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Abstract Sleep is a dynamic process in most animals, involving distinct stages that probably

perform multiple functions for the brain. Before sleep functions can be initiated, it is likely that

behavioral responsiveness to the outside world needs to be reduced, even while the animal is still

awake. Recent work in Drosophila has uncovered a sleep switch in the dorsal fan-shaped body

(dFB) of the fly’s central brain, but it is not known whether these sleep-promoting neurons also

govern the acute need to ignore salient stimuli in the environment during sleep transitions. We

found that optogenetic activation of the sleep switch suppressed behavioral responsiveness to

mechanical stimuli, even in awake flies, indicating a broader role for these neurons in regulating

arousal. The dFB-mediated suppression mechanism and its associated neural correlates requires

innexin6 expression, suggesting that the acute need to reduce sensory perception when flies fall

asleep is mediated in part by electrical synapses.

DOI: https://doi.org/10.7554/eLife.37105.001

Introduction
Most animals sleep, and recent research suggests that some proposed sleep functions may be

deeply conserved across all animals (Cirelli, 2009; Kirszenblat and van Swinderen, 2015;

Zimmerman et al., 2008). These functions range from cellular stress regulation in nematodes

(Hill et al., 2014; Nelson et al., 2014) to synaptic homeostasis and memory consolidation in mam-

mals (Rasch and Born, 2013; Tononi and Cirelli, 2006; Tononi and Cirelli, 2014). Other proposed

functions of sleep include maintaining cellular health, by clearing of protein debris for example

(Xie et al., 2013). These conserved cellular processes might have been integrated through evolution

into distinct stages of the mammalian sleep cycle, to accommodate multiple more recent sleep func-

tions, such as synaptic scaling and memory consolidation, simultaneously (Kirszenblat and van Swin-

deren, 2015). Although sleep may serve many diverse functions, and although many different

molecular processes might be involved, in most animals sleep is understood to result largely from

widespread changes in electrical activity throughout the brain. That is, the rapidly reversible switch

that allows the aforementioned potential functions to take place probably requires important

changes in electrical activity in the brain: initially to decrease behavioral responsiveness and thereby

allow some of these processes to proceed without ongoing behavioral interference (Mednick et al.,

2011).

In mammals, dis-inhibition of GABAergic sleep-promoting neurons in the vasolateral preoptic

nucleus (VLPO) is thought to comprise part of a sleep switch (Morairty et al., 2004; Saper et al.,
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2010). Interestingly, even the smallest brains appear to have a sleep switch: in the fruit fly Drosoph-

ila melanogaster, the dorsal fan-shaped body (dFB) has been suggested to play a role that is analo-

gous to that of the mammalian VLPO (Donlea et al., 2014, 2018; Pimentel et al., 2016). Indeed,

activation of these neurons in the fly’s central brain promotes sleep and achieves key sleep functions

(Dissel et al., 2015; Donlea et al., 2011). Recently, we have shown that changes in electrical activity

in the fly brain are associated with spontaneous sleep transitions, and that activation of dFB neurons

causes specific oscillatory signatures in local field potential (LFP) activity recorded from the central

brain (Yap et al., 2017). It is not clear, however, how dFB neurons might communicate this activity

to the rest of the fly brain to promote sleep rapidly. In addition, dFB-induced sleep has primarily

been studied by observing increased periods of behavioral quiescence, rather than behavioral

responsiveness to external stimuli. Decreased behavioral responsiveness would appear to be a pre-

requisite for sleep induction, but it remains unclear whether the same neurons could be involved in

both acute loss of responsiveness and promotion of sleep functions (Lebestky et al., 2009), and if

so, how the dFB might control both processes simultaneously. While it is understood that sleep is

associated with decreased behavioral responsiveness, it is unclear whether the Drosophila dFB plays

a larger role in regulating arousal more generally, even in awake animals. Recent research identified

a neurochemical mechanism for promoting sleep in Drosophila (Donlea et al., 2018), but it is

unknown whether other pathways are employed to link effectively internal sleep pressure signals in

the dFB with the acute need to suppress behavioral responsiveness when flies need to sleep.

In addition to neurochemical signaling from sleep centers such as the VLPO, mammalian sleep

processes might also involve electrical signaling that is mediated via gap junctions (Coulon and

Landisman, 2017; Franco-Pérez and Paz, 2009). Gap-junction-mediated communication appears to

be important for the rapid recruitment of much of the mammalian brain into synchronously firing net-

works (Bennett and Zukin, 2004; Buzsaki, 2006), but it remains unknown whether this is an impor-

tant aspect of sleep physiology and function. In vertebrates, connexin genes code for a variety of

gap junction subtypes (Söhl and Willecke, 2004). Invertebrates such as flies express a family of gap-

junction genes that encode proteins called innexins, and Drosophila has eight innexin-encoding loci

that have been implicated extensively in the development of the brain and other tissues

(Bauer et al., 2005; Stebbings et al., 2002). In the adult fly, there is limited understanding of the

role of gap-junction signaling in behavior, but studies have found a role for this signaling in visual

processing (Cuntz et al., 2007; Liu et al., 2016a), in escape behavior (Phelan et al., 1996) and in

learning and memory (Wu et al., 2011). In this study, we use optogenetics and electrophysiology to

investigate the role of the dFB neurons in regulating behavioral responsiveness alongside sleep in

the Drosophila model. We then examine how electrical and behavioral readouts of our sleep switch

manipulations are affected when we remove innexin6 gap junctions from the dFB.

Results

Correlating sleep duration and behavioral responsiveness
Flies were filmed in the Drosophila ARousal Tracking (DART) platform (Figure 1A) (Faville et al.,

2015) to monitor sleep duration and behavioral responsiveness simultaneously (Figure 1B). Sleep

duration is measured by well-established inactivity criteria based on >5 min inactivity (Figure 1B,

upper panel; Figure 1C) (Shaw et al., 2000), whereas behavioral responsiveness can be measured

by tracking how flies respond to a mechanical stimulus, during both sleep or while they are awake

(van Alphen et al., 2013). Following a vibration stimulus, responding flies typically increase their

locomotion (Figure 1B, lower panel). A stimulus that is delivered hourly provides an estimate of

behavioral responsiveness throughout the circadian cycle (Figure 1D), and average responses (mean

peak responsiveness, see ’Materials and methods’) are typically stronger during the day than during

the night (Figure 1E, left and middle panel). Responsiveness metrics therefore complement sleep

duration measures (Figure 1E, right): animals are by definition less responsive when they are asleep

(Campbell and Tobler, 1984).

Sleep duration and behavioral responsiveness should be negatively correlated. However, reduced

behavioral responsiveness is also a feature of wakefulness, and animals that sleep more are not nec-

essarily less responsive in general, even while awake. To better understand the relationship between

these distinct arousal measures, we tracked average sleep duration and average responsiveness in
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Figure 1. The sleep switch modulates behavioral responsiveness. (A) Flies in glass tubes were filmed from above and DART was used to track activity

and to test behavioral responsiveness using a mechanical vibration. (B) Sleep duration was measured using 5 min inactivity criteria (top panel).

Behavioral responsiveness was tested by quantifying the change in fly activity following a vibration stimulus. Following the stimulus (orange line), flies

increase their locomotion speed as shown by their displacement in the tube (bottom panel). (C) Mean sleep duration (min/hr) is tracked over a circadian

cycle. (D) Fly activity (speed, mm/sec) is plotted for a 24-hr day/night (white and grey, respectively) cycle during which a five-pulse 0.2 s 2.4 g vibration is

delivered once per hour. Spikes in activity show timing of the stimuli, and the orange lines highlight three examples. (E) The mean response (speed,

mm/s) for all stimuli during the day or night (left panel, black line). Shown in grey is a fitted curve for this average response (see ’Materials and

methods’), the peak of which is a measure of the magnitude of response to the stimulus (middle panel). Responsiveness is greater during the day and

lower during the night, whereas sleep duration is decreased during the day and increased at night (right panel). (F) Correlation between the peak

response speed (mm/s) and sleep duration (min/hr) for wildtype (w2202) flies (n = 225) during the day (yellow R = 0.012, p=0.84) and the night (grey

R = �0.372, p<0.0001). (G) R23E10-Gal4 neurons were chronically activated by expressing NaChBac, a bacterial sodium channel. Scale bar = 50 mm,

the genotype in this image is R23E10-Gal4/+;UAS-2eGFP/+. (H) Correlation between responsiveness and sleep duration following activation of the dFB

(R23E10-Gal4/UAS-NaChBac, n = 51) during daytimes (yellow R = �0.410, p<0.001) and nighttimes (grey R = �0.554, p<0.0001). See also Figure 1—

figure supplement 1.

DOI: https://doi.org/10.7554/eLife.37105.002

The following figure supplement is available for figure 1:

Figure supplement 1. Correlation between responsiveness and sleep duration following activation of the dFB in various Gal4 drivers during the day

(yellow) and night (grey).

DOI: https://doi.org/10.7554/eLife.37105.003
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250 inbred wild-type flies (w2202 [Faville et al., 2015]) over multiple days and nights. Locomotion

immediately following the hourly vibrations (in awake or sleeping flies) contributed to the respon-

siveness metrics, and sleep duration was averaged from unstimulated epochs in the intervening

hours. In previous work, we have shown that such hourly probing is not sleep depriving in wildtype

flies (van Alphen et al., 2013). We found a surprisingly large amount of individual variability for

these responsiveness and sleep metrics (Figure 1F). Sleep duration and behavioral responsiveness

were only negatively correlated at night, but not during the day in the wildtype flies (Figure 1F).

While this could reflect a qualitative difference between daytime sleep and nighttime sleep

(Faville et al., 2015), or might indicate that sleep bouts are generally longer at night (Shaw et al.,

2000), this also suggests that sleep duration and responsiveness might be separately controlled, as

has been proposed by the authors of a previous study (Lebestky et al., 2009). Sleep-promoting cir-

cuits might also regulate responsiveness to external stimuli.

The dFB (Figure 1G) has been identified as a ‘sleep switch’ in the fly brain (Donlea et al.,

2011, 2014; Pimentel et al., 2016), but its role in controlling behavioral responsiveness has not

been well studied. dFB activation is associated with increased arousal thresholds (Donlea et al.,

2011, 2014; Pimentel et al., 2016), but it is unclear whether this is a direct feature of increased dFB

activity or a consequence of other processes that result from increased dFB activity. We first exam-

ined whether sleep duration and behavioral responsiveness might be simultaneously modulated by

these neurons. Previous work has focussed on three Gal4 drivers that induce dFB-driven sleep in

flies: 104y-Gal4, C5-Gal4, and R23E10-Gal4 (Donlea et al., 2011, 2014; Pimentel et al., 2016). We

activated these sleep-promoting circuits by expressing a bacterial sodium channel, NaChBac

(Nitabach et al., 2006). Chronic activation of the R23E10 neurons produced a strong negative corre-

lation between sleep duration and behavioral responsiveness, even for daytime sleep (Figure 1H):

flies that slept more tended to respond less to stimuli, day or night. Genetic controls showed only a

night-time correlation (Figure 1—figure supplement 1A), as seen in the wildtype background strain

(Figure 1F). In contrast to data from R23E10, results with C5 and 104y were less clear: C5 displayed

a daytime correlation but not the nighttime correlation, and 104y did not display a daytime correla-

tion (Figure 1—figure supplement 1B,C). This suggests that R23E10, which is a cleaner dFB driver

(Jenett et al., 2012), may be more effective as a sleep switch. The R23E10 result also suggests that

the dFB might regulate behavioral responsiveness as well as sleep duration, although it is difficult to

separate these arousal measures in chronic manipulations.

Optogenetic activation of the sleep switch decreases behavioral
responsiveness
Falling asleep is an acute event that happens within seconds in most animals (Campbell and Tobler,

1984), and even flies can be significantly less responsive after only one minute of spontaneous quies-

cence (van Alphen et al., 2013; Faville et al., 2015). Optogenetic tools in Drosophila provide one

way to induce sleep on demand experimentally. We used the R23E10-Gal4 driver to express

CsChrimson, a red-light shifted channelrhodopsin (Klapoetke et al., 2014), in order to activate dFB

neurons transiently in fly populations monitored by DART. As sleep is necessarily measured over pro-

longed time periods, we first examined whether prolonged optogenetic activation of the dFB was

associated with decreased behavioral responsiveness. We therefore measured sleep duration and

behavioral responsiveness in R23E10-Gal4 > UAS CsChrimson flies before, during, and after 12 hr of

daytime dFB activation (Figure 2A,C). All-trans retinal (ATR) was fed to flies to enable channelrho-

dopsin function, and genetically identical but non-ATR-fed flies were used as controls (Figure 2A,

black). Flies that were fed ATR significantly increased their sleep duration in response to dFB activa-

tion with prolonged red light exposure (Figure 2A,B, blue). Behavioral responsiveness was robust in

these flies at baseline (Figure 2C, left panel), but optogenetic activation of the dFB significantly

decreased responsiveness to the vibration stimulus (Figure 2C, right panel; Figure 2D, left panel).

Responsiveness was not, however, abolished by activation of the dFB, and even appeared to recover

somewhat after several hours of red-light exposure (Figure 2C, right panel).

So far, our behavioral responsiveness metric does not differentiate between waking or sleep in

flies. When responsiveness is analyzed only for sleeping flies, expressed relative to the proportion of

immobile flies that respond (at any level) to the stimulus, this provides a measure of sleep intensity

(Figure 2—figure supplement 1A). Wildtype flies sleep more deeply at night than during the day

(Figure 2—figure supplement 1B,C), and sleep intensity is not necessarily correlated to sleep
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Figure 2. Behavioral effects of acutely activating R23E10 neurons. (A–D) Effects on sleep and responsiveness following the activation of R23E10 neurons

(blue, UAS-CsChrimson/+;R23E10-Gal4/+ with ATR, n = 102) compared to those in control flies (black, no ATR feeding, n = 118). Error bars and shading

indicate standard errors of the mean (SEMs) and asterisks indicate significance (****p<0.0001, ns = not significant, t-tests). (A) Mean sleep duration

(min/hr) during the period 24 hr before red light activation (left), then during the next 24 hr when red light is delivered for 12 hr during the day (pink

shading, right). (B) Comparison of the 12-hr day period without red light (baseline) to the period of red-light activation in terms of sleep duration and

bout length. (C) Mean activity (mm/s) for R23E10 activation for the time periods in (A). Spikes in activity show timing of hourly vibration stimuli. (D)

Comparison between the 12-hr day period without red light (baseline) and the period of red-light activation for peak responsiveness and sleep

intensity. (E) Left, average stimulus response for UAS-CsChrimson/+;R23E10-Gal4/+ with ATR (blue, n = 50) compared to control flies (black, no ATR

feeding, n = 48) during red-light activation (Figure 2A–D red shading) in flies that moved in the minute prior to the stimulus (i.e. awake flies). Right,

summary histogram (average ± SEM). **p<0.01, t-test. (F) Example activity trace of flies responding to stimuli 15 min apart (gray dashed lines): 1 min

CsChrimson activation (red shading) prior to the stimulus is alternated with trials without red light (left panel). One minute of dFB activation is sufficient

to decrease responsiveness (right panel, UAS-CsChrimson/+;R23E10-Gal4/+ with ATR n = 83, control n = 80, *p<0.05, t-test). See also Figure 2—figure

supplements 1, 2 and 3.

DOI: https://doi.org/10.7554/eLife.37105.004

The following figure supplements are available for figure 2:

Figure supplement 1. Measuring sleep intensity.

DOI: https://doi.org/10.7554/eLife.37105.005

Figure 2 continued on next page
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duration (van Alphen et al., 2013; Faville et al., 2015). Yet, as might be expected, optogenetic

activation of the ‘sleep switch’ increases sleep intensity (Figure 2D, right panel; Figure 2—figure

supplement 1D) as well as sleep duration. However, dFB-activated flies are not always asleep, they

are often awake. We therefore next investigated whether responsiveness was affected in awake (i.e.

walking) flies only (see ’Materials and methods’ and Figure 2—figure supplement 1A for explana-

tions on how wakeful responsiveness was determined). We were surprised to find that dFB activation

decreases behavioral responsiveness in awake flies as well as in sleeping flies (Figure 2E, right

panel). Thus, decreased behavioral responsiveness appears to be a feature of prolonged dFB activa-

tion, even when sleep reverts to wakefulness. Decreased responsiveness was not due to sluggish

locomotion in awake animals: the walking speed of awake dFB-activated flies was not different from

that of controls immediately preceding the vibration stimulus (Figure 2E, left panel, green shading).

dFB activation therefore reduces behavioral responsiveness in awake as well as in sleeping flies.

To confirm that this loss of behavioral responsiveness in awake flies is an acute effect of dFB acti-

vation and not just an indirect effect of prolonged sleep induction, we repeated these experiments

with shorter time periods (5 min) of dFB activation. We probed for responsiveness after only 1 min

of red-light exposure. In doing so, we found that behavioral responsiveness was significantly reduced

after 1 min of red light, and that responsiveness was rapidly restored after the red light was turned

off (Figure 2F), that is we observed no evidence of sleep inertia following 5 min of dFB activation.

To further confirm that this effect was distinct from sleep, we also analyzed only flies that were walk-

ing in the minute preceding the vibration stimulus, and observed the same significant effect (Fig-

ure 2—figure supplement 2). Together with our prolonged activation experiments, this suggests a

dissociation between dFB’s role in sleep promotion and behavioral responsiveness. While more pro-

longed dFB activation certainly increased sleep duration and sleep intensity (Figure 2B,D; Figure 2—

figure supplement 1D), behavioral responsiveness remains suppressed when dFB-activated flies are

awake and can be acutely suppressed in walking flies. As a constant light activation might be an

unnatural stimulation regime for the dFB neurons, we repeated our experiments with a sparser acti-

vation stimulus, pulsed 5 ms red light (1 Hz), and found that behavioral responsiveness was similarly

suppressed (Figure 2—figure supplement 3). This shows that different stimulation regimes produce

a similar effect and confirms that activation of the sleep switch suppresses behavioral

responsiveness.

Optogenetic activation of the sleep switch causes a rapid and
reversible increase in membrane potential of dFB neurons
To better understand the mechanisms underlying these acute effects, we investigated the electro-

physiological properties of the dFB neurons that contributed to the observed change in behavior.

We used whole-cell patch-clamp electrophysiology in current clamp mode to record the membrane

potential of the dFB cell bodies in behaving flies (Figure 3A) (see ’Materials and methods’). dFB neu-

rons were genetically labeled with green fluorescent protein (GFP) to guide recordings from the cell

soma visually (Figure 3B, top). As shown previously (Donlea et al., 2014; Pimentel et al., 2016), the

spiking activity of dFB soma responded to positive current steps by increasing their firing rate

(Figure 3B, bottom left). However, not all neurons shared the same spontaneous firing properties,

with ~20% of the recorded cells identified as non-spiking (even following current injection), whereas

the remaining cells that did spike were observed to exhibit various combinations of single spikes

and burst spiking patterns (Figure 3B, bottom right).

Despite the heterogeneity in the firing pattern of the dFB neurons, CsChrimson-expressing cells all

responded to a red-light stimulus in the same manner, by rapidly increasing their membrane potential

upon activation, followed by a gradual return to its resting membrane state after the light was turned

off (Figure 3C,D). Induced spike bursts occurred 18.75 ± 3.07 ms apart in a subset of cells. Exposure

to 1 Hz light pulses (5 ms each) instead of continuous exposure produced corresponding action

Figure 2 continued

Figure supplement 2. Acute effects in awake flies.

DOI: https://doi.org/10.7554/eLife.37105.006

Figure supplement 3. 1 Hz optogenetic activation of the dFB.

DOI: https://doi.org/10.7554/eLife.37105.007
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potentials in some spiking cells (Figure 3—figure supplement 1A). On average, 1 Hz pulsed activa-

tion also increased the membrane potential in all CsChrimson-expressing dFB cells (Figure 3—figure

supplement 1B). The robustness of this effect, despite the heterogeneity in the spontaneous firing

pattern across cells and the different stimulus regimes, suggests that the acute dFB activation effects

Figure 3. Electrophysiological effects of acutely activating R23E10 neurons. (A) Setup for recording in vivo adult Drosophila electrophysiology with

whole-cell patch clamp (orange). (B) dFB neuron schematic showing whole-cell recordings targeted to R23E10-Gal4 cell bodies. Injecting current in a

stepwise manner causes firing in these neurons (bottom left panel), which are heterogeneous in their endogenous firing patterns (bottom right panel).

Scale bars indicate 10 mV and 100 ms. (C) Example traces (left) of a CsChrimson-expressing (UAS-CsChrimson/+;R23E10-Gal4/+ with ATR) spiking cell

(top) and non-spiking cell (middle), and of a non-CsChrimson-expressing (R23E10-Gal4/+ with ATR) cell (bottom) when exposed to constant red light

(red shading). Superimposed traces of the corresponding types from multiple cell recordings (right panel, top to bottom: n = 10, n = 6, n = 6). Solid red

lines indicate mean values. (D) Boxplots show median membrane potentials for CsChrimson-expressing cells (blue) and non-CsChrimson expressing

cells (gray, n = 6) before, during and after constant light stimulation (***p<0.001, Friedman test with Dunn’s multiple comparisons to pre-stimulus

condition). See also Figure 3—figure supplements 1 and 2.

DOI: https://doi.org/10.7554/eLife.37105.008

The following figure supplements are available for figure 3:

Figure supplement 1. 1Hz stimulation.

DOI: https://doi.org/10.7554/eLife.37105.009

Figure supplement 2. Whole-cell patch physiology in wildtype and INX6 knockdown flies.

DOI: https://doi.org/10.7554/eLife.37105.010
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on behavioral responsiveness could be associated with increased membrane potential rather than

with any specific increased spiking activity, although it remains possible that the subset of spiking cells

is key here. Notably, the post-stimulation membrane potential (recorded only 1 min after the red light

was turned off) was not significantly different from baseline (Figure 3D; Figure 3—figure supplement

1B), indicating that the acute effect on the membrane potential was not sustained for long after the

stimulation. Red light had no effect on spiking or the membrane potential in R23E10-Gal4/+ animals

that had been fed ATR but that lacked channelrhodopsin (Figure 3D, Figure 3—figure supplement

1B, gray boxplots), or in control R23E10-Gal4/UAS-CsChrimson animals that had not been fed ATR

(Figure 3—figure supplement 2). In a subset of recordings, 1 Hz light pulses reliably evoked second-

ary and even tertiary spikes between 100 and 500 ms after the first evoked spike (Figure 3—figure

supplement 2), suggesting a reverberation in the circuit.

Gap-junction localization in the dFB
An increased input resistance and membrane time constant in dFB cells has been shown to be asso-

ciated with increased sleep pressure (Donlea et al., 2014), so our optogenetic results are consistent

with the idea that these cells form part of a sleep homeostat that is regulated by changing mem-

brane potential levels (Pimentel et al., 2016). Recent work shows that output from the dFB cells reg-

ulates sleep duration by inhibiting a number of other systems in the central brain (Donlea et al.,

2018; Liu et al., 2016b). These communication channels are probably chemical in nature, but it is

not clear whether behavioral responsiveness is also controlled through these downstream synaptic

circuits. We therefore next acutely manipulated synaptic release from the dFB. Interestingly, tran-

siently increasing synaptic activity in dFB neurons (measured using temperature-sensitive syntaxin3-

69 [Lagow et al., 2007; Kottler et al., 2013]) had no significant effect on behavioral responsiveness,

or on sleep (Figure 4—figure supplement 1A). Transiently decreasing synaptic activity (by using the

temperature-sensitive shibire [Kitamoto, 2001]) in the dFB decreased responsiveness, but equally

so in the genetic controls (Figure 4—figure supplement 1B). A lack of clear effects using these

opposing synaptic manipulations suggests that (fast) chemical neurotransmission might not be a rel-

evant mechanism employed by these neurons to control behavior acutely, or at least that these

acute synaptic manipulations do not affect our behavioral readouts. This prompted us to explore

whether electrical synapses might be involved instead. A previous study has found expression of the

gap junction gene, inx6, in the fan-shaped body (Wu et al., 2011), suggesting that these neurons

might communicate electrically with other neurons potentially to regulate behavioral responsiveness.

We used an antibody for the INX6 protein to first visualize its location in the fly brain. Expression

was seen most strongly in a dorsal layer of the fan-shaped body and in large cells in the pars inter-

cerebralis (PI) (Figure 4A, top and middle panels, Figure 4—figure supplement 2A). Co-labeling

with GFP driven by R23E10-Gal4 revealed a significant overlap in the relevant dFB neurons

(Figure 4B, bottom panel; a co-localization of 47.5% was found, see ’Materials and methods’). How-

ever, we did not find any evidence of co-localization in the dFB cell soma (Figure 4—figure supple-

ment 2B). Dye-fill experiments confirmed that the dFB neurons are coupled to other cells via gap

junctions (Figure 4—figure supplement 2C; Video 1), although the extent of this

electrically coupled network remains unclear as only the large PI cells above the dFB revealed any

reliable dye coupling in our experiments.

Gap junctions in the dFB regulate both sleep duration and behavioral
responsiveness
To test the role of INX6 in sleep, we used a working RNAi construct (Figure 5—figure supplement

1A,B) to knock down INX6 in dFB neurons. Flies expressing the INX6 RNAi construct in the dFB

showed a decrease in both day and night sleep (Figure 5A). We next looked at responsiveness to

mechanical stimuli in these flies. Flies slept less deeply and were more responsive to stimuli when

INX6 was downregulated in the dFB (Figure 5B). Closer examination of sleep intensity as a function

of time asleep (van Alphen et al., 2013) showed that INX6-knockdown flies could still achieve

deeper sleep stages (e.g. after 16–20 min immobility, Figure 5C), although these flies slept more

lightly in general. This suggests that INX6 plays a role in suppressing behavioral responsiveness dur-

ing lighter sleep stages, whereas during deeper sleep, the role of INX6 might be less important. Cir-

cadian influences also clearly play a major role: responsiveness is always lower at night than during
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the day. In addition, INX6 expression in different

subsets of dFB neurons could also contribute to

the behavior, as we observed only partial INX6

overlap with R23E10 (Figure 4B, bottom). To

confirm that these behavioral effects were not a

consequence of altered developmental path-

ways, we downregulated INX6 in adult flies by

using a temperature-sensitive suppressor of

Gal4, Gal80TS (McGuire et al., 2004). Knocking

down INX6 in the adult dFB significantly

increased daytime behavioral responsiveness

and decreased daytime sleep intensity, but had

no significant effect on sleep duration (Fig-

ure 5—figure supplement 2). These results sug-

gest that INX6 is important for communicating

dFB activity levels to regulate behavioral respon-

siveness. We therefore next questioned whether

INX6 knockdown altered electrical readouts

associated with acute dFB activation.

Figure 4. INX6 dFB localization. (A) INX6 antibody staining (red) in wildtype Canton-S flies at 20x (top) and 60x

(middle). White arrow indicates the location of the dFB and white dashes outline it. Staining using the secondary

antibody alone (bottom, 20x) shows no detectable reactivity in the dFB. Scale bars = 50 mm. (B) INX6 antibody

staining (red, middle) with GFP antibody staining in flies expressing GFP in R23E10 neurons (UAS-GFP/+;R23E10-

Gal4/+, green, top). Overlap between these regions (bottom) indicates the presence of INX6 in these neurons

(47.5% co-localization, see ’Materials and methods’). Scale bars = 25 mm. See also Figure 4—figure supplements

1 and 2.

DOI: https://doi.org/10.7554/eLife.37105.011

The following figure supplements are available for figure 4:

Figure supplement 1. Acute synaptic manipulations.

DOI: https://doi.org/10.7554/eLife.37105.012

Figure supplement 2. INX6 in dFB neurons.

DOI: https://doi.org/10.7554/eLife.37105.013

Video 1. 3D reconstruction of dye coupling experiment.

DOI: https://doi.org/10.7554/eLife.37105.014

Troup et al. eLife 2018;7:e37105. DOI: https://doi.org/10.7554/eLife.37105 9 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.37105.011
https://doi.org/10.7554/eLife.37105.012
https://doi.org/10.7554/eLife.37105.013
https://doi.org/10.7554/eLife.37105.014
https://doi.org/10.7554/eLife.37105


Gap junctions promote LFP activity in the dFB
We recorded neural activity from INX6 knockdown flies whose dFB could be optogenetically acti-

vated. A dual-electrode setup was used to record intracellularly from the dFB cell body while a sec-

ond electrode simultaneously positioned within in the dFB structure recorded extracellular local field

potentials (LFPs) (Figure 6A,B). Whole-cell recordings revealed that reduced INX6 expression in the

dFB (Figure 5—figure supplement 1B) did not impair CsChrimson-mediated cell activation: a signif-

icant increase in membrane potential was still observed with constant red light as well as with 1 Hz

pulses (Figure 6C,D). This shows that the increase of the membrane potential in activated dFB neu-

rons does not depend upon INX6 expression in these cells. Nevertheless, we did observe some intra-

cellular differences: whereas 40% of wildtype dFB cells exhibited reliable secondary spikes 100–500

ms after a light-evoked action potential (Figure 3—figure supplement 2), none of the INX6

knocked-down cells displayed secondary spikes within that timeframe (Figure 6—figure supplement

1). Also, we noted considerably less variability in the membrane potential for dFB cells lacking INX6

(Figure 6—figure supplement 1 and Figure 6C,D right panels, compared with Figure 3D and Fig-

ure 3—figure supplement 1B).

We next asked whether extracellular LFP activity in the dFB might be affected by INX6 knock-

down in the R23E10 neurons. We have shown previously that optogenetic dFB activation using the

same R23E10-Gal4 driver produces increased LFP activity in the fly brain, especially in low (1–15 Hz)

frequencies, and that oscillations within this range are also seen during transitions to spontaneous

sleep in flies (Yap et al., 2017). We find this LFP signature of dFB activation again here (Figure 6E,

top panel; Figure 6F, blue). In flies with INX6 knocked down in the dFB, however, there was no

increased LFP activity (Figure 6E, bottom panel; Figure 6F, purple), as was also the case for control

flies lacking the channelrhodopsin (Figure 6F, grey). As this constant light stimulus effect was quite

subtle, we decided to drive the system with a pulsed activation regime to further test whether field

potentials in the dFB were compromised following INX6 knockdown. 1 Hz stimulation of R23E10-

Gal4 neurons also produced an LFP signature in the dFB, evident as an event-related potential (ERP)

(Figure 6G, blue). Consistent with our results using a constant red-light activation regime, INX6

knockdown in R23E10 neurons significantly blunted the amplitude of the 1 Hz ERP (Figure 6G, pur-

ple). Together, these results suggest that one important consequence of INX6 knockdown in the

sleep-promoting R23E10 cells is decreased synchronous activity in the dFB (detected as LFPs),

whereas the activation effects on the membrane potential measured at the soma remain robust. To

further test whether gap junctions are involved, we applied the gap-junction blocker carbenoxolone,

or CBX (Cao and Nitabach, 2008). Perfusion of CBX onto the brain blunted the ERP recorded from

the dFB, as did locally injected CBX (Figure 6H). This adds further evidence that gap junctions are

required to produce synchronized activity in the dFB.

Gap junctions in the dFB are required for controlling behavioral
responsiveness
Given that INX6 knockdown appears to disrupt dFB function at an electrophysiological level, we

hypothesized that removing INX6 from these neurons would impair acute effects on behavior, such

as those we obtained by optogenetic approaches earlier (Figure 2). To test this, we compared three

groups of flies in DART (Figure 7A): (1) Positive control flies where dFB neurons could be activated

and had wildtype INX6 expression (ATR-fed, blue), (2) negative control flies with INX6 knocked

down but without dFB activation (non-ATR-fed, black), and (3) genetically identical flies where dFB

neurons could be optogenetically activated but with INX6 knocked down (ATR-fed, purple).

Optogenetically activating the dFB in cells where INX6 was knocked down still caused an increase in

sleep duration and bout length compared to those in negative control flies (Figure 7A,B, purple com-

pared to black). This effect was, however, not as strong as the activation of the dFB circuit with func-

tional INX6 in these cells (Figure 7A,B, blue). This shows that INX6 knockdown blunts the sleep-

promoting effect of dFB activation. Correspondingly, behavioral responsiveness was significantly

decreased when the dFB was activated whereas INX6 expression was intact (Figure 7C,D blue). We

did not see differences in peak responsiveness at baseline in the knockdown strains (Figure 7D, left),

although the baseline sleep intensity data were consistent with our previous findings that inx6 knock-

down in the dFB increases responsiveness (Figure 7D, right). It is possible that CsChrimson activity is

leaky in ambient light conditions. However, clear differences were evident upon red-light activation: in
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contrast to the partial effects on sleep duration,

INX6 knockdown completely blocked the effect of

dFB activation on behavioral responsiveness

(Figure 7C, purple) measured in terms of either

mean peak responsiveness and sleep intensity

(Figure 7D, purple), making the knockdown indis-

tinguishable from negative controls (Figure 7D,

black; not shown in Figure 7C for clarity). The

knockdown was also indistinguishable from nega-

tive controls when we only examined data from

awake flies, confirming that this effect is not

restricted to sleep (p=0.94, t-test comparing mean

responsiveness, n = 51 flies). These activation

experiments therefore uncover a dissociation

between behavioral responsiveness and sleep

duration: INX6 expression is required for the sleep

switch to downregulate behavioral responsiveness

acutely, but INX6 is not required for these neurons

to be sleep promoting. Presumably, dFB neurons

are still able to affect sleep duration via other

mechanisms (Donlea et al., 2018; Liu et al.,

2016b).

Discussion
Before sleep can begin to achieve any of its multi-

ple putative functions, it would seem that behav-

ioral responsiveness to the outside world first

needs to be reduced. This is a fundamental yet

poorly understood aspect of sleep in all animals

(Campbell and Tobler, 1984; Cirelli, 2009).

Mechanisms that regulate behavioral responsive-

ness are therefore likely to be involved during

transitions from wakefulness to sleep, so it seems

parsimonious that overlapping neuronal systems

might govern both behavioral states. In this way,

sleep onset has some similarity with selective

attention in its capacity to gate or suppress

perception rapidly (Kirszenblat and van Swinde-

ren, 2015). We show here that gap junctions

that are expressed in the sleep-promoting neu-

rons of the dFB in the central fly brain are

probably mediators for gating behavioral respon-

siveness in both awake and sleeping flies, as a con-

sequence of acutely increased membrane

potential in these neurons. Recent work has shown

that sleep pressure increases the input resistance

and membrane time constants in these same neu-

rons (Donlea et al., 2014; Pimentel et al., 2016),

so this seems to be a probable mechanism

whereby increased sleep pressure impairs behav-

ioral responsiveness via electrical channels, perhaps even before promoting and maintaining sleep —

which may then occur via chemical (e.g. peptidergic) signaling from these neurons (Donlea et al.,

2018). It is therefore possible that the R23E10 neurons, which have been recently characterized as

comprising part of a ‘sleep homeostat’ in the fly brain (Donlea et al., 2018; Pimentel et al., 2016),

have two distinct arousal-related functions: to regulate behavioral responsiveness more generally —

Figure 5. INX6 effects on behavior. (A) Mean sleep

duration (min/hr) and (B) mean peak responsiveness

(mm/s) and sleep intensity (% responding) for R23E10-

Gal4/+;UAS-INX6-RNAi/+ (red, n = 85) compared to

R23E10-Gal4/+ (gray, n = 83) and UAS-INX6-RNAi/+

(black, n = 84) controls. (C) Sleep intensity for inactivity

bins of 5 min for the first 30 min of inactivity. See also

Figure 2—figure supplement 1. Shading and error

bars indicate SEM, asterisks indicate significance

(*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, two-way

ANOVA, adjusted for multiple comparison (Dunnett).

See also Figure 5—figure supplements 1 and 2.

DOI: https://doi.org/10.7554/eLife.37105.015

The following figure supplements are available for

figure 5:

Figure supplement 1. INX6 RNAi effectiveness.

DOI: https://doi.org/10.7554/eLife.37105.016

Figure supplement 2. Behavioral effects of acute

downregulation of INX6 in adult flies.

DOI: https://doi.org/10.7554/eLife.37105.017
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Figure 6. Electrophysiological effects of INX6 knockdown in activated R23E10 neurons. (A) In vivo adult Drosophila electrophysiology recording setup

with a whole-cell patch clamp (orange) targeting R23E10 cell bodies and a local field potential (blue) electrode targeting the dFB. (B) Local field-

potential (LFP) recordings were obtained within the presynaptic arborizations of the R23E10 neurons in the fan-shaped body, while whole-cell

recordings were obtained from the cell bodies of R23E10 neurons. (C) Example trace (left) of a CsChrimson-expressing (UAS-CsChrimson/+; UAS-INX6

RNAi/+; R23E10-Gal4/+ with ATR) cell with INX6 knockdown when exposed to constant red light (red shading). Superimposed traces from multiple cell

recordings (middle). The solid red line indicates mean values. Boxplots show median membrane potential for CsChrimson-expressing cells with INX6

knockdown before, during and after constant light stimulation (n = 6, **p<0.01, Friedman test with Dunn’s multiple comparisons to the pre-stimulus

condition). (D) Example trace (left) of a CsChrimson-expressing cell with INX6 knockdown when exposed to 1 Hz light pulse with 5 ms exposure per

pulse (orange shading). Superimposed traces from all 120 trials (middle) for the representative cell shown on the left. Solid yellow line indicates mean

value. Boxplots show median membrane potential for CsChrimson-expressing cells with INX6 knockdown before, during, and after 1 Hz light

stimulation (n = 6, **p<0.01, Friedman test with Dunn’s multiple comparisons to pre-stimulus condition). (E) Local field potential recordings from the

dorsal fan-shaped body represented as power within the 1–15 Hz frequency range, in response to a constant light stimulus (pink bar) with one

representative fly shown from each strain. (F) Boxplots show median 1–15 Hz local field potential power (±SEM) for the duration of the constant light

stimulus relative to pre-stimulation power (normalized to zero) in UAS-CsChrimson/+;R23E10-Gal4/+ with ATR (blue, n = 7), UAS-CsChrimson/+; UAS-

INX6 RNAi/+; R23E10-Gal4/+ with ATR (purple, n = 6), and R23E10-Gal4/+ with ATR (gray, n = 4). Only UAS-CsChrimson/+;R23E10-Gal4/+ showed a

significant increase in 1–15 Hz activity when exposed to constant red light (*p<0.05, ns = not significant, by Wilcoxon signed rank test). (G) Peak

amplitude of the average LFP response (±SEM) to 1 Hz light pulse stimulus is significantly reduced for UAS-CsChrimson/+; UAS-INX6 RNAi/+; R23E10-

Gal4/+ (purple, n = 6), compared to UAS-CsChrimson/+;R23E10-Gal4/+ (blue, n = 7) (**p<0.01, by Mann-Whitney test). (H) Peak LFP amplitude (±SEM)

in response to 1 Hz stimulus in the presence of bath-applied (n = 6) or locally injected (n = 4) carbenoxolone (CBX, orange) compared to baseline (gray)

or vehicle (green, n = 5). ***p<0.001,**p<0.01, by paired t-test. See also Figure 6—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.37105.018

The following figure supplement is available for figure 6:

Figure supplement 1. Combined traces (yellow lines indicate mean values) for all 120 pulses for each of the recorded CsChrimson-expressing R23E10

neurons with INX6 knockdown.

DOI: https://doi.org/10.7554/eLife.37105.019
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and thus to promote sleep acutely — and then to maintain sleep for the duration required by homeo-

static demands. As increased arousal thresholds are a key criterion for sleep, it is of course difficult to

disentangle these processes from each other. However, our data suggest that dFB-mediated suppres-

sion of behavioral responsiveness could be a prequel to sleep. First, on the basis of the current defini-

tions of sleep (Campbell and Tobler, 1984; Cirelli, 2009), it does not make sense for sleep to precede

changes in responsiveness, so either these processes are simultaneous or sleep functions succeed an

initial increase in arousal thresholds that may already be evident during wakefulness.

Our experiments show that behavioral responsiveness can be suppressed by acutely activating

the dFB even in awake flies, and that this effect has little inertia, at the levels of both behavior and

electrophysiology. Sleep intensity was increased however upon prolonged dFB activation, suggest-

ing a distinct cumulative effect. Indeed, at the deepest stage of sleep (when flies are least responsive

to mechanical stimuli), removal of INX6 from the dFB had no effect on behavioral responsiveness

(Figure 5C), suggesting that other factors are involved at that stage for maintaining high arousal

thresholds. When flies are closer to awakening again, or when they are engaged in lighter sleep

stages, it is possible that INX6-mediated mechanisms come back into play to maintain sleep. In

recent work, we have shown that transitions in and out of sleep are associated with dFB activity

(Yap et al., 2017), which is consistent with the view that a common system might be governing

behavioral responsiveness during wakefulness as well as sleep.

Figure 7. Behavioral effects of INX6 knockdown in activated R23E10 neurons. (A–D) Three different behavioral conditions comparing flies with R23E10

neurons that can be activated (UAS-CsChrimson/+; R23E10-Gal4/+with ATR, blue, n = 50) with flies where R23E10 neurons cannot be activated but

have INX6 knocked down (UAS CsChrimson/+; UAS-INX6 RNAi/R23E10-Gal4 no ATR, black, n = 51) and flies with R23E10 neurons that can be activated

and have INX6 knocked down (UAS-CsChrimson/+; UAS-INX6 RNAi/R23E10-Gal4 with ATR, purple, n = 51) for effects on sleep and responsiveness

following red light activation. (A) Mean sleep duration (min/hr, shading indicates SEM) during the 24 hr before red light activation, then during the next

24 hr during which red light is delivered for 12 hr during the day (pink shading). (B) Comparison between the 12-hr day period without red light

(baseline) and the period of red-light activation in terms of sleep duration and bout length. (C) Mean activity (mm/s) for UAS-CSChrimson/+; UAS-INX6

RNAi/R23E10-Gal4 with ATR for the same time periods as (A). UAS-CsChrimson/+; R23E10-Gal4/+ with ATR is overlaid (blue) during the ’Light

On’ period to show differences in responses to hourly stimuli. Other traces (black) not shown for clarity; see (D) for summarized control data. (D)

Comparison between the 12-hr day period without red light (baseline) and the period of red-light activation in terms of peak responsiveness and sleep

intensity. Error bars indicate SEM and asterisks indicate significance (***p<0.001, ****p<0.0001, t-tests).

DOI: https://doi.org/10.7554/eLife.37105.020
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It is likely that other dFB neurons outside of the R23E10 circuit are also involved, as suggested by

only partial overlap with INX6 labeling (Figure 4B). However, without INX6, activated R23E10 neurons

were unable to reduce behavioral responsiveness, suggesting a cell-autonomous effect. We have

shown here and elsewhere (Yap et al., 2017) that dFB activation is associated with increased LFP activ-

ity in the central brain, which could reflect increased synchronous neural firing. Without expression of

INX6 in the R23E10 neurons, these induced LFP effects also disappear, suggesting that gap junctions

are important for promoting synchronous activity in this circuit. This suggests a rapid mechanism

through which the dFB might suppress behavioral responsiveness upon sleep onset, by for example

producing synchronous low frequency activity that could interfere with ongoing sensory processing

and integration in the central brain. Although acute activation of the R23E10 neurons alone is unlikely

to occur in a natural context, electrical communication to other cells via gap junctions could support

subtler levels of behavioral control while the flies are awake, which might consolidate into overall

increased arousal thresholds as membrane potentials across the dFB increase with increasing sleep

pressure. We have not completely excluded the possibility that a fast-acting neuropeptide or neuro-

transmitter secreted from R23E10 neurons regulates behavioral responsiveness, but our data favor the

view that a parallel channel involving electrical synapses exists. Future studies should uncover the

extent of this gap-junction-coupled network, although our antibody-labeling (Figure 4) and dye-cou-

pling experiments (Figure 4—figure supplement 1) suggest that cells in the pars intercerebralis (PI)

are probably involved. It also remains possible that dFB neurons are electrically coupled to each other,

thereby generating LFP oscillations that are employed in the regulation of behavior. However, in our

dye-coupling experiments (see ’Materials and methods’), we did not see any evidence of labeling of

another dFB cell, whereas multiple PI cells were labeled.

It is not known whether electrical communication might be employed to promote sleep in other ani-

mal brains, although there is increasing evidence that gap junctions play an important role in the regu-

lation of behavioral state and arousal in the mammalian brain (Coulon and Landisman, 2017). More

generally, a role for gap junctions in sleep-promoting neurons also suggests a novel plasticity mecha-

nism for regulating behavioral states. Whereas plasticity is typically viewed as a property of chemical

synapses, the parallel electrical communication channel afforded by gap junctions could provide an

alternate way of regulating sleep pressure, and thereby promoting sleep functions while ensuring that

arousal thresholds are tightly linked to sleep need. In recent work, we have shown that transient elec-

trical activation of the dFB neurons during fly brain development permanently impairs behavioral

responsiveness in adult animals (Ferguson et al., 2017), further confirming the strong link between

these neurons and the regulation of arousal in Drosophila. Different INX6 expression levels in the dFB

may provide a mechanism for optimally linking behavioral responsiveness with sleep need. It will be

interesting to see whether INX6 expression in the dFB correlates with the striking range of individual

differences that we observed for sleep duration and behavioral responsiveness in wildtype flies

(Figure 1F), and whether INX6 expression in the dFB might be co-regulated alongside other proteins

that have been shown to control neuronal excitability in this arousal circuit (Donlea et al., 2018;

Pimentel et al., 2016).

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

R23E10-Gal4 Bloomington RRID:BDSC_49032

Genetic reagent
(D. melanogaster)

C5-Gal4 doi: 10.1002/
ssscne.22284

Paul Shaw Lab

Genetic reagent
(D. melanogaster)

104y-Gal4 Paul Shaw Lab

Genetic reagent
(D. melanogaster)

UAS-CsChrimson doi: 10.1038/
nmeth.2836

provided by Vivek
Jarayaman Lab

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(D. melanogaster)

UAS-2eGFP Bloomington RRID:BDSC_32186

Genetic reagent
(D. melanogaster)

UAS-NaChBac Bloomington RRID:BDSC_9469

Genetic reagent
(D. melanogaster)

UAS-syntaxin3-69 Fly Base FBal0092503

Genetic reagent
(D. melanogaster)

UAS-shibireTS Paul Shaw Lab Gene ID: 45928

Genetic reagent
(D. melanogaster)

tubpGAL80ts Bloomington RRID:BDSC_7108

Genetic reagent
(D. melanogaster)

UAS-INX6 RNAi VDRC v8638 Provided by the
Chia-Lin Wu Lab

Antibody Rabbit anti
-INX6

Provided by
the Chia-Lin Wu Lab

1:1,000

Antibody Goat anti-mouse
AlexaFluor488

Invitrogen Catalog # A-10680 1:200

Antibody Goat anti-rabbit
AlexaFluor568

Invitrogen Catalog # A-11011 1:200

Antibody Goat anti-rabbit
AlexaFluor647

Invitrogen Catalog # A-21244 1:200

Antibody Mouse anti-NC82 DSHB AB_2314866 1:10

Antibody Goat anti-rabbit
AlexaFluor488

Invitrogen Catalog # A-11008 1:200

Chemical compound, drug Neurobiotin Vector Labs Cat. No: SP-1120

Software, algorithm DART bfklab http://www.bfklab.com/

Software, algorithm MATLAB code This paper 142faca https://github.com/melvynyap/
gap-junction-sleep-control
(copy archived at
https://github.com/elifesciences-publications/
gap-junction-sleep-control)

Chemical compound, drug All-trans retinal SIGMA-Aldrich SID 24899355

Chemical compound, drug Vectashield Vector Labs Cat. No: H-1000

Chemical compound, drug Streptavidin Invitrogen Catalog number: S32357 1:200

Fly stocks and media
Flies were cultured on standard agar medium under a 12-hr day/night cycle. Flies used for optoge-

netics were placed on food containing 1 mM all-trans retinal (Sigma) for two days before experi-

ments. All flies were outcrossed six generations to a w2202 genetic background (isoCJ1; (Yin et al.,

1994). The INX6-RNAi lines were a gift from Chia-Lin Wu. UAS-CsChrimson was a gift from Vivek

Jayaraman. R23E10-Gal4, C5-Gal4, 104y-Gal4, and UAS-shibire were obtained from Bloomington.

The INX6 RNAi is v8638, originally obtained from the VDRC (Dietzl et al., 2007). UAS-syx3-69 was

obtained from Bing Zhang.

Behavioral experiments
One-day-old female virgin flies were briefly anesthetized on CO2 for collection. At two days old, flies

were transferred to 65 mm glass tubes (Trikinetics, Waltham, MA) sealed with food (containing reti-

nal if necessary) at one end and cotton at the other and placed inside a 25˚C incubator. A camera

was positioned above for recording activity, and shaftless vibrating motors (Precision Microdrives,

312–101) were positioned underneath for stimulus delivery using DART (Faville et al., 2015). Four

700 mA 617 nm LED lights (Luxeon Star, Canada, SP-01-E4) were placed above the flies and
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delivered irradiance of 0.03–0.1 mW/mm2. These LEDs were controlled using a custom circuit board

and Arduino with custom code.

After a day of acclimatization, fly activity was recorded over three days. Every hour, a stimulus

was delivered consisting of five 0.2 s 2.4 g vibrations separated by 0.8 s. For optogenetic experi-

ments, the red LEDs were switched on for the second and third day during ZT 0–12 periods to

deliver either constant or 1 Hz (5 ms pulse width) light. For INX6 RNAi, sleep experiments were run

for 3–4 days. All experiments were replicated at least three times. For UAS-ShibireTS and UAS-Syn-

taxin3–69, experiments were run for 3 days and the temperature of the incubator was raised from

23˚C to 31˚C on days 2 or 3.

For acute R23E10-Gal4 activation experiments, the mechanical vibration was delivered to flies

once every 15 min, alternating between periods with and without light exposure for six trials (three

light on, three light off). The light was delivered for1 min prior to and 3 min after the stimulus.

Sleep intensity was measured as the proportion of immobile (sleeping) flies that responded (at

any level) to these stimuli. Flies were determined to have responded if they moved by a threshold of

at least 3 mm (~3 body lengths) within the minute following the stimulus (Faville et al., 2015). To

measure mean peak responsiveness, fly activity was averaged for two minutes prior to and the 15

min after each stimulus. This average activity was fitted with a single-inactivation exponential equa-

tion and the peak amplitude of activity following the stimulus was measured (Faville et al., 2015).

To determine awake responsiveness, we included only flies that had moved within the 1 min prior to

the stimulus (i.e. awake flies) in the analysis. Statistical analyses were performed in Prism 7 for Mac

(GraphPad) and all tests were corrected for multiple comparisons.

For experiments in which we downregulated INX6 expression in adult flies (using R23E10-

Gal4 > UAS-INX6 RNAi GAL80TS), flies were raised at 19˚C. A four-day experiment used the same

hourly stimulus protocol as above and consisted of 1 d at 19˚C, 1 d at 31˚C for GAL4 induction, fol-

lowed by 2 d at 25˚C. Data from both days following 31˚C heating were combined and averaged.

Immunochemistry
Fly heads were removed and brains dissected in cold PBS, before being fixed in 4% paraformalde-

hyde for 30 min. After washing with PBST (0.2% Triton-X and 0.01% sodium azide) and blocking with

bovine serum albumin, brains were incubated with primary antibodies (R23E10-Gal4 > UAS-2eGFP:

mouse anti-GFP 1:1,000, rabbit anti-INX6 1:1,000; CS: rabbit anti-INX6 1:1,000) overnight,

and with secondary antibodies (R23E10-GAal4 > UAS-2eGFP: goat anti-mouse AlexaFluor488 1:200,

goat anti-rabbit AlexFluor568 1:200; CS: AlexFluor687 1:200) for 1 d, then mounted using Vecta-

shield. The INX6 primary antibody was a generous gift from Chia-Lin Wu. Samples were imaged on a

spinning-disk confocal system (Marianas; 3I, Inc.) consisting of a Axio Observer Z1 (Carl Zeiss)

equipped with a CSU-W1 spinning-disk head (Yokogawa Corporation of America), an ORCA-

Flash4.0 v2 sCMOS camera (Hamamatsu Photonics), and 20 � 0.8 NA PlanApo and 100 � 1.4 NA

PlanApo objectives. Image acquisition was performed using SlideBook 6.0 (3I, Inc). To quantify the

degree of colocalization between INX6 and R23E10-Gal4 dFB neurons, we used ImarisColoc (Imaris,

Bitplane Inc). INX6 and GFP channels were selected using automatic threshold detection from pixel

intensity histograms. The number of voxels in these channels that colocalized across Z-planes inside

of the dFB region of interest (ROI) was then determined. To determine INX6 RNAi efficacy, we com-

pared INX6 expression in the dFB in control brains (Elav-Gal4/+) to brains expressing the RNAi

(Elav-Gal4 >UAS-INX6 RNAi) using an INX6 antibody. Brains were incubated with primary antibody

(rabbit anti-INX6 1:1,000, mouse anti-NC82 1:10) overnight, and with secondary antibody (goat anti-

rabbit AlexaFluor488 1:200, goat anti-rabbit AlexFluor647 1:200) for a day. A ROI was drawn around

the dFB using the NC82 staining. Mean INX6 intensity within this ROI was normalized to mean NC82

intensity. Normalized dFB immunoreactivity in control brains was compared to Elav-Gal4 >UAS-INX6

RNAi brains using a t-test.

Quantitative PCR
A quantitative reverse transcriptase PCR (qRT-PCR) assay was used to conclude whether INX6 knock-

down was achieved relative to that of the housekeeping gene Act88F, which was determined to be

stably expressed across all experimental conditions. Females of 3–5 d old were collected by CO2

anesthesia, snap frozen, and stored at �80˚C. Six pools of five fly heads (30 heads total) were placed

Troup et al. eLife 2018;7:e37105. DOI: https://doi.org/10.7554/eLife.37105 16 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.37105


into a 1.5 ml Eppendorf tube. Total RNA was purified using TRIzol according to the manufacturer’s

protocols (Invitrogen, Carlsbad, California), immediately after dissection. Total RNA was treated with

DNase (Sigma-Aldrich, St. Louis, MO) to eliminate contaminant genomic DNA. Approximately 0.5

mg of total RNA was reverse transcribed using random primers (Invitrogen) and reverse transcriptase

(Invitrogen) according to the manufacturer’s protocols. Gene expression was estimated with two

technical replicates using a standard quantitative PCR (qPCR) assay (McMeniman et al., 2009). Each

qPCR mixture contained 12.5 mL of 2X SYBR premix (Invitrogen), 1 mL of forward primer, 1 mL of

reverse primer, 100 ng of DNA, and H2O to a final volume of 25 mL. The expression of two genes

was estimated relative to Act88F using the CT (where CT is the threshold cycle) method

(Pfaffl, 2001). Averages of expression were compared using Student’s t test (in SPSS software).

The primers that were used were actinF:ATCGAGCACGGCATCATCAC, actinR:CACGCGCAGCTCG

TTGTA, inx6(v8638)F:GAACGGCATGCCCAAGTC, and inx6(v8638)R:ACCAGTCGCCGTATCCAG.

Electrophysiological recordings
Methods for performing in vivo open brain recordings (Figure 3A) were described elsewhere

(Yap et al., 2017). Briefly, to prepare for brain electrical recordings, we secured a 3–7-d-old fly on a

custom fly plate (Maimon et al., 2010) (Figure 3A). The bath chamber of the fly plate was filled with

oxygenated (bubbled in 95% O2, 5% CO2) extracellular fluid (ECF) containing (in mM): 103 NaCl,

10.5 trehalose, 10 glucose, 26 NaHCO3, 5 C6H15NO6S, 5 MgCl2 (hexa-hydrate), 2 sucrose, 3 KCl, 1.5

CaCl (dihydrate), and 1 NaH2PO4. To enable access to the brain, the cuticle was partially removed

using forceps, with the perineural sheath removed either mechanically with forceps or chemically

using protease (0.5% collagenase type IV). The fly in this preparation was positioned on an air-sup-

ported ball and the brain was continuously superfused with oxygenated ECF.

Whole-cell patch clamp recordings were obtained from the cell bodies of the R23E10 neurons

using a fixed-stage upright fluorescence microscope (Olympus BX51WI, U-RFL-T, Olympus, Berlin,

Germany) with a 40x water-immersion objective. To achieve high-contrast visuals, an infrared LED

(Osram SFH 4232) coupled with an infrared camera (DAGE-MTI IR-1000) was used, whereas visualiza-

tion of the GFP-labeled neurons was achieved using a mercury short-arc lamp (HBO 103 W/2). Elec-

trode positioning was controlled by a motorized micromanipulator system (Sutter MP-285).

Borosilicate glass capillaries (Harvard Instruments GC150F-25) were used, pulled (Sutter P-97

micropipette puller) to a tip size of 8–12 MW, and subsequently filled with an internal solution con-

taining (in mM): 140 potassium aspartate, 10 HEPES, 1 KCl, 4 MgATP, 0.5 Na3GTP, 1 EGTA, and

0.05 Alexa fluor 568, pH 7.3, adjusted to 265 mOsm. Voltage signals were acquired in current-clamp

mode, with a CV-7B headstage (Molecular Devices) and a Multiclamp 700B amplifier (Molecular

Devices), low-pass filtered at 10 kHz (Bessel), and digitized at 10 kHz using an Axon Digidata 1440A

Digitizer controlled by the MultiClamp 700B Commander Software and AxoGraph X 1.4.4 (Axon

Instrument) on a computer running Windows XP. In some cells, it was necessary to inject a small con-

stant hyperpolarizing current (15–40 pA) in order to stabilize the resting membrane potential to

between �30 and �50 mV.

LFP recordings were performed simultaneously with whole-cell recordings using same-sized micro-

pipettes filled with ECF instead of internal solution. LFP signals were acquired with a FET electrode,

amplified and filtered (low: 0.1 Hz, high: 1 kHz) (A-M Systems Model 1700), digitized (Axon Digidata

1440A Digitizer) and sampled at 10 kHz using the data acquisition software AxoGraph X 1.4.4.

Electrophysiology and optogenetic stimulation
Photostimulation of CsChrimson-expressing neurons was achieved by using an ultra-bright red LED

(617 nm Luxeon Rebel LED, Luxeon Star LEDs, Ontario, Canada) directed to the opened section of

the fly head, producing 0.1–0.2 mW/mm2 at a distance of 4–5 cm with the aid of concentrator optics

(Polymer Optics 6˚ 15 mm Circular Beam Optic, Luxeon Star LEDs). To prevent overheating of the fly

and the immediate environment, the LED was mounted onto a sink pad (SinkPAD-II 20 mm Star

Base) that was attached to a small heat sink. The temperature of the solution bath was also kept con-

stant within the range of 22˚C to 23˚C by using a thermistor and an in-line heater/cooler (Warner

Instruments Model SC-20), both driven by a temperature controller (Warner Instruments Model CL-

100). Light exposure was triggered after 1 min of baseline recording and lasted for 2 min. Light was

delivered either in a continuous or in a pulsatile fashion, the latter of which consists of a 1 Hz train of

Troup et al. eLife 2018;7:e37105. DOI: https://doi.org/10.7554/eLife.37105 17 of 22

Research article Neuroscience

https://doi.org/10.7554/eLife.37105


5 ms optical pulses. Timing of the light switch was controlled by AxoGraph, which also measured the

timing of light exposure from a basic photodiode.

Dye labeling following electrophysiology recordings
Neurons in the dFB were injected with internal solution supplemented with 0.5% neurobiotin (Vector

Labs TM), which has been shown to pass through gap junctions in invertebrates

effectively (Fan et al., 2005). Whole-cell configuration was achieved for the purpose of passive flow

of dye into the cytoplasm. Dye injection was aided by iontophoresis, with the delivery of depolariz-

ing current pulses (200 pA, 500 ms, 1 Hz, 50% duty cycle) delivered over 5 min, followed by hyper-

polarizing current pulses (�200 pA). The preparation was left for a further 40 min to allow the dye to

diffuse into the cell passively. After withdrawing the micropipette, the preparation was left

untouched for about 1 h to allow sufficient time for dye to diffuse within and across cells.

The fly brain was dissected and fixed at room temperature for 20 min in 4% paraformaldehyde in

0.1M phosphate buffer (pH 7.0) then washed 3 � 10 min in PBST. The brain was incubated for 24–48

hr at 4˚C with streptavidin conjugated with Alexa Fluor 647, in 5% bovine serum albumin (BSA)

(1:200). Brains were rinsed in PBST (3 � 10 mins) and were mounted on glass slides in Vecta Shield

mounting medium. All confocal images were obtained using an inverted spinning disk microscope

(Yokogawa W1). All confocal images obtained were analyzed and processed in Fiji/Imaris. Deconvo-

lution of images acquired using the Yokogawa W1 spinning disc confocal microscope was performed

with Huygens Professional Plus Deconvolution software (Scientific Volume Imaging, Hilversum,

The Netherlands). We used a theoretical point spread function (PSF) that was obtained by the

parameters of image acquisition. For the deconvolution, we used a total image change threshold of

0.01, with single block processing on, a maximum iteration value of 40 and a signal to noise ratio

(SNR) of 20.

Gap-junction blocker delivery
For the gap junction blocker experiments, carbenoxolone (CBX, 1 mM) (Cao and Nitabach, 2008)

was dissolved into ECF, which was delivered to the fly brain by either perfusing the bath chamber

with it or locally injecting it into the dFB region via a micropipette attached to a micromanipulator.

For local delivery, constant air pressure was applied to push the CBX solution out of the micropi-

pette, with the flow of solution into the dFB confirmed using a fluorescent dye (Alexa Fluor

568) that was added to the CBX solution. LFP recordings were obtained prior to bath perfusion of

CBX, which served as baseline for comparison with the CBX effect. As an additional control for the

locally delivered CBX experiments, ECF with no added CBX (vehicle) was injected to observe the

effect of applying physical pressure into the central brain.

Electrophysiological analyses
All analyses were performed offline using custom scripts in MATLAB (2014a) (Yap, 2018) (https://

github.com/melvynyap/gap-junction-sleep-control, 142faca; copy archived at https://github.com/eli-

fesciences-publications/gap-junction-sleep-control). Cells were identified as burst-spiking cells when

an action potential failed to return to resting membrane potential prior to reaching the next peak.

These cells, when hyperpolarized with a constant current, also failed to produce single spiking

events. Cells observed to have at least one single spiking event in addition to the burst spiking were

identified as having a pattern involving both single and burst-spiking events. Non-spiking cells were

identified as such when the cell failed to produce any action potentials despite the injection of depo-

larizing current in steps of +10 pA up to +150 pA.

We use the change in membrane potential (DVm) as the measure of cell response to photostimula-

tion. For the constant light stimulus condition, the mean membrane potential for the pre-stimulation

period in each cell was obtained over the length of baseline, which was 1 min. Mean membrane

potential during stimulation was calculated over the first 1 min of photostimulation, whereas for

post-stimulation membrane potential, a mean was calculated over the last 1 min of recording (1 min

after the stimulation ended). The mean membrane potential for each cell for the 1 Hz pulse photosti-

mulation was calculated by first producing a composite membrane potential that represents the

average of all 120 pulses, followed by obtaining the average membrane potential for the first 100
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ms of this composite data. From these composite membrane potentials, it was visually evident that

the 1 Hz light pulse appeared to be having an effect on the spike timing in some cells.

Owing to the unipolar morphology of the recorded cells, the true value of the cells’ resting mem-

brane potentials were probably lower and less variable than those recorded from the cell bodies

(Gouwens and Wilson, 2009). Therefore, to better represent the effect of photostimulation of the

CsChrimson-expressing cells, the data were displayed as DVm instead of absolute values. Cells with

various single-spike and burst-spiking characteristics were found to exhibit the same membrane

potential response, and were therefore combined for the purpose of statistical analyses. In a subset

of cells, we observed a volley of evoked spikes in response to the constant light stimulus that lasted

very briefly. Interspike intervals were obtained from these spikes by measuring the time between the

first and second peak.

Raw LFP signals were transformed into wavelets using the Morlet wavelet transformation function

ft_specest_wavelet in the Fieldtrip MATLAB toolbox, with wavelet width value set at 30 and 3 stan-

dard deviations. To generate the averaged time-frequency spectrograms, wavelets were normalized

to the mean wavelet values of the pre-stimulus segment (baseline) for each fly prior to averaging

across all flies. Wavelets differ in magnitudes across fly recordings, and were therefore normalized

for each fly prior to averaging. For statistical analyses of 1–15 Hz LFP power, wavelets were also nor-

malized to the mean wavelet values of baseline but were done within the respective frequency bins

of 0.1 Hz, producing wavelet ratios (to baseline). The mean wavelet ratios during the stimulation

period were calculated for each fly and then averaged across flies. Baseline was subsequently zeroed

so that any positive values obtained during the stimulation period denotes an increase in LFP power.

Peak amplitude from raw LFP signal represents the LFP response to the pulsative light stimulation

and as such was defined as the maximum field potential deviation from zero in the 50 ms after the

onset of the 1 Hz 5 ms light pulse. Peak amplitude was averaged across all 120 trials per fly prior to

averaging across flies.

Statistical analyses
All statistical analyses were performed using Prism 7 for Windows (GraphPad). Where dataset failed

the Shapiro-Wilk normality test (p<0.05), non-parametric tests were used. Friedman test with Dunn’s

post hoc multiple comparisons test were used to compare the membrane potential averages during

the stimulation and post-stimulation period to pre-stimulation baseline period. The Wilcoxon signed

rank test was used to test for significant difference between the LFP power ratio and a baseline of

zero during the stimulation period. The Mann-Whitney test was used to compare the peak LFP

amplitudes between the two fly strains. Paired t-tests were used to compare the peak LFP ampli-

tudes between the CBX and baseline conditions. All membrane potential data in the figures are

presented as median and range, whereas the LFP data presented in figures are shown as

means ± SEM. All tests for significance were two-tailed and confidence levels were set at a = 0.05.
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