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Abstract Microbial community structure and function rely on complex interactions whose

underlying molecular mechanisms are poorly understood. To investigate these interactions in a

simple microbiome, we introduced E. coli into an experimental community based on a cheese rind

and identified the differences in E. coli’s genetic requirements for growth in interactive and non-

interactive contexts using Random Barcode Transposon Sequencing (RB-TnSeq) and RNASeq.

Genetic requirements varied among pairwise growth conditions and between pairwise and

community conditions. Our analysis points to mechanisms by which growth conditions change as a

result of increasing community complexity and suggests that growth within a community relies on a

combination of pairwise and higher-order interactions. Our work provides a framework for using

the model organism E. coli as a readout to investigate microbial interactions regardless of the

genetic tractability of members of the studied ecosystem.

DOI: https://doi.org/10.7554/eLife.37072.001

Introduction
Microorganisms rarely grow as single isolated species but rather as part of diverse microbial commu-

nities. In these communities, bacteria, archaea, protists, viruses and fungi can coexist and perform

complex functions impacting biogeochemical cycles and human health (Falkowski et al., 2008;

Flint et al., 2012). Deciphering microbial growth principles within a community is challenging due to

the intricate interactions between microorganisms, and between microorganisms and their environ-

ment. While interest in microbial communities has dramatically increased, our understanding of

microbial interactions within communities is lagging significantly behind our ability to describe the

composition of a given community.

Approaches relying on 16S rDNA sequencing analyses of microbial communities can be used to

reconstruct ecosystem networks and detect patterns of co-occurrence to infer general interactions

such as competition, mutualism and commensalism (Faust and Raes, 2012). However, the molecular

mechanisms underlying these interactions remain largely uncharacterized. Further, the way in which

these interactions are organized within a community, such as whether they consist of predominantly

pairwise or higher-order interactions, is even less clear. A more precise understanding of microbial

interactions, their underlying mechanisms, and how these interactions are structured within a com-

munity, are all necessary to elucidate the principles by which a community is shaped. In this study,

we combine genome-scale genetic and transcriptomic approaches within an experimentally tractable

model microbial community to begin to address these questions.

Genome-scale approaches, such as transposon mutagenesis coupled to next-generation sequenc-

ing (TnSeq approaches) have been successfully used to quantify the contribution and thus the impor-

tance of individual genes to a given phenotype (van Opijnen and Camilli, 2013). These techniques
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use a pooled library of transposon insertion mutants whose frequency is measured to identify genes

important for growth in a given condition. Recently, the generation and introduction of unique ran-

dom barcodes into transposon mutant libraries made this approach more high-throughput, enabling

screens of important genes across hundreds of conditions and for numerous genetically tractable

microorganisms (Wetmore et al., 2015; Price et al., 2018).

To investigate the genetic basis of microbial interactions, we have adapted this approach to iden-

tify and compare genetic requirements in single-species (non-interactive) and multi-species (interac-

tive) conditions. We used a large and diverse transposon library previously generated in the

genetically-tractable model bacterium E. coli K12 (Wetmore et al., 2015) to characterize the genetic

requirements of interactions within a model community based on the rind of cheese (Wolfe et al.,

2014). The fact that the E. coli genome has undergone extensive characterization can help more

effectively interpret the genetic requirements introduced by growth within communities. Although E.

coli K12 is not a typical endogenous species of this particular microbiome, non-pathogenic E. coli

strains can be found in raw milk and raw-milk cheese (Trmčić et al., 2016). Shiga-toxin-producing E.

coli 0157:H7 and non-0157 pathogenic E. coli species are common invaders of the cheese environ-

ment and can survive during cheese making causing mild to life-threatening symptoms after inges-

tion (Coia et al., 2001; Montet et al., 2009; Frank et al., 1977).

Using the E. coli transposon library, we (i) identified the set of genes important for growth alone

in the cheese environment, (ii) identified the set of genes important for growth in pairwise conditions

with each individual community member and (iii) identified the set of genes important for growth in

the presence of the complete community. Characterization of the functions or pathways associated

with growth in interactive versus non-interactive conditions were then used to infer the biological

eLife digest Microorganisms live almost everywhere on Earth. Whether it is rainforest soil or

human skin, each environment hosts a unique community of microbes, referred to as its microbiome.

There can be upwards of hundreds of species in a single microbiome, and these species can interact

in a variety of ways; some cooperate, others compete, and some can kill other species. Deciphering

the nature of these interactions is crucial to knowing how microbiomes work, and how they might be

manipulated, for example, to improve human health. Yet studies into these interactions have proven

difficult, not least because most of the species involved are difficult to grow in controlled

experiments.

One environment that is home to a rich community of microbes is the outer surface of cheese,

known as the cheese rind. The cheese rind microbiome is a useful system for laboratory

experiments, because it is relatively easy to replicate and its microbes can be grown on their own or

in combinations with others.

To explore the nature of interactions in microbiomes, Morin et al. have now grown a large

collection of E. coli mutants as members of simplified microbiomes based on the cheese rind. The

mutant bacteria were grown on cheese either alone, paired with one other species, or alongside a

community of three species. The aim was to see which mutants grew poorly when other species

were present, thus allowing Morin et al. to identify specific genes that are important for interactions

within the experimental microbiomes.

Even in these simplified microbiomes, the microbes interacted in a variety of ways. Some

microbes competed with E. coli for elements like iron and nitrogen; others cooperated by sharing

the building blocks needed to make larger molecules. Many of the interactions that happened when

E. coli was paired with one species were not seen when more species were added to the

community. Similarly, some interactions were only seen when E. coli was grown alongside a

community of microbes, and not when it was paired with any of the three species on their own.

These findings show that complex interactions are present even in a simplified microbiome. This

experimental approach can now be applied to other microbiomes that can be grown in the

laboratory to examine whether the patterns of interactions seen are generalizable or specific to the

cheese rind system.

DOI: https://doi.org/10.7554/eLife.37072.002
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processes involved in interactions within the model microbiome. Additionally, we compared the set

of genes important for growth in pairwise conditions with the ones important for growth in a com-

munity to investigate how microbial interactions change depending on the complexity of the interac-

tive context. We also performed a similar RB-TnSeq analysis during non-interactive and interactive

conditions using a transposon library we generated in the cheese-endogenous species Pseudomonas

psychrophila JB418. Finally, we measured changes in the transcriptional profile of E. coli during

growth alone, growth in pairwise conditions, and within the community using RNAseq as a comple-

mentary approach to RB-TnSeq in defining microbial interactions. This analysis revealed a deep reor-

ganization of gene expression whenever E. coli is in the presence of other species.

This work revealed numerous interactions between species, such as metabolic competition for

iron and nitrogen, as well as cross-feeding from fungal partners for certain amino acids. Our analysis

showed that most of the metabolic interactions (competition and cross-feeding) observed in pairwise

conditions are maintained and amplified by the addition of all partners in the community context.

However, around half of the genetic requirements observed in pairwise conditions were no longer

apparent in the community, suggesting that higher-order interactions emerge in a community.

Results

Identification of the basic genetic requirements for growth of E. coli in
isolation
We used the E. coli Keio_ML9 RB-TnSeq library from Wetmore et al., 2015, containing a pool of

152,018 different insertion mutants (with a median of 16 insertion mutants per gene; covering 3728

of 4146 protein-coding genes), each associated with a unique 20 nucleotide barcode. This library

was originally generated in and maintained on lysogeny broth medium (LB) and was used previously

to identify genes required for growth across a variety of conditions (Wetmore et al., 2015;

Price et al., 2018). To determine genes important for growth on our cheese-based medium, we

grew the pooled library by itself on sterile cheese curd agar plates (CCA: 10% freeze-dried fresh

cheese, 3% NaCl, 0.5% xanthan gum, 1.7% agar), the same medium used in all further experiments

and used previously to demonstrate that cheese communities could be successfully reconstructed in

vitro (Wolfe et al., 2014). As the library is composed of multiple insertion mutants for a gene, we

expect the individual insertion mutants to be evenly distributed in the experimental environment,

minimizing the effect on any individual insertion mutant due to stochastic processes such as genetic

drift or localized effects related to spatial structure (Hallatschek et al., 2007). During growth, we

expect the library to modify the environment by taking up nutrients and excreting molecules (waste

products, enzymes, etc). Consequently, we expect that some genetic requirements will change dur-

ing growth. Thus, to provide a comprehensive overview of the genetic requirements for growth, we

grew the pooled library on CCA and collected samples after 1, 2 and 3 days. For each time point,

we harvested the library from the surface of the cheese plate, extracted genomic DNA, used PCR to

amplify the barcoded regions of the transposons, and then sequenced these products to measure

the abundance (i.e. the number of sequencing reads associated with each barcode) of each transpo-

son mutant over time (see Materials and Methods).

The fitness of each insertion mutant was calculated as the log2 of the ratio of its abundance at a

given timepoint compared to its abundance at T0 (the inoculum). We calculated the raw fitness of a

gene as the weighted average of the fitness of all insertion mutants of that gene. Gene fitness values

were then normalized. First, fitness values are corrected to account for changes in copy number

along the chromosome as insertions near the replication fork are expected to have higher copies in

dividing cells. Then, fitness values were normalized based on the assumption that disruption of most

of the genes leads to little or no fitness effect (see Materials and Methods and (Wetmore et al.,

2015) for details). Consequently, most of the fitness values are expected to be close to 0, indicating

that disruption of these genes leads to no particular growth modification compared to the rest of

the library. Negative gene fitness values, however, identify mutants that are growing slower than the

rest of the library and therefore, genes that are of particular importance for growth in the studied

condition. A t-score, calculated as a moderated t-statistic, is determined for each gene fitness value

to assess if the fitness value is reliably different from 0 (see Materials and Methods and
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(Wetmore et al., 2015) for details). The RB-TnSeq pipeline from experimental set-up to gene fitness

calculation is summarized in Figure 1—figure supplement 1.

At each timepoint, we were able to calculate the fitness and a corresponding t-score for 3298

protein-coding genes (Figure 1A, Figure 1—source data 1). Because we were interested in genes

with a strong fitness defect (significant negative fitness values), we first removed genes with an abso-

lute t-score <= 3. This t-score threshold was set to identify strong negative fitness values while mini-

mizing potential false positives (false discovery rate of 0.2%). The t-score assesses how reliably a

fitness value is different from 0. In each condition, most genes have no detectable fitness effect, and

thus have a fitness value close to 0. Thus, in our dataset, most of the genes below this t-score also

have a fitness value close to 0. On average, 97% of the fitness values were associated with a t-score

that falls below our threshold. Within the fitness values that pass the t-score threshold, we then

removed genes associated with positive fitness values. Thus, we only retained the genes whose dele-

tion leads to a consistent growth defect for E. coli on CCA compared to the rest of the library. This

filtering process revealed 160 genes that were important for E. coli growth alone on CCA

(Figure 1A).

To identify the functions associated with these 160 genes, we mapped them to the KEGG BRITE

database (Figure 1B). 84 genes were assigned to KEGG modules and 64 of them were associated

with E. coli metabolism. Within these metabolic genes, we found 28 genes associated with amino

acid metabolism, specifically the biosynthesis of all amino acids except for proline, lysine and histi-

dine. Quantification of free amino acids in our medium highlighted very low concentrations of all

amino acids (Figure 1—figure supplement 2) suggesting that a limited supply of free amino acids

leads to a genetic requirement for amino acid biosynthesis. This is supported by the observation

that both spoT and relA, regulators of the stringent response which can be triggered by amino acid

starvation (Cashel et al., 1996), are also associated with a negative fitness value. Additionally, we

observed the importance of the regulator gcvR, that inhibits catabolism of glycine into C1 metabo-

lism. In fact, GcvR inhibits the glycine cleavage complex, a multienzyme complex that oxidizes gly-

cine (Ghrist and Stauffer, 1995; Ghrist et al., 2001). Furthermore, mutants of the glycine cleavage

complex displayed a significant positive fitness, suggesting that absence of glycine utilization

through C1 metabolism is beneficial in our amino acid-deficient environment. Altogether, this obser-

vation also underlines that amino acids are limiting in the environment and that their biosynthesis

and utilization control is important for growth. 19 of the 160 genes were associated with energy

metabolism and, more specifically, with sulfur assimilation (n = 7 genes) and respiration (n = 8

genes). Here, we deduce that importance of sulfur assimilation is directly caused by the lack of the

amino acids cysteine and methionine, which are the major pools of sulfur-containing compounds in

the cell. As a non-endogenous species, E. coli might not possess the adequate peptidases or pro-

teases to degrade and use the highly available protein casein. Identification of two of the three

genes of the Leloir pathway (galE and galT), involved in the uptake and conversion of galactose into

glucose, suggests that galactose might be a crucial nutrient for E. coli growth on CCA.

Eight genes mapped to membrane transport and were associated with two specific pathways: fer-

ric-enterobactin transport and glycine-betaine transport. Ferric-enterobactin transport allows the

cells to scavenge iron in a low-iron environment (Raymond et al., 2003; Hider and Kong, 2010).

Iron is an essential micronutrient and cheese is known to be iron-limited (Albar et al., 2014). Glycine

betaine is used by cells as an osmoprotectant in high osmolarity environments. During cheese curd

processing, high concentrations of NaCl are added (Guinee, 2004), and our CCA medium contains

3% NaCl to mimic these conditions. The importance for E. coli to maintain its cell osmolarity is also

suggested by the requirement of genes responsible for the transport of the ions sodium, potassium

and zinc.

In our experiment, the fact that all of the mutants are pooled together limits our ability to identify

genes whose phenotypes can be complemented by common goods (molecules released in the envi-

ronment) produced by neighboring cells. For example, given that iron is limiting in cheese, we

expect that enterobactin biosynthesis is an important pathway for growth in this environment. How-

ever, no genes from the enterobactin biosynthesis pathway (entCEBAH, entD and entF) had a signifi-

cant negative fitness value (average fitness of the enterobactin biosynthesis pathway: 0.1), while

individual growth of these enterobactin biosynthesis mutants from the KEIO collection was limited

on CCA compared to a rich, non-iron-limited medium (Figure 1—figure supplement 3).
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Figure 1. Identification of genes important for growth of E. coli alone on cheese curd agar (Figure 1—source data 1). (A) The pooled E. coli RB-TnSeq

library Keio_ML9 (Wetmore et al., 2015) was grown alone on cheese curd agar (CCA). Gene fitness values were calculated for 3298 genes at days 1, 2,

and 3 along with a t-score, which assesses how reliably the fitness value differs from 0. The fitness values obtained at the three timepoints are displayed

on a single volcano plot (3 points per gene). A t-score threshold of absolute(t-score)�3 was used to identify genes with strong fitness effects. 97% of

the genes fell below this threshold and have no strong and significant fitness effect. Black dots represent genes with strong negative fitness effects.

Altogether, they represent 160 different genes that are associated with a significant fitness value for at least one timepoint. (B) These 160 genes were

mapped to the KEGG BRITE Database for functional analysis and identification of required functions for E. coli growth on CCA. 84 of the 160 genes

had hits when mapped to the KEGG BRITE database.

DOI: https://doi.org/10.7554/eLife.37072.003

The following source data and figure supplements are available for figure 1:

Source data 1. RB-TnSeq analysis of E. coli’s growth alone on 10% cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.012

Figure supplement 1. Pipeline of RB-TnSeq experiment using the E. coli Keio M9 library: from experimental set-up to normalized gene fitness and

t-score calculation.

DOI: https://doi.org/10.7554/eLife.37072.004

Figure supplement 2. Quantification of free amino acids in CCA.

DOI: https://doi.org/10.7554/eLife.37072.005

Figure supplement 3. Comparison of individual growth of enterobactin biosynthesis mutants on LB and CCA.

DOI: https://doi.org/10.7554/eLife.37072.006

Figure supplement 4. RB-TnSeq experiments using the P. psychrophila JB418 library.

DOI: https://doi.org/10.7554/eLife.37072.007

Figure supplement 4—source data 1. RB-TnSeq analysis of P. psychrophila’s growth alone, in pairwise conditions and with the community on 10%

cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.008

Figure supplement 5. Competitive assays of 25 mutants of the Keio collection (Baba et al., 2006).

DOI: https://doi.org/10.7554/eLife.37072.009

Figure supplement 6. Map of the JB418_ECP1 transposon library generated in P. psychrophila JB418.

DOI: https://doi.org/10.7554/eLife.37072.010

Figure supplement 7. Quality assessment of all RB-TnSeq experiments.

DOI: https://doi.org/10.7554/eLife.37072.011
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In summary, functions of major importance for E. coli to grow alone in our experimental environ-

ment involved (i) response to low iron availability, (ii) response to osmotic stress and (iii) response to

limited available nutrients (specifically free amino acids). These required functions are consistent with

recently published results on the requirements of the mammary pathogenic E. coli (MPEC) during

growth in milk (Olson et al., 2018) except for resistance to osmotic stress which does not occur in

milk. We also generated an RB-TnSeq library in the bloomy rind cheese endogenous species P. psy-

chrophila JB418 and found comparable requirements for growth alone on cheese (Figure 1—figure

supplement 4).

To validate the results obtained with the RB-TnSeq library, we measured the fitness of individual

knockout mutants from the E. coli Keio collection (Baba et al., 2006). We tested 25 knockout

mutants corresponding to genes with a strong growth defect observed after one day of growth. We

carried out competitive assays between each knockout mutant and the wild-type strain on CCA. We

calculated each knockout mutant fitness as the log2 of the fold change of its abundance after one

day of growth. A z-score was also calculated to assess the confidence of that fitness. 21 of 25 knock-

out mutants displayed a fitness value lower than 0 with at least 95% confidence (Figure 1—figure

supplement 5). The remaining four mutant strains (brnQ, cysK, serA and trxA) were associated with

high fitness value variability across replicate experiments and had a lower z-score. Altogether, this

supports the reliability and validity of RB-TnSeq results.

Identification of E. coli genetic requirements for growth in pairwise
conditions
The growth of the E. coli library alone allowed us to determine the baseline set of genes required

for optimal growth in the model cheese environment. We next wanted to identify genes with nega-

tive fitness during growth when another species is present. First, we analyzed the growth of E. coli

and the partner species. We grew E. coli for 3 days on CCA in the presence of either H. alvei, G. can-

didum or P. camemberti. In addition to belonging to distinct domains or phyla, these three partners

are the typical members of a bloomy rind cheese community (such as Brie or Camembert). The pres-

ence of E. coli did not influence the growth of any partner species (Figure 2—figure supplement 1).

However, E. coli’s growth was reduced in the presence of each partner after three days of growth

(Figure 2A).

We then determined the genes associated with negative fitness during E. coli growth in each pair-

wise condition using RB-TnSeq (i.e. genes whose fitness value is negative and associated with an

absolute t-score greater than three in the pairwise condition) (Figure 2B, Figure 2—source data 1).

As performed above, barcode frequencies were compared between T0 and after growth with each

partner (at days 1, 2 and 3). As our goal is to compare genetic requirements for growth in interactive

and non-interactive conditions rather than to examine changes in requirements over time, we

grouped genes with a significant negative fitness for at least one timepoint as a single set of genes

for each pairwise condition. We identified 145 genes with negative fitness values in E. coli for growth

with H. alvei, 142 genes for growth with G. candidum and 131 genes for growth with P. camemberti.

Altogether they constitute a set of 153 genes that are required for optimal growth in at least one

pairwise culture.

Comparison of genes with negative fitness identified when E. coli is grown alone with the genes

identified when E. coli is grown in pairwise conditions is expected to highlight differences brought

about by the presence of another species (Figure 2C). Consistent presence of multiple genes of the

same pathway within only one of these sets of genes associated with negative fitness is likely to

point out a pathway specifically important in one condition. Thus, we can infer possible interactions

based on the different relevant pathways between interactive and non-interactive growth conditions.

Altogether, the 153 genes with a negative fitness in pairwise conditions and the 160 genes for E.

coli growth alone represent 235 unique genes (Figure 2C). These can be divided into three groups

of genes: (i) conserved negative fitness: genes with negative fitness in both growth alone and in all

pairwise conditions (n = 78), (ii) pairwise-alleviated negative fitness: any gene found to have a nega-

tive fitness during E. coli growth alone that was not associated with a negative fitness in at least one

of the three pairwise cultures (n = 82), and (iii) pairwise-induced negative fitness: any gene with neg-

ative fitness in the presence of at least one of the partners but not associated with a negative fitness

during growth alone (n = 75) (Figure 2C and D and Figure 2—figure supplement 2). We further
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Figure 2. E. coli genes with negative fitness during growth in pairwise conditions (Figure 2—source data 1). (A) We grew E. coli in pairwise conditions

on CCA with either H. alvei, G. candidum or P. camemberti. Asterisks indicate significant differences in growth of E. coli as compared to growth alone

at day 3 (Dunnett’s test, adjusted p-value�5%) (B) Using the E. coli RB-TnSeq library, we identified genes with negative fitness in each pairwise

condition at three timepoints (days 1, 2, 3). Each volcano plot shows fitness values of all 3298 genes at all timepoints (three points per gene). We

identified 145 genes with a negative fitness in the presence of H. alvei in at least one timepoint, 131 genes in pairwise culture with G. candidum and

142 genes in pairwise culture with P. camemberti. Altogether, they constitute 153 genes with negative fitness in pairwise conditions. (C) Comparing

these genes (dark blue) to the 160 genes with a negative fitness during E. coli growth alone (black), we obtained a total of 235 unique genes and

identified 78 genes that have a negative fitness both during growth alone and all pairwise conditions (conserved negative fitness), 75 genes that have a

negative fitness in at least one pairwise condition but not alone (pairwise-induced negative fitness) and 82 genes with a negative fitness in growth alone

but not in at least one pairwise condition (pairwise-alleviated negative fitness). (D) We selected a gene to illustrate conserved negative fitness (corA, 37

insertion mutants), pairwise-induced negative fitness (lpoB, 31 insertion mutants), and to illustrate pairwise-alleviated negative fitness (argH, 50 insertion

mutants). For each gene, we display the number of sequencing reads for associated insertion mutants in the T0 sample, in growth alone day 3 and

growth with G. candidum day 3. These sequencing reads are the raw data accounting for mutant abundance and used for fitness calculation (f

represents each gene’s fitness value). While reads are not rarefied in the fitness calculation pipeline, we used rarefied reads for the purpose of the

figure. Asterisks indicate genes with significant fitness values (consistent decrease in the number of reads per insertion mutant in the condition

compared to T0). (E) We mapped the genes associated with conserved, pairwise-induced, and pairwise-alleviated negative fitness to the KEGG BRITE

database. 41/75, 45/82 and 33/77 genes had hits.

DOI: https://doi.org/10.7554/eLife.37072.013

The following source data and figure supplements are available for figure 2:

Source data 1. RB-TnSeq analysis of E. coli’s growth in pairwise conditions on 10% cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.016

Figure supplement 1. E. coli and community member growth curves alone, in pairwise conditions or during community growth.

Figure 2 continued on next page
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focused on the pairwise-alleviated and pairwise-induced negative fitness as these groups contain

genes potentially related to interactions.

Genes whose negative fitness is alleviated by pairwise growth can highlight processes that are of

importance for growth alone but no longer important because of the presence of a partner, thus

suggesting interactions between E. coli and the partner. Just over half of the genes with negative fit-

ness alone appeared to be relieved by the presence of a partner (n = 82 genes, Figure 2C), suggest-

ing major modifications of growth conditions following the introduction of a partner. We mapped

these 82 alleviated genes to the KEGG BRITE database to identify functions and pathways that are

no longer critical in the presence of a partner (Figure 2E). 16 genes were associated with unknown

or predicted proteins and did not map to any field of the database. Of the remaining genes, 45

mapped to modules of the KEGG orthology hierarchy.

Most of the genes with alleviated negative fitness were associated with the KEGG metabolism

module and are thus part of metabolic pathways. It is especially evident that pairwise growth leads

to major changes in the need for amino acid biosynthesis. For example, 6 out of the 8 genes of

valine and isoleucine biosynthetic pathways are no longer associated with a negative fitness during

pairwise growth (Figure 3C). In addition, 2 genes of arginine biosynthesis, 2 genes of methionine

biosynthesis as well as final steps of homoserine, aspartate and glutamate biosynthesis are no longer

required. Moreover, ilvY, the transcriptional activator of valine and isoleucine biosynthesis was also

among the genes no longer required for pairwise growth. Here, the dominant presence of amino

acid biosynthesis genes in the alleviated functions suggests cross-feeding of the pathway end-prod-

ucts or intermediates which are either provided directly by the partner species or made more avail-

able in the environment as a consequence of the partner’s metabolic activity. Thus, our data suggest

that pairwise growth may allow cross-feeding of the amino acids valine, isoleucine, arginine, methio-

nine, homoserine, aspartate and glutamate. Isoleucine and methionine are also intermediates of

cofactor biosynthesis, and genes associated with their biosynthesis were also mapped to metabolism

of cofactors and vitamins.

To understand if the genes with pairwise-alleviated negative fitness were related to a specific

partner, we investigated how each partner contributed to this gene set (Figure 2—figure supple-

ment 2). Of the 82 total genes, 36 were alleviated in all pairwise conditions, suggesting that any

partner leads to the compensation of these requirements. They included genes associated with

amino acid metabolism specific to homoserine and methionine biosynthesis. Of the remaining genes,

eight were specifically not required in the presence of H. alvei, nine were specifically not required in

the presence of G. candidum and nine were specifically not required in the presence of P. camem-

berti. Alleviation of leucine and valine biosynthesis was observed with both fungal partners, while

biosynthesis of arginine appeared to be no longer required specifically in the presence of G. candi-

dum. Fungal species are known to secrete proteases that digest small peptides and proteins

(Kastman et al., 2016; Boutrou et al., 2006b; Boutrou et al., 2006a) and may lead to increased

availability of amino acids in the environment.

We then analyzed the 74 genes with pairwise-induced negative fitness in order to identify func-

tions or pathways that become important in the presence of a partner (Figure 2E). These genes rep-

resent almost half (75 out of 153 – Figure 2C) of the genes with negative fitness in pairwise

conditions, suggesting that presence of a partner introduces new selection pressures. 33 genes

mapped to KEGG orthology terms. Among this gene set are pathways associated with signal trans-

duction, biofilm formation and drug resistance. They were related to three major responses: meta-

bolic switch (creB: carbon source responsive response regulator), response to stress and toxic

compounds (cpxA: sensory histidine kinase, oxyR: oxidative stress regulator, acrAB: multidrug efflux)

and biofilm formation (rcsC and rcsB: regulator of capsular synthesis, pgaC: poly-N-acetyl-D-glucos-

amine synthase subunit). Biofilms are microbial structures known to provide resistance to different

stresses, including resistance to antibiotics, and biofilm-inducing genes can be activated in the pres-

ence of stress events (Landini, 2009). The transcriptional regulator OxyR and the transduction

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.37072.014

Figure supplement 2. Comparison of the genes important for E. coli growth alone, in each pairwise condition or with the community.

DOI: https://doi.org/10.7554/eLife.37072.015
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system CpxA and CpxB are known coordinators of stress response and biofilm formation

(Gambino and Cappitelli, 2016; Dorel et al., 2006). While these genes represent only a small sub-

set of the pairwise-induced gene set, they could suggest that partner species are producing toxic

compounds or oxidative stress-inducing compounds.

We again investigated if these responses were partner-specific (Figure 2—figure supplement 2).

Of the 74 pairwise-induced negative fitness, 11 were found to have a negative fitness in the pres-

ence of all partners, 13 were specific to the presence of H. alvei, 24 were specific to the presence of

G. candidum and 11 were specific to the presence of P. camemberti. Despite involving different

genes, necessity of biofilm formation and response to toxic stress were associated with the presence

of all partners.

Finally, functional analysis of the conserved genes with negative fitness highlighted that functions

associated with membrane transport, including resistance to high osmolarity and iron transport as

well as functions associated with energy metabolism and aromatic amino acid biosynthesis were still

important to grow in the presence of a partner (Figure 2E).

We performed similar pairwise assays using the RB-TnSeq library of P. psychrophila JB418 with H.

alvei, G. candidum or P. camemberti. We identified a similar number of genes associated with pair-

wise-alleviated and pairwise-induced requirements (Figure 1—figure supplement 4) as we did when

using the E. coli library. As with E. coli, we can infer production of toxic stress by the partners as
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Figure 3. Comparison of E. coli genes with negative fitness within the community and in pairwise conditions (Figure 3—source data 1). (A) Using the

E. coli RB-TnSeq library, we identified genes required to grow with the community (H. alvei + G. candidum + P. camemberti). During growth with the

community, we identified a total of 126 genes with a negative fitness. (B) We compared the pairwise-induced and community-induced genes

(Interaction-induced genes) as well as the pairwise-alleviated and community-alleviated genes (Interaction-alleviated genes) to identify conservation of

interactions from pairwise to community and emergence of higher-order interactions. (C) Within the alleviated negative fitness, genes associated with

numerous amino acid biosynthetic pathways were identified. F6P: fructose-6-phosphate, PRPP: 5-phospho-ribose-1-di-phosphate, G3P: Glyceraldehyde-

3-phosphate, PEP: phosphoenol-pyruvate, Pyr: Pyruvate, Oxa: Oxaloacetate, 2-oxo: 2-oxoglutarate.

DOI: https://doi.org/10.7554/eLife.37072.017

The following source data is available for figure 3:

Source data 1. RB-TnSeq analysis of E. coli’s growth with the community on 10% cheese curd agar, pH7.

DOI: https://doi.org/10.7554/eLife.37072.018
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genes associated to DNA repair were identified with a negative fitness in pairwise conditions in the

functional analysis. However, cross-feeding by fungal partners was not as striking as for E. coli.

Identification of E. coli genetic requirements for growth within the
community and comparison to pairwise conditions
We next aimed to investigate the differences between genes with a negative fitness during growth

in a community (complex interactive condition) and genes with a negative fitness during growth in

associated pairwise conditions (simple interactive conditions) (Figure 2—figure supplement 2). We

grew the E. coli library with the complete community composed of H. alvei, G. candidum and P.

camemberti and we identified 126 genes with a reliable negative fitness (Figure 3A, Figure 3—

source data 1). E. coli’s final biomass was more reduced by the presence of the community than by

a single partner. However, the growth of each community member remained unaffected (Figure 2—

figure supplement 1).

We first identified community-induced and community-alleviated genes by comparing the genes

with a negative fitness in the community with the genes with a negative fitness during growth alone.

We identified 89 genes that had negative fitness for both community and alone (conserved negative

fitness), 37 genes with negative fitness only with the community (community-induced negative fit-

ness) and 71 genes with negative fitness only for growth alone (community-alleviated negative fit-

ness). As with a single partner, the presence of a complex community potentially relieves some

fitness effects while introducing new ones.

Comparing community-induced and pairwise-induced genes can reveal if and how community

complexity modifies the genes that are important in different interactive contexts compared to

growth alone (Figure 3B – Interaction-induced negative fitness). We identified 29 genes with a nega-

tive fitness in both pairwise and community growth compared to growth alone (conserved interac-

tion-induced negative fitness). These include genes associated with oxidative stress and biofilm

formation. These genes are likely to be associated with pairwise interactions which are maintained in

a community context.

Meanwhile, eight genes appeared to be specifically associated with negative fitness in the pres-

ence of the community (Figure 3B, community-specific induced genes), highlighting higher-order

interactions that emerge from a higher level of complexity in the community composition. Interest-

ingly, these genes represent only a small fraction (22%) of the community-induced requirements,

suggesting that most of the negative fitness effects observed in the community are derived from

pairwise interactions.

Finally, we identified 46 genes that have a negative fitness in pairwise conditions, but not during

growth alone or within the community (Figure 3B, pairwise-specific induced genes). These genes

could be related to interactions that are either alleviated or counteracted in a community, either by

the presence of a specific species or by the community as a whole. For example, some of the identi-

fied genes were associated with antimicrobial resistance, and, in a diverse community, other species

could degrade the putative antimicrobial molecules or prevent the producing species from secreting

it. Consequently, E. coli would be exposed to a lower level of antimicrobials, suppressing the neces-

sity of a resistance gene. Thus, the complex pattern of requirements for these genes may reflect

higher-order interactions.

We next investigated if the interactions related to pairwise-alleviated negative fitness and com-

munity-alleviated negative fitness were similar (Figure 3B – Interaction-alleviated negative fitness).

68 genes were no longer associated with a negative fitness in both pairwise conditions and with the

community compared to growth alone (conserved interaction-alleviated negative fitness). These

genes may represent pairwise interactions maintained in the community context. Amino acid biosyn-

thesis was highly represented within these genes and more specifically biosynthesis of valine, isoleu-

cine, methionine, homoserine, aspartate and glutamate (Figure 3C). This suggests that, despite the

presence of more species, these amino acids are still cross-fed.

We also identified 14 genes that no longer had a negative fitness in pairwise conditions com-

pared to growth alone yet remained with a negative fitness in growth with the community (pairwise-

specific alleviated negative fitness). These 14 genes represent a small fraction of the pairwise-allevi-

ated, thus suggesting that most of interactions related to pairwise-alleviation are maintained in the

community. Finally, only three genes were specifically alleviated in the community (community-spe-

cific alleviated fitness). This points out that presence of the full community does not lead to
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emergence of specific alleviation of fitness effects but that most of the fitness effect alleviations

observed in the community are conserved from pairwise interactions. In both cases, these 14 pair-

wise-specific and three community-specific alleviated genes could highlight existence of more

higher-order interactions. However, too few genes are involved to determine the exact nature of

these interactions.

Finally, we identified 75 genes with negative fitness in all conditions (core negative fitness). These

genes encompass functions including iron uptake and response to high osmolarity. Overall, they are

associated with response to environmental parameters that other species do not alleviate.

To summarize, the community-induced genes were mostly maintained from pairwise-induced

genes. Similarly, the genes that were community-alleviated were highly similar to the pairwise-allevi-

ated genes. However, we also observed emergence of higher-order interactions in the community

condition as numerous interactions observed in pairwise conditions (n = 46 + 14) were not conserved

in the community condition and specific interactions (n = 8 + 3) were observed in the community

condition. Altogether, 58% of the interactions observed in the community were from pairwise inter-

actions while 42% emerged from higher community complexity.

Again, we carried out similar experiments and analysis using the P. psychrophila JB418 RB-TnSeq

library generated in our laboratory. The results were highly similar to the ones observed with E. coli

in terms of number of genetic requirements alleviated in the presence of the community compared

to growth alone as well as the number genes specifically important to grow with the community

compared to growth alone (Figure 1—figure supplement 4). Finally, we consistently observed

importance of higher-order interactions, 61% of the observed interactions in the community were

conserved from pairwise interactions and 39% were higher-order interactions.

Differential expression analysis of E. coli in interactive conditions
versus growth alone
So far, we used a genome-scale genetic approach to investigate potential microbial interactions. As

a complementary strategy, we generated transcriptomic data for E. coli during growth in each previ-

ously described condition. Changes in transcriptional profiles can be a powerful indicator of an

organism’s response to an environment and have been used to identify E. coli pathways involved in

interactions (Croucher and Thomson, 2010; McAdam et al., 2014; Galia et al., 2017).

To measure E. coli gene expression, we extracted and sequenced RNA from each timepoint and

condition of the same samples used for RB-TnSeq above (after 1, 2 and 3 days of growth when

grown alone, in pairwise conditions or with the community). Comparison of transcriptional profiles

suggests a strong reorganization of E. coli gene expression in response to the presence of a partner

(Figure 4A, Figure 4—source data 1 and Figure 4—figure supplement 1).

We first focused on the genes differentially expressed between growth in pairwise conditions and

growth alone. We calculated the fold change of gene expression between pairwise growth and

growth alone and identified differentially expressed genes by screening for adjusted p-values lower

than 1% (Benjamini-Hochberg correction for multiple testing) and an absolute log2 of fold change

(logFC) greater than 1. To remain consistent with the analysis performed for the genetic require-

ments, we pooled the data of all timepoints after identifying the upregulated or downregulated

genes for each timepoint. We found a total of 966 upregulated and 977 downregulated genes

across all partners (482 upregulated genes and 478 downregulated genes in presence of H. alvei,

633 upregulated genes and 719 downregulated genes in presence of G. candidum, 626 upregulated

genes and 694 downregulated genes in presence of P. camemberti, Figure 4A). Almost half of E.

coli’s genome is subjected to expression modification, suggesting a global response to the presence

of a partner. We further investigated if differential expression in pairwise conditions is partner-spe-

cific (Figure 4—figure supplement 1). Around half of E. coli gene expression regulation in the pres-

ence of a partner appears to be independent of which partner is present. Also, a number of genes

were differentially expressed depending on the partner: 66 genes were specifically upregulated and

60 genes downregulated with H. alvei, 213 upregulated and 182 downregulated with G. candidum,

and 183 upregulated and 161 downregulated with P. camemberti.

Due to the larger gene set compared to RB-TnSeq, we performed KEGG pathway enrichment

analyses on the differentially expressed genes in pairwise conditions to determine upregulated func-

tions and pathways (Figure 4B). First, almost all of the aminoacyl-tRNA-synthetases and functions

associated with energy production were upregulated. Interestingly upregulation of energy
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production through aerobic respiration and the TCA cycle happened after 3 days of growth. Oxygen

availability (Gunsalus, 1992) and growth phase (Wackwitz et al., 1999) are the two known regula-

tors of aerobic respiration. At day 3, E. coli was observed to be in log phase when alone, whereas in

the presence of a partner, and especially with P. camemberti, E.coli was observed to enter the sta-

tionary phase between day 2 and day 3 (Figure 2 – figure supplement 1). Therefore, upregulation of

aerobic respiration is most likely associated with the growth stage difference between E. coli alone
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Figure 4. Differential expression analysis of E. coli during interactive and non-interactive growth conditions (Figure 4—source data 1). We used

RNASeq to investigate E. coli gene expression at three timepoints (1, 2 and 3 days) during growth on CCA alone, in pairwise conditions (with H. alvei,

G. candidum or P. camemberti) and with the community. (A) Using DESeq2 (Love et al., 2015), we identified up and downregulated genes during

growth in each pairwise condition compared to growth alone as well as up and downregulated genes during growth with the community compared to

growth alone. Differential expression analysis has been performed at three timepoints, however, we displayed the results of the three timepoints on a

single volcano plot. Only genes associated with an adjusted p-value lower than 1% (Benjamini-Hochberg correction for multiple testing) and an

absolute logFC higher than one were considered differentially expressed. (B) We regroup any genes upregulated in at least one pairwise condition as a

single set of pairwise-upregulated genes and did the same for pairwise-downregulated genes. Then, we performed functional enrichment analysis on

KEGG pathways for pairwise-downregulated genes, community-downregulated genes, pairwise-upregulated genes and community-upregulated genes.

Functional enrichment was performed using the R package clusterProfiler (Yu et al., 2012) and only the KEGG pathways enriched with an adjusted

p-value lower than 5% (Benjamini-Hochberg correction for multiple testing) were considered. (C) We compared pairwise-upregulated genes with

community-upregulated genes and pairwise-downregulated genes with community-downregulated genes to identify if expression regulation from

pairwise conditions is conserved in the community context and if we observe specific changes in pairwise or community conditions. (D) Within the

genes specifically upregulated during growth with the community, we observed the upregulation of multiple genes associated with the nitrogen

starvation response. Most of these genes were also downregulated in pairwise conditions.

DOI: https://doi.org/10.7554/eLife.37072.019

The following source data and figure supplement are available for figure 4:

Source data 1. Differential expression analysis of E. coli’s growth in pairwise and with the community versus growth alone.

DOI: https://doi.org/10.7554/eLife.37072.021

Figure supplement 1. RNASeq analysis of E. coli gene expression during growth alone and in pairwise conditions.

DOI: https://doi.org/10.7554/eLife.37072.020
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and with a partner. While these functions were upregulated regardless of the partner, more genes

were upregulated in the presence of G. candidum than the other partners and thus, several path-

ways associated with nucleotide biosynthesis (C1-pool by folate, purine metabolism, and pyrimidine

metabolism) were specifically upregulated with this partner. This suggests that either E. coli and G.

candidum compete for nucleotide compounds from the environment or that presence of G. candi-

dum leads to an increased demand of nucleotide compounds for E. coli’s metabolism and growth.

We performed a similar KEGG pathway enrichment analysis on the downregulated genes in pair-

wise conditions. Pathways involved in the biosynthesis of amino acids, specifically tyrosine, phenylal-

anine, tryptophan, methionine, lysine, arginine, homoserine, leucine, glutamate, threonine and

glycine, appeared to be the principal downregulated functions in the presence of a partner and

more particularly with a fungal partner. Interestingly, some amino acid biosynthetic pathways were

upregulated later in the growth but not significantly enriched in the enrichment analysis (phenylala-

nine, tyrosine and leucine). Downregulation of amino acid biosynthesis suggests that the partner

species generates amino acids available for cross-feeding. The observation of this interaction in the

transcriptome data is consistent with our interpretation of RB-TnSeq results and reinforces the likeli-

hood of such an interaction. However, late upregulation of some amino acid biosynthesis suggests

that as the partner grows along with E. coli they eventually end up competing for amino acids, lead-

ing to biosynthesis upregulation. This late competition was unlikely to be detected by RB-TnSeq

using our current analysis.

To summarize, presence of a partner triggers a significant and dynamic reorganization of E. coli

gene expression. Most of these modifications restructure E. coli metabolic activity: mostly in

response to modification of growth phase, but also in response to nutrient availability changes and

for example to benefit from cross-feeding and common goods.

Next, we aimed to determine whether E. coli gene expression reorganization significantly

changes when grown with the full community as compared to growth in pairwise conditions. To do

so, we first calculated E. coli gene logFC at each timepoint between growth with the community and

growth alone. We further analyzed genes with adjusted p-values lower than 1% (Benjamini-Hochberg

correction for multiple testing) and absolute logFC greater than 1. After pooling across timepoints,

we identified 465 upregulated and 476 downregulated genes in the presence of the community ver-

sus growth alone (Figure 4A). We then compared these genes to the 966 upregulated genes and

977 downregulated genes in pairwise conditions versus growth alone (Figure 4B and C).

First, 416 genes were found to be upregulated in both pairwise and community growth versus

growth alone (conserved upregulated genes). Enrichment analysis highlighted functions that were

previously described as upregulated in most of the pairwise conditions: aminoacyl-tRNA-synthetase

and energy metabolism (Figure 4B). This suggests that certain interactions that E. coli experienced

in pairwise conditions are conserved in the community context. To investigate if the addition of simi-

lar interactions from different partners leads to an amplified response, we explored if the magnitude

of expression changes in these pathways is higher in the community. We performed differential

expression analysis on the genes comparably regulated in pairwise conditions and with the commu-

nity (Figure 4—figure supplement 1). 50 of the 416 conserved upregulated genes were significantly

more upregulated in community growth compared to pairwise growth. Among them, sulfate assimi-

lation genes were overrepresented. This suggests that similar pairwise interactions may be additive

in the community, leading to a stronger transcriptional response.

Next, we identified 549 genes that were specifically upregulated in pairwise conditions versus

growth alone and not upregulated in community versus growth alone (pairwise-specific upregulated

genes). KEGG pathway enrichment analysis highlighted that these genes were mostly associated

with quorum sensing, fatty acid metabolism and oxidative phosphorylation (Figure 4B). This obser-

vation suggests that the presence of additional species in the community counteracts or prevents

certain pairwise interactions. It supports the presence of higher-order interactions as highlighted

with the RB-TnSeq experiments. Indeed, more than half of the upregulated genes observed in pair-

wise conditions are not conserved with the community.

Finally, 49 genes were specifically upregulated during community growth versus growth alone

(community-specific upregulated genes). Emergence of specific expression patterns with the com-

munity also suggests the existence of higher-order interactions. However, these community-specific

upregulated genes represent only a small fraction (10%) of upregulated genes within the community.

Thus, most expression upregulation observed with the community is conserved from expression
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upregulation observed in pairwise conditions. Genes specifically upregulated with the community

were associated with the biosynthesis of valine, leucine, and isoleucine, pyrimidine metabolism as

well as arginine and proline metabolism (Figure 4B). Upregulation of certain amino acid biosynthesis

pathways suggests that despite potential cross-feeding from individual partners, addition of many

partners eventually leads to competition. Upregulation of pyrimidine, arginine and proline metabo-

lism however is part of a larger response; the response to nitrogen starvation (Figure 4D). This

response facilitates cell survival under nitrogen-limited conditions. Specifically, upregulated genes

included all the genes involved in the regulatory loop of the transcriptional regulator NtrC (glnL) and

nitrogen utilization as well as NtrC transcriptional targets: the transcriptional regulator Nac (nac), the

operon rutABCDEFG involved in ammonium production by uracil catabolism, the astABCDE operon

constituting the arginine degradation pathway (AST pathway) and the two regulators of the stringent

response, relA and spoT. Thus, the presence of additional species in the community specifically trig-

gers the activation of the response to nitrogen starvation, which suggests a potential higher compe-

tition for nitrogen in the community context.

We performed a similar analysis on downregulated genes in pairwise conditions and with the

community versus growth alone to investigate if transcriptional downregulation in pairwise and com-

munity conditions are similar (Figure 4C). We identified 448 genes that were downregulated during

both pairwise and community growth conditions versus growth alone (conserved downregulated

genes). Enrichment analysis pointed to the downregulation of amino acid biosynthesis as well as cys-

teine and methionine metabolism. Therefore, consistent with our RB-TnSeq data, this suggests that

cross-feeding from a single partner is maintained in a more complex context. 527 genes were specif-

ically downregulated in pairwise conditions and not with the community (pairwise-specific downregu-

lated genes). Despite the large number of genes, no specific functions were enriched. However, the

rutABCDEFG and astABCDE operons associated with the response to nitrogen starvation were

downregulated in each pairwise condition (Figure 4D). Altogether, pairwise-specific downregulated

genes represent 54% of the genes downregulated in pairwise conditions, thus strongly suggesting

higher-order interactions. Here, the presence of the community may trigger a highly specific

response that would otherwise be downregulated in the presence of only one species. Finally, also

highlighting potential higher-order interactions, 28 genes were specifically downregulated when E.

coli is grown with the community (community-specific downregulated genes). However, this repre-

sents only 6% of the observed downregulated genes in the community, highlighting again that most

of the gene expression regulations in the presence of the community are conserved from gene

expression regulations pairwise interactions.

To conclude, most of the changes in E. coli gene expression during growth with the community

were similar to a subset of expression changes observed in pairwise conditions. Moreover, some of

these changes were amplified in the community compared to pairwise. This suggests that while a

large part of transcriptional regulation in the community results from pairwise interactions, similar

interactions from different partners may be additive in the community and exert a stronger impact

on transcription. Also, the observed changes in nitrogen availability-related transcription suggest

that community growth may induce new metabolic limitations.

Discussion
In this work, we used the model organism E. coli as a readout for microbial interactions in a model

cheese rind microbiome. We used genome-scale approaches to determine the changes in E. coli’s

genetic requirements and gene expression profiles in conditions with increasing levels of community

complexity. Our analysis highlighted both important changes in E. coli’s genetic requirements

between interactive and non-interactive conditions as well as deep reorganization of E. coli’s gene

expression patterns. We identified a variety of interactive mechanisms in the different interactive

contexts. Our data revealed that interactions within the community include both competitive and

beneficial interactions. By reconstructing a community from the bottom up, we were able to investi-

gate how interactions in a community change as a consequence of being in a more complex, albeit

still simple, community. RNASeq and RB-TnSeq consistently showed that around half of the interac-

tions in a community can be attributed to pairwise interactions and the other half can be attributed

to higher-order interactions. Although community structure is argued to be predictable from pair-

wise interactions in specific cases, higher-order interactions are believed to be responsible for the
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general lack of predictability (Billick and Case, 1994; Friedman et al., 2017; Momeni et al., 2017).

Similarly, such higher-order interactions have been shown to be responsible for the unpredictability

of community function from individual species traits (Sanchez-Gorostiaga et al., 2018). Our work

demonstrates the existence and prevalence of these higher-order interactions even within a simple

community.

Together, RB-TnSeq and RNASeq provided insight into mechanisms of mutualism between micro-

bial species in this model system. One major interaction mechanism appears to be cross-feeding of

amino acids from fungal partners. Although amino acid biosynthesis pathways were strongly

required when E. coli grew alone, the presence of fungal species, but not bacterial species, led to fit-

ness effect alleviation and downregulation of amino acid biosynthesis. This suggests that fungi

increase the availability of free amino acids in the environment. Cheese-associated fungal species

are known to secrete proteases that can degrade casein, the major protein found in cheese

(Kastman et al., 2016; Boutrou et al., 2006b; Boutrou et al., 2006a), and therefore may increase

the availability of an otherwise limiting resource. Although our model system is based on cheese,

interactions based on cross-feeding are widely observed in other environments, such as soil, the

ocean or the human gut (Freilich et al., 2011; Pacheco et al., 2018; Goldford et al., 2018). For

example, in the gut microbiome, Bifidobacteria can ferment starch and fructooligosaccharides and

produce fermentation products including organic acids such as acetate which can in turn be con-

sumed by butyrate-producing bacteria like Eubacterium hallii (Belenguer et al., 2006; De Vuyst

and Leroy, 2011; Flint et al., 2012). Cross-feeding of other nutrients in the gut has also been

uncovered using a related approach (INSeq) which found that vitamin B12 from Firmicutes or Actino-

bacteria was important for the establishment of Bacteroides thetaiotaomicron in mice

(Goodman et al., 2009).

Our results also revealed mechanisms of competition within the community. RNASeq highlighted

that both siderophore production and uptake are upregulated in interactive conditions, suggesting

that there is competition for iron between species. Competition for iron is frequently observed

across many environments, including cheese, as iron is an essential micronutrient for microbial

growth and often a limited resource (Monnet et al., 2012; Albar et al., 2014; Stubbendieck and

Straight, 2016; Traxler et al., 2012). Interestingly, although we were able to detect fitness defects

for siderophore uptake using RB-TnSeq, we did not see fitness defects for siderophore biosynthesis

mutants. Because RB-TnSeq relies on a pooled library of mutants, one of the limitations to this

approach is that it is difficult to detect fitness effects for genes associated with the production of

common goods. For example, in the pooled library, most cells have wild-type siderophore biosyn-

thesis genes, and thus produce and secrete siderophores into the environment under iron limitation.

A consequence of this is that any cell that has lost the ability to produce siderophores can readily

access the siderophores produced by neighboring cells. In contrast, the genes for uptake of com-

mon goods should remain crucial, and accordingly, we do observe fitness defects in the siderophore

uptake genes. For this reason, using RNASeq can help overcome some of the limitations, such as

pooling effects, associated with RB-TnSeq.

Interactions between species also appeared to lead to stressful growth conditions, as RB-TnSeq

showed the need for genes to deal with growth in the presence of toxic compounds. G. candidum is

known to produce and excrete D-3-phenyllactic acid and D-3-indollactic acid, which inhibit the

growth of Gram-negative and Gram-positive bacteria in the cheese environment (Boutrou and Gué-

guen, 2005; Dieuleveux et al., 1998). Also, strains of H. alvei isolated from meat have been shown

to produce compounds inhibiting biofilm formation in Salmonella enterica serovar Enteritidis

(Chorianopoulos et al., 2010). To begin to understand the extent to which the interactions we

detected with E. coli were specific to this species, or more general, we performed similar RB-TnSeq

experiments with the cheese isolate Pseudomonas psychrophila. This comparative approach showed

that some responses to growth with other species are conserved, such as those needed to survive

stress conditions, while others differ between the two species such as amino acid cross-feeding. This

further highlights the ability to detect the dynamic nature of interactions, which not only change

with community complexity, but also with the composition of the community.

While our analysis highlighted global changes occurring as a consequence of interactions, and

some of the key underlying interaction mechanisms, many more aspects of the biology occurring

within communities are likely to be uncovered even within this simple model system. For example,

much of our current analysis is limited to well-characterized pathways with strong negative fitness
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effects, yet many uncharacterized genes were also identified as potentially involved in interactions.

Further investigation of these genes could uncover novel interaction pathways. Additionally, analysis

of the exact ways in which community members modify the growth environment, such as through

the production of extracellular metabolites, will be important to fully understand the molecular

mechanisms of interactions.

Altogether, this study revealed the intricacy, redundancy and specificity of the many interactions

governing a simple microbial community. The ability of E. coli to act as a probe for molecular inter-

actions, the robustness of RB-TnSeq, and its complementarity with RNASeq open new paths for

investigating molecular interactions in more complex communities, independently of the genetic

tractability of their members, and can contribute to a better understanding of the complexity and

diversity of interactions within microbiomes. Finally, our work provides a starting point for better

understanding the exact nature of higher-order interactions, and how they impact microbial

communities.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Library, strain background
(Escherichia coli K12)

Keio collection PMID: 16738554 CGSC, RRID:SCR_002303 Collection of 3,818
E. coli knockout strains

Library, strain background
(Escherichia coli K12)

Keio_ML9 PMID: 25968644 RB-TnSeq library of E. coli
K12 BW25113 (152,018
pooled insertion mutants)

Library, strain background
(Pseudomonas psychrophila)

JB418_ECP1 this paper RB-TnSeq library generated in the
P. psychrophila JB418 strain
isolated from cheese (272,329
pooled insertion mutants)

Strain, strain background
(Escherichia coli K12)

Keio ME9062 PMID: 16738554 CGSC#: 7636 Parent strain of the Keio
collection mutants. Also referred
as E. coli K12 BW25113

Strain, strain background
(Hafnia alvei)

Hafnia alvei JB232 this paper Strain isolated from cheese

Strain, strain background
(Geotrichum candidum)

Geotrichum candidum Danisco - CHOOZIT GEO13 LYO 2D Industrial starter for
cheese production

Strain, strain background
(Penicillium camemberti)

Penicllium camemberti Danisco - CHOOZIT PC SAM 3 LYO 10D Industrial starter for
cheese production

Strain, strain background
(P. psychrophila)

Pseudomonas
psychrophila JB418

this paper Strain isolated from cheese

Strain, strain
background (E. coli)

E. coli APA766 PMID: 25968644 donor WM3064 which carries
the pKMW7 Tn5 vector library
containing 20 bp barcodes

Sequence-based reagent NEBNext Multiplex Oligos
for Illumina (Set 1); NEBNext
multiplex Oligos for Illumina
(Set 2)

New England Biolabs NEB #E7335
(lot 0091412);,
NEB #E7500
(lot 0071412)

Sequence-based reagent Nspacer_barseq_pHIMAR;
P7_MOD_TS_index3 primers

PMID: 25968644 Primers for transposon-insertion
sites amplication for P. psychrophila
RB-TnSeq library characterization

Sequence-based reagent BarSeq_P1;
BarSeq_P2_ITXXX

PMID: 25968644 Primers for RB-TnSeq PCR
(amplification of the barcode
region of the transposon)

Commercial assay or kit NEBNext Ultra DNA Library
Prep Kit for Illumina

New England Biolabs NEB #E7645

Commercial assay or kit MinElute purification kit Qiagen ID:28004

Commercial assay or kit Turbo DNA-free kit AMBION, Life Technologies AM1907

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Commercial assay or kit MEGAclear Kit Purification
for Large Scale Transcription
Reactions

AMBION, Life Technologies AM1908

Commercial assay or kit Ribo-Zero rRNA removal kit
(bacteria); Ribo-Zero rRNA
removal kit (yeast)

Illumina MRZMB126;
MRZY1306

Commercial assay or kit NEBNextUltraTM RNA
Library Prep Kit for
Illumina

New England Biolabs NEB #E7770

Software, algorithm Geneious http://www.geneious.com

Software, algorithm Perl https://www.perl.org/

Software, algorithm R https://www.r-project.org/

Other MapTnSeq.pl;
DesignRandomPool.pl;
BarSeqTest.pl

PMID: 25968644 Perl scripts for RB-TnSeq library
characterization and RB-TnSeq
analysis - https://bitbucket.org/
berkeleylab/feba

Other DESeq2 PMID: 25516281 R package for RNASeq analysis

Strains and media
Strains
The following strains have been used to reconstruct the bloomy rind cheese community: H. alvei

JB232 isolated previously from cheese (Wolfe et al., 2014) and two industrial cheese strains: G. can-

didum (Geotrichum candidum GEO13 LYO 2D, Danisco – CHOOZITTM, Copenhagen, Denmark) and

P. camemberti (PC SAM 3 LYO 10D, Danisco - CHOOZITTM). The strain P. psychrophila JB418 was

isolated from a sample of Robiola due latti (Italy) (Wolfe et al., 2014) and used for all the experi-

ments involving Pseudomonas. All the E. coli strains used in this study shared the same genetic back-

ground of the initial strain E. coli K12 BW25113. The use of the different strains is described in

Table 1.

Medium
All growth assays have been carried out on 10% cheese curd agar, pH7 (CCA) (10% freeze-dried

Bayley Hazen Blue cheese curd (Jasper Hill Farm, VT), 3% NaCl, 0.5% xanthan gum and 1.7% agar).

The pH of the CCA was buffered from 5.5 to 7 using 10M NaOH.

Growth curve assays on 10% cheese curd agar, pH7
The following growth assays are distinct from the growths carried out for RB-TnSeq and fitness anal-

ysis (see below).

Assays have been performed in at least triplicates. Growth assays have been carried out for the E.

coli JW0024 strain (Baba et al., 2006) and P. psychrophila JB418 during growth alone, in pairwise

conditions with either H. alvei JB232, G. candidum or P. camemberti and with the full community.

E. coli was pre-cultured overnight in liquid LB-kanamycin (50 mg/ml) at 37˚C and P. psychrophila

JB418 was pre-cultured overnight in LB at room temperature (RT) . Then, for growth alone assays,

1000 cells of E. coli or P. psychrophila JB418 were inoculated on a 96 well plate containing 200 mL of

Table 1. E. coli strains used during the study.

Experiment E. coli strain(s) Reference

RB-TnSeq E. coli Keio_ML9 library (Wetmore et al., 2015)

Growth assays E. coli JW0024 strain (undisrupted mutant) (Baba et al., 2006)

Competition assays WT: Keio ME9062
Mutants: (Figure 1—figure supplement 5)

(Baba et al., 2006)

DOI: https://doi.org/10.7554/eLife.37072.022
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CCA per well. For pairwise growth assays, either E. coli or P. psychrophila JB418 was co-inoculated

with either H. alvei JB232, G. candidum or P. camemberti at a ratio of 1:1 cell (1000 cells of E. coli

and 1000 cells of the partner). Finally, for growth assay with the community, E. coli or P. psychrophila

JB418 have been co-inoculated with H. alvei JB232, G. candidum and P. camemberti at a ratio of

10:10:10:1 cells.

Growth assays were then carried out for 3 days at RT. Agar plugs from 96 well plates were har-

vested at T = 0 hr, 6 hr, 12 hr, 24 hr, 36 hr, 48 hr, 72 hr and 120 hr for E. coli growth assays and

T = 0 hr, 12 hr, 24 hr, 48 hr and 72 hr for P. psychrophila JB418 growth assays. Agar plugs were

homogenized in 1 mL of PBS1X-Tween0.05% and three dilutions were plated on different media to

measure growth of each species (see Table 2). Plates were incubated for 24 hr at 37˚C for E. coli

and 2 days at RT for P. psychrophila JB418. After incubation, colony forming units (CFUs) were

counted to estimate the number of bacterial cells on the cheese curd agar plates.

Growth alone of H. alvei JB232, G. candidum and P. camemberti have also been carried out simi-

larly to E. coli and P. psychrophila JB418 growth alone.

P. psychrophila JB418 genome sequencing, assembly and annotation
P. psychrophila JB418 gDNA was sequenced using Pacific Biosciences (PacBio), Oxford Nanopore

Minion (Oxford Nanopore, Oxford, UK) and Illumina sequencing. PacBio library preparation and

sequencing were performed by the IGM Genomics Center at the University of California San Diego.

Nanopore library preparation and sequencing were done at the University of California, Santa Bar-

bara as part of the Eco-Evolutionary Dynamics in Nature and the Lab (ECOEVO17). Illumina library

preparation and sequencing were done at the Harvard University Center for Systems Biology. Canu

was used to assemble the PacBio and nanopore reads (Koren et al., 2017). Illumina data was then

used to correct sequencing error using the software Pilon (Walker et al., 2014). The assembled

genome was annotated using the Integrated Microbial Genomes and Microbiomes (IMG/M) system

(Markowitz et al., 2012). The P. psychrophila JB418 genome is 6,072,477 nucleotides long. It con-

tains a single circular chromosome of 5.85 Mb and 4 plasmids of 172.2 Kb, 37.7 Kb, 5.8 Kb and 2.4

Kb. 6060 genes including 5788 open reading frames were identified. This genome is publicly avail-

able on the IMG/M website as IMG Genome ID 2751185442.

Transposon mutant library construction in P. psychrophila JB418
P. psychrophila JB418 was mutagenized by conjugation with E. coli strain APA766 (donor WM3064

which carries the pKMW7 Tn5 vector library containing 20 bp barcodes) (Wetmore et al., 2015).

This donor strain is auxotrophic for diaminopimelic acid (DAP). The full collection of the APA766

donor strain (1 mL) was grown up at 37˚C overnight at 200 rpm. Four 25 mL cultures (each started

with 250 mL of APA766 stock) were grown in LB-kanamycin:DAP (50 mg/mL kanamycin and 60 mg/mL

DAP). A 20 mL culture was started from an individual P. psychrophila JB418 colony in LB broth and

grown at RT overnight at 200 rpm. E. coli donor cells were washed twice with LB and resuspended

in 25 mL LB. Donor and recipient cells were then mixed at a 1:1 cell ratio based on OD600 measure-

ments, pelleted, and resuspended in 100 mL. This was done separately for each of the four E. coli

cultures. 40 mL were plated on nitrocellulose filters on LB plates with 60 mg/mL DAP. Two filters

were used for each of the four conjugation mixtures (eight total conjugations). The conjugations

took place for 6 hr at RT. After 6 hr, the filters were each resuspended in 2 mL of LB broth and then

plated on LB:kanamycin (50 mg/mL) for selection of transconjugants. 20 plates were plated of a 1:2

Table 2. Organization of CFU’s quantification for growth assays.

E. coli + H. alvei
JB232 LB (E. coli + H. alvei JB232 CFUs) LB-kanamycin (50 mg/ml) (E. coli CFUs)

E. coli + G. candidum LB-kanamycin:cycloheximide (50 mg/ml and 10 mg/ml) (E. coli CFUs) LB-chloramphenicol (G. candidum CFU’s)

E. coli + P.
camemberti

LB-kanamycin:cyclohexamide (50 mg/ml and 10 mg/ml) (E. coli CFUs) LB-chloramphenicol (50 mg/ml)(P. camemberti CFU’s)

E. coli + Community LB-cyclohexamide (10 mg /mL) (E. coli and H. alvei JB232 CFU’s), LB-kanamycin:cyclohexamide (50 mg/ml and 10 mg/ml) (E. coli
CFU’s) and LB-chloramphenicol (50 mg/ml) (G. candidum and P. camemberti CFU’s)

DOI: https://doi.org/10.7554/eLife.37072.023
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dilution for each conjugation (160 plates total). Transconjugants were pooled and harvested after

three days of growth on selection plates. The pooled mixture was diluted back to 0.25 in 100 mL of

LB:kanamycin (50 mg/mL). The culture was then grown at RT to an OD600 of 1.3 before glycerol was

added to 10% final volume and 1 mL aliquots of the library (named JB418_ECP1) were made and

stored at �80˚C for future use.

TnSeq sequencing library preparation for P. psychrophila JB418 and
TnSeq data analysis
Library preparation was performed as in Wetmore et al., 2015 with slight modifications

(Wetmore et al., 2015).

DNA extraction
DNA was extracted from the P. psychrophila JB418_ECP1 RB-TnSeq library by phenol:chloroform

extraction. Briefly, the cell pellet was vortexed at maximum speed for 3 min in the presence of 500

mL buffer B (200 mM NaCl,20mM EDTA sterilized by filtration), 210 mL of 20% SDS, a 1:1 mixture of

425–600 mM and 150–212 mm acid-washed beads, and 500 mL of phenol:chloroform, pH 8. The sam-

ple was then centrifuged for 3 min at 4˚C at 8000 rpm prior to removing the aqueous phase to a

new tube. 1/10 of sample aqueous phase volume of 3M sodium acetate was then added along with

one aqueous phase volume of ice cold isopropanol. The sample was then placed for ten minutes at

�80˚C before centrifugation for five minutes at 4˚C at 13000 rpm. The supernatant was discarded

and 750 mL of ice cold 70% ethanol was added before another centrifugation for five minutes at 4˚C
at 13000 rpm. The supernatant was discarded and the DNA pellet was allowed to air dry before

resuspension in 50 mL of nuclease-free water. DNA was quantified with Qubit double-stranded DNA

high-sensitivity assay kit (Invitrogen, Carlsbad, CA).

DNA fragmentation and size selection
2 mg of DNA was sheared with a Covaris E220 focused-ultrasonicator with the following settings:

10% duty cycle, intensity 5, 200 cycles per burst, 150 s. DNA was split into two aliquots (1 mg each)

and samples were size-selected for fragments of 300 bp using 0.85X Agencourt AMPure XP beads

(Invitrogen) with a 1.4x ratio following the manufacturer’s instructions.

Library preparation
The entire 20 mL volume of these two size-selected samples were then each used as input into the

NEBNext End Prep step 1.1 of the NEBNext Ultra DNA Library Prep Kit for Illumina (New England

Biolabs, Ipswich, MA) protocol. The remainder of the manufacturer’s protocol was then followed

with the exception that for adapter ligation, we used 0.8 mL of 15 mM double-stranded Y adapters.

Adapters were prepared by first combining 5 mL of 100 mM Mod2_TS_Univ (ACGCTCTTCCGATC*T)

and 5 mL of 100 mM Mod2_TruSeq (/5’P/GATCGGAAGAGCACACGTCTGAACTCCAGTCA. This mix-

ture was then incubated in a thermocycler for 30 min at 37˚C, followed by ramping at 0.5˚C per sec-

ond to 97.5˚C before a hold at 97.5˚C for 155 s. The temperature was then decreased by 0.1˚C per

five seconds for 775 cycles, followed by a hold at 4˚C. Annealed adapters were diluted to 15 mM in

TE and stored at �80˚C before use. AMPure XP ratios for a 200 bp insert size were used as recom-

mended in Table 1.1 of the NEBNext Ultra DNA Library Prep Kit for Illumina manual.

To enrich for transposon-insertion sites, PCR amplification was done on the adapter-ligated DNA

with NEBNext Q5 Hot Start HiFi Master Mix and Nspacer_barseq_pHIMAR and P7_MOD_TS_index3

primers (Wetmore et al., 2015) with the following program: 98˚C 30 s, 98˚C 10 s, 65˚C 75 s, repeat

steps 2–3 24X, 65˚C 5 min, and then maintained at 4˚C. Following PCR and clean-up of step 1.5 of

the NEBNext Ultra DNA Library Prep Kit for Illumina manual, the two preps were pooled and the

concentration was quantified with Qubit double-stranded DNA high-sensitivity assay kit (Invitrogen).

A second size selection clean-up was performed by repeating step 1.5 of the NEBNext Ultra DNA

Library Prep Kit for Illumina manual.
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Library sequencing
The sample was analyzed on an Agilent TapeStation and the average size was 380 bp and the con-

centration was 57 pg/mL. This sample was then submitted for sequencing on a HiSeq 2500 Rapid

Run (150 bp fragments, paired-end) at the UCSD IGM Genomics Center.

Library characterization
TnSeq reads were analyzed with the Perl script MapTnSeq.pl from (Wetmore et al., 2015). This

script maps each read to the P. psychrophila genome. The script DesignRandomPool.pl

(Wetmore et al., 2015) was used to generate the file containing the list of barcodes that consis-

tently map to a unique location as well as their location. We obtained a total of 272,329 insertion

mutants. The transposon was inserted in the central part of a gene for 143,491 of these insertion

mutants covering 83% of P. psychrophila JB418 genome (Figure 1—figure supplement 6).

RB-TnSeq experiments for E. coli and P. psychrophila JB418
The E. coli barcoded transposon library Keio_ML9 and the P. psychrophila strain JB418 library were

used for RB-TnSeq fitness assays on CCA during growth alone, growth in pairwise condition with

each bloomy rind cheese community member and during growth with the full community. Figure 1—

figure supplement 1 provides a description of the fitness assays as well as fitness calculation.

Library pre-culture
Each library has to be initially amplified before use. One aliquot of each library was thawed and inoc-

ulated into 25 mL of liquid LB-kanamycin (50 mg/mL). Once the culture reached mid-log phase

(OD = 0.6–0.8), 5 mL of that pre-culture was pelleted and stored at �80˚C for the T0 reference in

the fitness analysis. The remaining cells were used to inoculate the different fitness assay conditions.

Inoculations
For each RB-TnSeq fitness assay, 7*106 cells of the library pre-culture were inoculated by spreading

evenly on a 100 mm petri dish containing 10% CCA, pH seven after having been washed in PBS1x-

Tween0.05%. This represents on average 50 cells per insertion mutant. For each pairwise assay,

7*106 cells of the partner were co-inoculated with the library. For the community assay, 7*106 cells

of H. alvei JB232 and G. candidum as well as 7*105 cells of P. camemberti were co-inoculated with

the library. For each condition, assays were performed in triplicate.

Harvest
Harvests were performed at T = 24 hr, 48 hr and 72 hr. Sampling was done by flooding a plate with

1.5 mL of PBS1X-Tween0.05% and gently scraping the cells off. The liquid was then transferred into

a 1.5 mL microfuge tube and cells were pelleted by centrifugation. After removing the supernatant,

the cells were washed in 1 mL of RNA-protect solution (Qiagen, Hilden, Germany), pelleted and

stored at �80˚C before further experiments.

gDNA and mRNA extraction
gDNA and mRNA were simultaneously extracted by a phenol-chloroform extraction (pH 8) from

samples of the competitive assays. For each extraction: 125 mL of 425–600 mm acid-washed beads

and 125 mL of 150–212 mm acid-washed beads were poured in a screw-caped 2 mL tube. 500 mL of

2X buffer B (200 mM NaCl, 20 mM EDTA) and 210 mL of SDS 20% were added to the tube as well as

the pellet and 500 mL of Phenol:Chloroform (pH 8). Cells were lysed by vortexing the tubes for 2 min

at maximum speed. Aqueous and organic phases were separated by centrifugation at 4˚C, 8,000
RPM for 3 min and 450 mL of the aqueous phase (upper phase) was recovered in a 1.5 mL eppendorf

tube. 45 mL of sodium acetate 3M and 450 mL of ice cold isopropanol were added before incubating

the tubes at �80˚C for 10 min. The tubes were then centrifuged for 5 min at 4˚C at 13,000 RPM. The

pellet was then washed in 750 mL of 70% ice cold ethanol and re-suspended in 50 mL of DNAse/

RNAse free water. Each sample was split into 2 times 25 mL and stored at �80˚C until further

analysis.

Morin et al. eLife 2018;7:e37072. DOI: https://doi.org/10.7554/eLife.37072 20 of 26

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.37072


Library preparation and sequencing
After gDNA extraction, the 98˚C BarSeq PCR as described in Wetmore et al., 2015 was used to

amplify only the barcoded region of the transposons. Briefly, PCR was performed in a final volume

of 50 mL: 25 mL of Q5 polymerase master mix (New England Biolab), 10 mL of GC enhancer buffer

(New England Biolab), 2.5 mL of the common reverse primer (BarSeq_P1 – Wetmore et al., 2015) at

10 mM, 2.5 mL of a forward primer from the 96 forward primers (BarSeq_P2_ITXXX) at 10 mM and 50

ng to 2 mg of gDNA. For each triplicate, the PCR was performed with the same forward primer so all

replicates of a condition could be pooled and have the same sequencing multiplexing index. For E.

coli analysis, we performed 46 PCRs (T0 sample and 45 harvest samples) involving 16 different multi-

plexing indexes. For P. psychrophila JB418 analysis, we performed 46 PCR (T0 sample and 45 har-

vest samples) involving 16 other multiplexing indexes. We used the following PCR program: (i) 98˚C
- 4 min, (ii) 30 cycles of: 98˚C – 30 s; 55˚C – 30 s; 72˚C – 30 s, (iii) 72˚C – 5 min. After the PCR, 10 mL

of each of the 92 PCR products were pooled together to create the BarSeq library(920 mL) and 200

mL of the pooled library were purified using the MinElute purification kit (Qiagen). The final elution

of the BarSeq library was performed in 30 mL in DNAse and RNAse free water.

The BarSeq library was then quantified using Qubit dsDNA HS assay kit (Invitrogen) and

sequenced on HiSeq4000 (50 bp, single-end reads), by the IGM Genomics Center at the University

of California San Diego. The sequencing depth for each condition varied between 1.5 and 7.5 million

reads.

Data processing and fitness analysis
BarSeq data processing and gene fitness calculation were performed separately for the E. coli and

the P. psychrophila JB418 experiments. For each library, BarSeq reads were processed using the

Perl script BarSeqTest.pl from (Wetmore et al., 2015). This script combines two Perl scripts essential

for the BarSeq data processing. After the raw reads have been de-multiplexed, the computational

pipeline: (i) identifies individual barcodes and the associated number of reads, (ii) calculates the

strain fitness for each insertion mutant and (iii) calculates the normalized fitness value for each gene

along with a t-statistic value (t-score). The following parameters were applied during the fitness cal-

culations: (i) only insertion mutants located within the central region of genes (10%–90%) were con-

sidered, (ii) barcodes with less than three reads in the T0 were ignored and (iii) genes with less than

30 counts across all barcodes in T0 were ignored. For each library, the pipeline uses a table where

each barcode is mapped to a location in the genome. The Arkin lab (Physical Biosciences Division,

Lawrence Berkeley National Laboratory, Berkeley, California, USA) kindly provided the TnSeq table

for the E. coli library and we generated a TnSeq table for P. psychrophila strain JB418. The different

scripts used for this analysis originate from (Wetmore et al., 2015) and are publicly available on

https://bitbucket.org/berkeleylab/feba.

We calculated E. coli and P. psychrophila JB418 genes fitnesses at T = 24 hr (Day1), 48 hr (Day2)

and 72 hr (Day3) in the following conditions: growth alone, growth with H. alvei, growth with G. can-

didum, growth with P. camemberti and growth with the community.

First, strain fitness for each insertion mutant that met the criteria described above is calculated as

the log2 of the ratio of the insertion mutant’s abundance at the time of the harvest (number of reads

of the associated barcode) and its abundance in the T0 sample. Un-normalized gene fitness is then

calculated as the weighted average of strain fitness of all the insertion mutants of a gene. Un-normal-

ized fitness values are then normalized, first by subtracting the smoothed median of the un-normal-

ized fitness values. This is performed to account for changes in gene copy number along the

chromosome as genes close to the replication fork might have multiple copies in diving cells. Then,

the final normalization step relies on the assumption that disruption of most of the genes leads to lit-

tle to no fitness effect. This normalization is performed by subtracting the mode of the gene fitness.

Thus, most of the genes are expected to have a fitness of 0. Genes whose disruption is deleterious

will have a negative fitness and genes whose disruption is beneficial a positive fitness. A t-score is

calculated along with each gene fitness to evaluate how reliably different from zero the gene fitness

is. The t-score is a moderated t-statistic calculated as the ratio of the gene fitness and its standard

deviation. More details can be found in Wetmore et al., 2015.

In this study, all our experiments and genes fitness values met the quality requirements to be fur-

ther analyzed (Figure 1—figure supplement 7).
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Keio collection mutant competition assays for RB-TnSeq validation
We used mutants from the Keio collection to validate the genes identified by RB-TnSeq as having a

significant fitness in E. coli growth alone on CCA (see list in Figure 1—figure supplement 5). Each

mutant was grown in a competition assay with the non-kanamycin resistant wild-type (Keio ME9062

–(Baba et al., 2006)). 1000 cells of a specific mutant were inoculated with 1000 cells of the wild type

(WT) on the surface of the same cheese plug in a 96 well plate containing 10% CCA, pH7. The num-

ber of the mutant cells and the WT cells were calculated at T0 and day one after harvesting and

homogenizing the cheese plug, plating serial dilutions and counting CFUs. Experimental fitness of

each mutant was calculated as the log2 of the ratio of the mutant abundance (mutant CFUs divided

by total CFUs (WT +mutant)) after 24 hr and its abundance at T0.

RNASeq and differential expression analysis
RNASeq library preparation
Libraries were prepared in duplicate for the following conditions: E. coli growth alone, with H. alvei,

with G. candidum, with P. camemberti and with the community for T = 24 hr, 48 hr and 72 hr. RNA

samples from the E. coli BarSeq experiment were used to produce the RNASeq library.

Each library was prepared as follows. First, RNA samples were treated with DNAse using the ‘Rig-

orous DNAse treatment’ for the Turbo DNA-free kit (AMBION, Life Technologies, Waltham, MA)

and RNA concentration was measured by nucleic acid quantification in Epoch Microplate Spectro-

photometer (BioTek, Winooski, VT). Then, transfer RNAs and 5S RNA were removed using the MEG-

Aclear Kit Purification for Large Scale Transcription Reactions (AMBION, Life Technologies) following

manufacturer instructions. Absence of tRNA and 5S RNA was verified by running 100 ng of RNA on

a 1.5% agarose gel and RNA concentration was quantified by nucleic acid quantification in Epoch

Microplate Spectrophotometer. Also, presence of trace amounts of genomic DNA was assessed by

PCR using universal bacterial 16S PCR primers (Forward primer: AGAGTTTGATCCTGGCTCAG,

Reverse Primer: GGTTACCTTGTTACGACTT). The PCR was performed in a final volume of 20 mL: 10

mL of Q5 polymerase master mix (New England Biolabs), 0.5 mL of forward primer 10 uM, 0.5 mL of

reverse primer 10 uM and 5 mL of non-diluted RNA. PCR products were run on a 1.7% agarose gel

and if genomic DNA was amplified, another DNAse treatment was performed as well as a new verifi-

cation of absence of genomic DNA. Ribosomal RNA depletion was performed using the Ribo-Zero

rRNA removal kit by Illumina (Illumina, San Diego, CA). According to manufacturer instructions; we

used 1 mL of RiboGuard RNAse Inhibitor in each sample as suggested and followed instructions for

1–2.5 ug of RNA input and we used a 2:1 mix of bacterial Ribo-Zero Removal solution and yeast

Ribo-Zero Removal solution. rRNA depleted samples were recovered in 10 mL after ethanol precipi-

tation. Concentrations after ribodepletion were measured using Qubit RNA HS Assay Kits (Invitro-

gen). The RNASeq library was produced using the NEBNextUltraTM RNA Library Prep Kit for

Illumina for purified mRNA or ribosome depleted RNA. We prepared a library with fragments size of

300 nucleotides and used the 10 uM NEBNext Multiplex Oligos for Illumina (Set 1, NEB #E7335) lot

0091412 and the NEBNext multiplex Oligos for Illumina (Set 2, NEB #E7500) lot 0071412. We per-

formed PCR product purification with 0.8X Agencourt AMPure XP Beads instead of 0.9X. Library

samples were quantified with Qubit DNA HS Assay Kits before the quality and fragment size were

validated by TapeStation (HiSensD1000 ScreenTape). Library samples were pooled at a concentra-

tion of 15 nM each and were sequenced on HiSeq4000 (50 bp, single-end).

Differential expression analysis
RNASeq reads were mapped to the concatenated genome of Escherichia coli K12 BW25113

(Grenier et al., 2014) and H. alvei using Geneious version R9 9.1.3 (http://www.geneious.com,

[Kearse et al., 2012]). Only the reads that uniquely mapped to a single location on the E. coli

genome section were conserved. E. coli and H. alvei genome are divergent enough so 50 nucleotide

reads potentially originating from H. alvei mRNA would not map to the E. coli genome and few

reads from E. coli would map on the H. alvei genome.

E. coli expression analysis was performed using the following R packages: Rsamtool (R package

version 1.30.0), GenomeInfoDb (R package version 1.14.0.), GenomicFeatures (Lawrence et al.,

2013), GenomicAlignments, GenomicRanges (Lawrence et al., 2013) and DESeq2 (Love et al.,

2015). We followed the workflow described by Love et al. and performed the differential expression
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analysis using the package DESeq2. Differentially expressed genes between two conditions were

selected with an adjusted p-value lower than 1% (Benjamini-Hochberg correction for multiple test-

ing) and an absolute log2 of fold change equal to or greater than 1.

KEGG pathway enrichment analysis
Functional enrichment analysis was performed using the R package clusterProfiler (Yu et al., 2012).

We used the latest version of the package org.EcK12.eg.db for E. coli annotations (R package ver-

sion 3.5.0.). We used Benjamini-Hochberg for multiple comparison correction and only the KEGG

pathways enriched with an adjusted p-value lower than 5% were considered.
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