Unravelling the history of hepatitis B virus genotypes A and D infection using a full-genome phylogenetic and phylogeographic approach

  1. Evangelia-Georgia Kostaki
  2. Timokratis Karamitros
  3. Garyfallia Stefanou
  4. Ioannis Mamais
  5. Konstantinos Angelis
  6. Angelos Hatzakis
  7. Anna Kramvis
  8. Dimitrios Paraskevis  Is a corresponding author
  1. National and Kapodistrian University of Athens, Greece
  2. European University of Cyprus, Cyprus
  3. University of the Witwatersrand, South Africa

Abstract

Hepatitis B virus (HBV) infection constitutes a global public health problem. In order to establish how HBV was disseminated across different geographic regions, we estimated the levels of regional clustering for genotypes D and A. We used 916 HBV-D and 493 HBV-A full-length sequences to reconstruct their global phylogeny. Phylogeographic analysis was conducted by reconstruction of ancestral states using the criterion of parsimony. The putative origin of genotype D was in North Africa/Middle East. HBV-D sequences form low levels of regional clustering for the Middle East and Southern Europe. In contrast, HBV-A sequences form two major clusters, the first including sequences mostly from sub-Saharan Africa, and the second including sequences mostly from Western and Central Europe. Conclusion: We observed considerable differences in the global dissemination patterns of HBV-D and HBV-A and different levels of monophyletic clustering in relation to the regions of prevalence of each genotype.

Data availability

All data (sequence alignments and additional pieces of information related to the accession numbers of sequences and their sampling areas) are available at Dryad (doi: 10.5061/dryad.bt4q242).

The following data sets were generated

Article and author information

Author details

  1. Evangelia-Georgia Kostaki

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  2. Timokratis Karamitros

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0841-9159
  3. Garyfallia Stefanou

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  4. Ioannis Mamais

    Department of Health Sciences, School of Sciences, European University of Cyprus, Nicosia, Cyprus
    Competing interests
    The authors declare that no competing interests exist.
  5. Konstantinos Angelis

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  6. Angelos Hatzakis

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    Competing interests
    The authors declare that no competing interests exist.
  7. Anna Kramvis

    Hepatitis Virus Diversity Research Unit, Department of Internal Medicine, University of the Witwatersrand, Johannesburg, South Africa
    Competing interests
    The authors declare that no competing interests exist.
  8. Dimitrios Paraskevis

    Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Athens, Greece
    For correspondence
    dparask@med.uoa.gr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6167-7152

Funding

Hellenic Scientific Society for the Study of AIDS and STDs

  • Evangelia-Georgia Kostaki
  • Timokratis Karamitros
  • Garyfallia Stefanou
  • Ioannis Mamais
  • Konstantinos Angelis
  • Angelos Hatzakis
  • Anna Kramvis
  • Dimitrios Paraskevis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Kostaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evangelia-Georgia Kostaki
  2. Timokratis Karamitros
  3. Garyfallia Stefanou
  4. Ioannis Mamais
  5. Konstantinos Angelis
  6. Angelos Hatzakis
  7. Anna Kramvis
  8. Dimitrios Paraskevis
(2018)
Unravelling the history of hepatitis B virus genotypes A and D infection using a full-genome phylogenetic and phylogeographic approach
eLife 7:e36709.
https://doi.org/10.7554/eLife.36709

Share this article

https://doi.org/10.7554/eLife.36709

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.