost et al.
    Tools and Resources Updated

    Dendritic cells (DCs) regulate processes ranging from antitumor and antiviral immunity to host-microbe communication at mucosal surfaces. It remains difficult, however, to genetically manipulate human DCs, limiting our ability to probe how DCs elicit specific immune responses. Here, we develop a CRISPR-Cas9 genome editing method for human monocyte-derived DCs (moDCs) that mediates knockouts with a median efficiency of >94% across >300 genes. Using this method, we perform genetic screens in moDCs, identifying mechanisms by which DCs tune responses to lipopolysaccharides from the human microbiome. In addition, we reveal donor-specific responses to lipopolysaccharides, underscoring the importance of assessing immune phenotypes in donor-derived cells, and identify candidate genes that control this specificity, highlighting the potential of our method to pinpoint determinants of inter-individual variation in immunity. Our work sets the stage for a systematic dissection of the immune signaling at the host-microbiome interface and for targeted engineering of DCs for neoantigen vaccination.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    J Stephan Wichers et al.
    Research Article Updated

    Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.