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7057, Université Paris Diderot, Paris, France; 3Department of Ecology and
Evolution, University of Chicago, Chicago, United States; 4Department of Molecular,
Cellular and Developmental Biology, University of Michigan, Ann Arbor, United
States

Abstract Gene expression noise is an evolvable property of biological systems that describes

differences in expression among genetically identical cells in the same environment. Prior work has

shown that expression noise is heritable and can be shaped by selection, but the impact of

variation in expression noise on organismal fitness has proven difficult to measure. Here, we

quantify the fitness effects of altering expression noise for the TDH3 gene in Saccharomyces

cerevisiae. We show that increases in expression noise can be deleterious or beneficial depending

on the difference between the average expression level of a genotype and the expression level

maximizing fitness. We also show that a simple model relating single-cell expression levels to

population growth produces patterns consistent with our empirical data. We use this model to

explore a broad range of average expression levels and expression noise, providing additional

insight into the fitness effects of variation in expression noise.

DOI: https://doi.org/10.7554/eLife.37272.001

Introduction
Gene expression is a dynamic process that results from a succession of stochastic biochemical

events, including availability of transcription factors, binding of transcription factors to promoter

sequences, recruitment of transcriptional machinery, transcriptional elongation, mRNA degradation,

protein synthesis, and proteolysis. These events cause the expression level of a gene product to dif-

fer even among genetically identical cells grown in the same environment (Elowitz et al., 2002;

Chong et al., 2015). This variability in gene expression is known as ‘expression noise’ and is under

genetic control (Raser et al., 2004; Sanchez and Golding, 2013), with heritable variation causing

differences in noise among genes (Newman et al., 2006) and genotypes (Murphy et al., 2007;

Hornung et al., 2012; Fehrmann et al., 2013; Sharon et al., 2014; Liu et al., 2015).

Because gene expression noise is heritable and variable within populations, it can evolve in

response to natural selection if it affects fitness. Indeed, prior studies have suggested that expres-

sion noise can be either beneficial or deleterious depending on the context (reviewed in Viney and

Reece, 2013; Richard and Yvert, 2014; Liu et al., 2016). For example, Metzger et al. (2015) pro-

vides evidence that increased expression noise can be selected against in natural populations, pre-

sumably because elevated noise increases the probability that a given cell produces a suboptimal

level of protein expression (Wang and Zhang, 2011; Duveau et al., 2017a). Consistent with this

hypothesis, a negative correlation exists at the genomic scale between the expression noise of genes
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and their dosage sensitivity (Fraser et al., 2004; Batada and Hurst, 2007; Lehner, 2008;

Keren et al., 2016). However, because the optimal level of gene expression can vary among envi-

ronments, high gene expression noise has been suggested to be beneficial if it can produce individ-

uals with phenotypes that are better adapted to a new environment than individuals produced with

low gene expression noise. For instance, noise in gene expression can allow a small fraction of cells

to survive when confronted with stressful environmental conditions (Blake et al., 2006; Fraser and

Kaern, 2009; Ito et al., 2009; Levy et al., 2012; Viney and Reece, 2013; Liu et al., 2015;

Wolf et al., 2015). Consistent with this idea, a genomic screen in yeast found that plasma-mem-

brane transporters involved in cell-environment interactions displayed elevated expression noise in

yeast (Zhang et al., 2009). Theoretical work also suggests the existence of cost-benefit tradeoffs

that can make expression noise either beneficial or deleterious under different circumstances

(Tănase-Nicola and ten Wolde, 2008).

Despite a growing body of evidence that selection has acted on expression noise for many genes,

direct measurements of how changes in expression noise impact fitness remain scarce (Liu et al.,

2016). A major reason for this scarcity is that most mutations that alter gene expression noise also

alter average expression level (Newman et al., 2006; Hornung et al., 2012; Carey et al., 2013;

Sharon et al., 2014), making it difficult to disentangle the fitness effects of changing expression

noise and average expression level. Here, we directly estimate the effects of changing expression

eLife digest Single-celled organisms that reproduce by dividing, like yeast, can create whole

populations of genetically identical cells. However, some differences will exist among such cells,

even when they have all experienced the same environment. These differences are known as

“noise”. By definition, noise is not caused by differences in DNA sequence, but some DNA

sequences are noisier than others (i.e. they cause more differences among cells). Because the

amount of noise can be under genetic control, noise could evolve due to natural selection.

Scientists often study noise at the level of gene expression – in other words, how many RNA or

protein molecules are produced from each gene within each cell. Prior work has suggested that this

type of noise can affect how often individual cells divide in a population, which is a component of

that population’s fitness. Yet directly measuring these effects has proven challenging. Different

studies have in the past reached opposite conclusions about whether a change in gene expression

noise would increase or decrease fitness.

One major reason for the lack of clear results is that most mutations that alter gene expression

noise also alter the average level of expression of that gene. To find DNA sequences that produced

the same average amount of protein but different levels of expression noise, Duveau et al.

compared the effects of hundreds of mutations in the DNA sequence regulating the expression of a

gene in baker’s yeast. Experiments focused on 43 DNA sequences then showed that increased

expression noise could either speed up or slow down the growth of the population by affecting how

long it took each cell to divide. More specifically, the effects of increasing expression noise

depended on the average amount of protein produced among the cells in the population. If the

average expression level was close to the optimum amount at which cells divided as fast as possible,

increasing expression noise reduced the growth of the whole population. If, however, the average

protein level caused cells to divide slower than their maximum rate, increasing expression noise

resulted in faster growth of the population as a whole.

Duveau et al. explain their results as follows: more expression noise in a population that is already

making the optimal amount of protein can reduce fitness because it increases the fraction of that

population making a suboptimal amount of the protein. However, when the average expression

level is not optimal, more expression noise would mean more cells producing an amount of protein

that is closer to the optimum and thus having higher fitness.

These findings provide conceptual tools needed to understand how genetic variation affecting

expression noise evolves. They could also help understand how expression noise might contribute to

biological processes that depend upon cell division, such as diseases like cancer.

DOI: https://doi.org/10.7554/eLife.37272.002
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noise on fitness independently from changes in average expression level for the TDH3 gene of Sac-

charomyces cerevisiae.

TDH3 encodes an isozyme of the yeast glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

involved in glycolysis and gluconeogenesis (McAlister and Holland, 1985) as well as transcriptional

silencing (Ringel et al., 2013), RNA-binding (Shen et al., 2014) and possibly antimicrobial defense

(Branco et al., 2014). Variation in this gene’s promoter affecting expression noise has previously

been shown to be a target of selection in natural populations (Metzger et al., 2015). To assess the

impact of changes in expression noise on fitness at different expression levels, we generated mutant

alleles of the TDH3 promoter that covered a broad range of average expression levels and expres-

sion noise. We find that increases in expression noise are detrimental when the average expression

level of a genotype is close to the fitness optimum, but beneficial when the average expression level

of a genotype is further from this optimum. This pattern was reproduced by a simple computational

model that links expression in single cells to their doubling time to predict population fitness. We

used this individual-based model to explore the fitness effects of a broader combination of average

expression levels and expression noise than were explored empirically, showing that not only do the

fitness effects of changing expression noise depend on the average expression level, but that the fit-

ness effects of changing average expression level also depend upon the amount of expression

noise.

Results and discussion

Generating variation in expression noise independent of average
expression level
To disentangle the effects of changes in average expression level and expression noise on fitness,

we examined a set of TDH3 promoter (PTDH3) alleles with a broad range of activities. For each allele,

we measured the average expression level and expression noise by cloning the allele upstream of a

yellow fluorescent protein (YFP) coding sequence, integrating this reporter gene (PTDH3-YFP) into

the HO locus, and quantifying fluorescence in living cells using flow cytometry in six replicate popu-

lations per genotype (Figure 1A). The fluorescence value of each cell was transformed into an esti-

mated mRNA level (Figure 1A) based on the relationship between fluorescence and YFP mRNA

abundance (Figure 1B,C). The average expression level of a genotype was then calculated by aver-

aging the median values from the six replicates (Figure 1A) and expressing this value as a percent

change from the wild type allele. Expression noise was calculated for each replicate as the variance

divided by the median expression among cells, a measure of noise strength similar to the Fano fac-

tor (Sanchez and Golding, 2013). The expression noise of each genotype was then calculated by

averaging the noise strength from the six replicate populations, and this value was expressed as a

percent change from the wild type allele. The main conclusions of this study are robust to the choice

of noise metric, as shown in supplementary figures using three alternative metrics of noise.

Effects of 236 point mutations in the TDH3 promoter, including mutations in RAP1 and GCR1

transcription factor binding sites (TFBS), have previously been described that cause a wide range of

average expression levels and expression noise values (Metzger et al., 2015). But average expres-

sion level and expression noise strongly co-vary among these alleles (Metzger et al., 2015), making

them insufficient for separating the effects of changes in average expression level and expression

noise on fitness. We therefore sought to construct additional promoter alleles that showed a differ-

ent relationship between average expression level and expression noise. First, we inserted a recogni-

tion motif for the GCN4 transcription factor at ten different positions in the TDH3 promoter because

this TFBS was previously found to affect the relationship between expression level and expression

noise (Sharon et al., 2014). However, the insertion of GCN4 binding sites into PTDH3 did not show

the expected departure from the relationship between expression level and expression noise

observed for mutations in GCR1 and RAP1 TFBS (Figure 1—figure supplement 1). We next

mutated the PTDH3 TATA box because previous studies showed that TATA box mutations confer

lower expression noise for a given expression level when compared to other types of promoter alter-

ations (Blake et al., 2006; Mogno et al., 2010; Hornung et al., 2012). We generated 112 alleles of

the TDH3 promoter that had between one and five random mutations in the TATA box sequence,

which caused the expected lower levels of expression noise than TFBS mutant alleles with similar
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Figure 1. A collection of TDH3 promoter alleles with incompletely correlated effects on average expression level and expression noise. (A) Overview of

experimental design used to quantify expression. The transcriptional activity of 171 different variants of the TDH3 promoter (PTDH3) inserted upstream

of the YFP coding sequence was quantified using flow cytometry. After growth of six independent samples in rich medium (YPD) for each promoter

variant, fluorescence intensity relative to cell size (forward scatter) was measured for ~10,000 individual cells and transformed into YFP mRNA estimates

using the function shown in (B), allowing characterization of both the median and the standard deviation of expression of the reporter gene. (B) Non-

linear relationship between YFP mRNA level and fluorescence intensity divided by cell size measured on a BD Accuri C6 flow cytometer. (C) Linear

relationship between the logarithm of YFP mRNA level and the logarithm of fluorescence intensity divided by cell size. (B–C) YFP mRNA level was

quantified by pyrosequencing and fluorescence intensity by flow cytometry in three biological replicates of eight strains expressing YFP under different

variants of PTDH3. Fluorescence intensity was normalized by cell size as described in the Materials and methods section. The red line is the best fit of a

function of shape log yð Þ ¼ a � log xð Þ þ b to the data, with a ¼ 10:469 and b ¼ �9:586. The blue dot represents a strain with two copies of the wild

type PTDH3-YFP reporter. Data are available in Figure 1 – source data 1. (D) Median expression level and expression noise (noise strength: variance

divided by median expression) for 43 PTDH3 alleles. These alleles were chosen to cover a broad range of median expression level and expression noise

with an incomplete correlation between these two parameters. Colors represent different types of promoter mutations. Data are available in

Source data 1. (B–D) Dotted lines show the activity of the wild type TDH3 promoter. Error bars are 95% confidence intervals calculated from at least

four replicates for each genotype and are only visible when larger than dots representing data.

DOI: https://doi.org/10.7554/eLife.37272.003

The following source data and figure supplements are available for figure 1:

Source data 1. Parallel measurements of fluorescence levels by flow cytometry and of YFP mRNA levels by pyrosequencing.

DOI: https://doi.org/10.7554/eLife.37272.006

Figure supplement 1. Median expression level and expression noise conferred by 171 variants of the TDH3 promoter using four different metrics of

noise.

DOI: https://doi.org/10.7554/eLife.37272.004

Figure supplement 1—source data 1. Expression data for an initial set of 171 TDH3 promoter alleles.

DOI: https://doi.org/10.7554/eLife.37272.005

Duveau et al. eLife 2018;7:e37272. DOI: https://doi.org/10.7554/eLife.37272 4 of 33

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.37272.003
https://doi.org/10.7554/eLife.37272.006
https://doi.org/10.7554/eLife.37272.004
https://doi.org/10.7554/eLife.37272.005
https://doi.org/10.7554/eLife.37272


average expression levels (Figure 1D). We then combined mutations in the TATA box, GCR1 TFBS

and/or RAP1 TFBS to further increase the range of expression phenotypes. Finally, we constructed

alleles containing two tandem copies of the PTDH3-YFP reporter gene with or without mutations in

the PTDH3 sequence to sample expression levels closer to and above the wild-type allele. These

mutant alleles captured a much greater range of mean expression and expression noise than TDH3

promoter alleles segregating in natural populations (Metzger et al., 2015; Duveau et al., 2017a)

and allowed us to more fully explore the relationship between mean, noise and fitness than would

be possible using naturally occurring variation alone.

From this collection of 171 TDH3 promoter alleles (Figure 1—figure supplement 1, Figure 1—

figure supplement 1—source data 1), we selected 43 alleles (Source data 1) to study the fitness

effects of changes in average expression level and expression noise of the native TDH3 gene. The

average expression level conferred by these 43 PTDH3 alleles (including the wild type allele of PTDH3)

ranged from 0% to 207% of the wild type allele and the expression noise ranged from 3% to 371%

of the wild type allele (Figure 1D). Most importantly, this set of alleles showed variation in expres-

sion noise independent of expression level at expression levels between 0% and 125% of the wild

type allele (Figure 1D).

Fitness effects of changing average TDH3 expression level
To measure the fitness effects of changing TDH3 expression, we introduced each of these 43 PTDH3

alleles upstream of the TDH3 coding sequence at the native TDH3 locus and performed competitive

growth assays similar to those described in Duveau et al. (2017a) (Figure 2A). For each of the eight

PTDH3 alleles that contained a duplication of the PTDH3-YFP reporter gene, we created a duplication

of the entire TDH3 gene with the two corresponding PTDH3 alleles. We also included a strain with a

deletion of the promoter and coding sequence of TDH3 to sample a TDH3 expression level of 0%.

Prior studies have found that deletion of TDH3 causes a moderate decrease in fitness in glucose-

based media: �5% in Pierce et al. (2007) and �6.8% in Duveau et al. (2017a). Each strain tested

was marked with YFP and grown competitively for 30 hr (~21 generations) with a reference genotype

marked with a green fluorescent protein (GFP) (Figure 2A). Competitive fitness was determined

from the rate of change in genotype frequencies over time and averaged across at least six replicate

populations for each genotype tested (Figure 2B). The relative fitness of each strain was then calcu-

lated by dividing the competitive fitness of that strain by the competitive fitness of the strain with

the wild type allele of TDH3 (Source data 1). This protocol provided a measure of fitness with an

average 95% confidence interval of 0.2%. We then related these measures of relative fitness to the

expression of the reporter gene driven by these PTDH3 alleles at the HO locus. Expression of this

reporter gene provided a reliable readout of average expression level and expression noise driven

by the same PTDH3 promoters at the native TDH3 locus, as measured using Tdh3-YFP fusion proteins

(Figure 2—figure supplement 1A,B). These fusion protein alleles were not used for comparing fit-

ness effects among TDH3 promoter alleles because the YFP fusion reduced fitness by 2.5% relative

to a strain expressing TDH3 and YFP from independent promoters (Figure 2—figure supplement

1C).

A local regression (LOESS) of average expression level on fitness for the 43 TDH3 alleles and the

TDH3 deletion showed a non-linear relationship with a plateau of maximal fitness near the wild type

expression level (Figure 2C) similar to that described in Duveau et al. (2017a). Deletion of TDH3

(expression level of 0% in Figure 2C) caused a statistically significant decrease in fitness of 6.1% rela-

tive to the wild type allele (t-test, p=6.4�10�10). The minimum change in TDH3 expression level that

significantly impacted fitness was a 14.6% decrease in average expression relative to wild type,

which reduced fitness by 0.19% (t-test, p=0.00045). Overexpressing TDH3 up to 175% did not signif-

icantly impact growth rate, but the 207% expression level of the strain carrying a duplication of the

wild type TDH3 gene caused a 0.92% reduction in fitness (Figure 2C; t-test, p=1.4�10�7). Notably,

none of the 42 mutant alleles of TDH3 conferred a significantly higher fitness than the wild type

allele (one-sided t-tests, p>0.05), indicating that the wild type expression level of TDH3 is near an

optimum for growth in the environment assayed. We expect these differences in fitness among gen-

otypes with different TDH3 promoter alleles to arise primarily from differences in TDH3 expression;

however, differences in pleiotropy among promoter alleles might also contribute to differences in

fitness.
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Disentangling the effects of TDH3 expression level and expression
noise on fitness
Residual variation was observed around the LOESS fitted line relating expression level to fitness

(Figure 2C) that we hypothesized might be explained by differences in noise among genotypes. To

examine the effects of differences in expression noise on fitness independent of differences in aver-

age expression level, we used the residuals from a local regression of expression noise on expression

level for the alleles with average expression levels between 0% and 125% of the wild type allele to

define a metric called DNoise (Figure 3A; Figure 3—figure supplement 1A–D). This metric was not

significantly correlated with expression level (Figure 3—figure supplement 2). TDH3 alleles with

positive DNoise values had a higher level of noise than expected based on their expression level and

were classified as ‘high noise’, whereas TDH3 alleles with negative DNoise values had lower levels of

noise than expected given their expression level and were classified as ‘low noise’.

We then compared the relationship between expression level and fitness for genotypes in the

high noise and low noise classes (Figure 3B). We found that promoter alleles with positive DNoise

tended to show a higher fitness than strains with negative DNoise (Figure 3B, Figure 3—figure sup-

plement 1E–H). This beneficial effect of noise on fitness was surprising given prior evidence that

selection favored alleles of PTDH3 with low expression noise in natural populations (Metzger et al.,
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Figure 2. Fitness consequences of variation in TDH3 expression level. (A) Overview of competition assays used to quantify fitness. The 43 PTDH3 alleles

whose activity was described in Figure 1D were introduced upstream of the native TDH3 coding sequence in a genetic background expressing YFP

under control of the wild type TDH3 promoter. A minimum of six replicate populations of the 43 strains were competed for ~20 generations in rich

medium (YPD) against a common reference strain expressing GFP under control of the wild type TDH3 promoter. The relative frequency of cells

expressing YFP or GFP was measured every ~7 generations using flow cytometry. (B) Competitive fitness was calculated from the change in genotype

frequency over time. The relative fitness of each strain was calculated as the mean competitive fitness of that strain across replicates divided by the

mean competitive fitness of the strain carrying the wild type allele of TDH3. (C) Relationship between median expression level of TDH3 and fitness in

rich medium (YPD). Dots show the average median expression and average relative fitness measured among at least four replicates for each of the 43

PTDH3 alleles. Colors represent different types of promoter mutation. Error bars are 95% confidence intervals and are only visible when larger than dots.

The dotted curve is the best fit of a LOESS regression of fitness on median expression, using a value of 2/3 for the parameter a controlling the degree

of smoothing. The shaded area shows the 99% confidence interval of the LOESS fit. Data are available in Source data 1. Panels A and B were originally

published as Figure 2A in Duveau et al. (2017a) and are reproduced here by permission of Oxford University Press [http://global.oup.com/academic].

DOI: https://doi.org/10.7554/eLife.37272.007

The following source data and figure supplements are available for figure 2:

Figure supplement 1. Comparing effects of 20 alleles of the TDH3 promoter on expression of the YFP reporter at HO and of expression of the TDH3-

YFP fusion at the native TDH3 locus.

DOI: https://doi.org/10.7554/eLife.37272.008

Figure supplement 1—source data 1. Activity of 20 PTDH3 alleles driving expression of YFP at the HO locus compared to the activity of the same alleles

driving expression of a TDH3-YFP gene fusion at the TDH3 locus.

DOI: https://doi.org/10.7554/eLife.37272.009

Figure supplement 2. No significant impact of the genetic background on the expression of the fluorescent reporter.

DOI: https://doi.org/10.7554/eLife.37272.010
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residual of the LOESS regression (‘D Fitness’) is a measure of fitness independent of the median TDH3 expression level. Dots are colored as in (B). (D)

Relationship between D Noise and D Fitness when median expression is far from optimum. (E) Relationship between D Noise and D Fitness when

median expression is close to optimum. (D–E) The best linear fit between D Noise and D Fitness is shown as a gray line, with the coefficient of

determination (‘R2’) and the significance of the Pearson’s correlation coefficient (‘P’) indicated in the upper left of each panel. Dots are colored based

on median expression levels of the corresponding PTDH3 alleles as indicated by color gradient. (A–E) Error bars show 95% confidence intervals

calculated from at least four replicate samples and are only visible when larger than symbols representing data points. (F) Comparison of D Fitness

between genotypes with low noise strength (green, D Noise < �1%) and genotypes with high noise strength (red, D Noise >+1%). Thick horizontal lines

represent the median D Fitness among genotypes and notches display the 95% confidence interval of the median. Bottom and top lines of each box

represent 25th and 75th percentiles. Width of boxes is proportional to the square root of the number of genotypes included in each box. Permutation

tests were used to assess the significance of the difference in median D Fitness between genotypes with low and high noise and P-values are shown in

lower right corners. For each test, the values of DNoise were randomly shuffled among genotypes 100,000 times. The P values shown below each plot

represent the proportion of permutations for which the absolute difference in median phenotype between genotypes with low and high DNoise was

greater than the observed absolute difference in median phenotype between genotypes with low and high DNoise. Data are available in Source data

1.

DOI: https://doi.org/10.7554/eLife.37272.011

The following figure supplements are available for figure 3:

Figure supplement 1. Calculation of DNoise and DFitness using four different metrics of noise.

DOI: https://doi.org/10.7554/eLife.37272.012

Figure supplement 2. Relationship between median expression level and four different metrics of DNoise.

DOI: https://doi.org/10.7554/eLife.37272.013

Figure supplement 3. Relationship between median expression level and D Fitness.

DOI: https://doi.org/10.7554/eLife.37272.014

Figure supplement 4. Relationship between DNoise and DFitness using four different metrics of noise.

DOI: https://doi.org/10.7554/eLife.37272.015

Figure 3 continued on next page
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2015). We noticed, however, that the fitness benefit of increasing expression noise was limited to a

particular range of average expression levels. Specifically, positive DNoise was associated with

higher fitness only for average expression levels between 2% and 80% of the wild type expression

level (Figure 3B). Above 80% of expression, no clear difference in fitness was detected between

strains with positive and negative DNoise (Figure 3B). These same trends were also observed for the

other metrics of noise (Figure 3—figure supplement 1E–H).

Based on these observations and prior theoretical work (Tănase-Nicola and ten Wolde, 2008),

we hypothesized that the distance between the average expression level of a PTDH3 allele and the

optimal level of TDH3 expression influenced how a change in expression noise impacted fitness. To

test this hypothesis, the 43 promoter alleles were split into two groups depending on the distance

of their average expression level from the optimal expression level of TDH3. Using a local regression

of fitness on average expression level, we inferred the value of average expression that would confer

a fitness reduction of 0.5% from maximal fitness. Promoter alleles for which the median activity was

below this threshold were considered to be ‘far from optimum’ and promoter alleles with median

activity above the threshold were considered to be ‘close to optimum’ (Figure 3C). A metric called

DFitness, corresponding to the residuals of a local regression of fitness on average expression, was

calculated to remove the confounding effect of average expression levels on fitness (Figure 3C, Fig-

ure 3—figure supplement 1I–L, Figure 3—figure supplement 3). We found that changes in noise

(DNoise) and changes in fitness (DFitness) were positively correlated for genotypes classified as far

from the optimum (Pearson correlation coefficient: r = 0.74, p=9.36�10�7, Figure 3D, Figure 3—

figure supplement 4A–D), but not for genotypes classified as close to the optimum (r = �0.08,

p=0.84, Figure 3E, Figure 3—figure supplement 4E–H). This result was robust to variation in the

choice of the smoothing parameter used for the local regression of noise on average expression, the

choice of the smoothing parameter used for the local regression of fitness on average expression,

and the fitness threshold used to separate strains with expression levels close and far from optimum

(Figure 3—figure supplements 5, 6 and 7). We note, however, that the smaller number of geno-

types with mean expression close to the optimum provided less power to detect a significant rela-

tionship than genotypes with mean expression far from the optimum.

As an alternative way to test for the impact of expression noise on fitness, we compared DFitness

for genotypes with positive and negative values of DNoise. Permutation tests were used to assess

the significance of differences in DFitness by randomly shuffling values of DNoise among genotypes.

Consistent with the correlation analyses, genotypes with positive DNoise showed a significantly

greater median value of DFitness than genotypes with negative DNoise at expression levels far from

optimum (105 permutations, P
DNoise � 10�5; Figure 3F). Among genotypes with average expression

close to optimum, no significant difference in median DFitness was detected between the positive

and negative DNoise groups (105 permutations, P
DNoise = 0.6442) (Figure 3F). The same pattern was

observed for all metrics of noise and was not driven by differences in average expression levels

between the two DNoise groups (Figure 3—figure supplement 8).

Figure 3 continued

Figure supplement 5. Robustness of the correlation between DNoise and DFitness to variation in the smoothing parameter of the LOESS regression

used to compute DNoise.

DOI: https://doi.org/10.7554/eLife.37272.016

Figure supplement 6. Robustness of the correlation between DNoise and DFitness to variation in the smoothing parameter of the LOESS regression

used to compute DFitness.

DOI: https://doi.org/10.7554/eLife.37272.017

Figure supplement 7. Robustness of the correlation between DNoise and DFitness to variation in the fitness threshold used to classify genotypes as far

or close to optimum.

DOI: https://doi.org/10.7554/eLife.37272.018

Figure supplement 8. Fitness, median expression and noise of genotypes with DNoise above +1% compared to genotypes with DNoise below �1%.

DOI: https://doi.org/10.7554/eLife.37272.019
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Direct measurements of the effect of expression noise on relative
fitness
The results presented in the preceding section provide strong evidence that variation in TDH3

expression can directly affect fitness, but the methods used have at least two limitations. First,

DNoise and DFitness values can be influenced by the set of PTDH3 alleles included in the analyses

since they are regression residuals. Second, comparisons of fitness among PTDH3 genotypes rely

upon the assumption that fitness effects are transitive, i.e. that differences in fitness between two

strains are accurately reported by competitive growth against a third reference strain. Even though

such transitivity has often been verified (de Visser and Lenski, 2002; Elena and Lenski, 2003;

Gallet et al., 2012), intransitive competition has been observed in several organisms, including yeast

(Paquin and Adams, 1983). To test whether differences in TDH3 expression noise affect fitness with-

out calculating regression residuals and without assuming transitivity, we performed direct competi-

tion assays between strains with PTDH3 promoter alleles that showed similar average expression

levels but different levels of expression noise.

Five pairs of TDH3 alleles for which (i) the median level of activity was similar between the two

promoters of each pair, (ii) the level of noise was different between the two promoters of each pair,

and (iii) the median level of activity varied among different pairs were chosen from the full set of 171

alleles described above (Figure 4A; Figure 4—source data 1). The promoter variants of four of

these pairs were included in the indirect competition assays and showed the general pattern of

increased fitness with increased expression noise when average expression was far from optimum

and no significant difference in fitness despite differences in expression noise when average expres-

sion was close to optimum (Figure 4B). Promoters in the fifth pair were not among the 43 alleles

included in the indirect competition experiment but were selected for the direct competition assays

because they showed variation in expression noise at average expression levels close to wild type

(purple points in Figure 4A).

For each of the five pairs, the low noise genotype and the high noise genotype were directly

competed against each other under the same conditions used in the competitive growth fitness

assay described above except that we doubled the number of generations and the number of repli-

cates to increase the sensitivity of our fitness estimates. In addition, we used pyrosequencing

(Neve et al., 2002) instead of flow cytometry to determine the relative frequency of the two geno-

types at each time point because the two strains competed against each other could not be distin-

guished based on fluorescence. Relative fitness of the high and low noise genotypes in each pair

was calculated based on the changes in relative allele frequency during competitive growth.

For the three pairs of genotypes with an average expression level far from optimum (12%, 19%,

and 59% average expression relative to wild type), fitness of the high noise genotype relative to the

low noise genotype was significantly greater than 1 (Figure 4C), indicating that the high noise geno-

type grew faster than the low noise genotype. This result was consistent with the differences in fit-

ness measured from the indirect competition assays (Figure 4B). By contrast, both pairs of strains

with an average expression level closer to the fitness optimum (93% and 102% relative to wild type

expression levels) showed slightly but significantly lower fitness of the high noise genotype than the

low noise genotype (Figure 4C). In these cases, higher expression noise resulted in a ~ 0.1%

decrease in fitness relative to lower noise. This difference was detectable with the direct competition

assay because the average span of the 95% confidence intervals of fitness estimates was 0.1%, which

is half of the 0.2% average 95% confidence intervals from the indirect competition assay described

above.

Taken together, our empirical measures of relative fitness show that higher expression noise for

TDH3 is beneficial when average expression level is far from the optimum, but deleterious when

average expression is close to the optimum. An intuitive explanation of this phenomenon is that

when the average expression level is close to the optimum, increasing expression noise can result in

enough cells with suboptimal expression to decrease fitness of the population. Conversely, when the

average expression level is far from the optimum, increasing expression noise can result in enough

cells with expression closer to the optimum to increase fitness of the population. These effects of

expression noise on population fitness can result from differences in expression level among cells

causing differences in the cell division rate (a.k.a. doubling time) among cells (Kiviet et al., 2014).

To better understand the interplay among average expression level, expression noise, and fitness,
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we developed a simple computational model

that allowed us to (1) vary the expression mean

and noise independently while holding all other

parameters constant, (2) track the resulting single

cell growth dynamics, and (3) evaluate the conse-

quences for population fitness.

Simulating population growth
reveals fitness effects of noise
To further investigate how the distribution of

expression levels among genetically identical

cells influences population fitness, we modeled

the growth of clonal cell populations that differed

in the mean expression level and expression

noise for a single gene. In this model, we speci-

fied a function defining the relationship between

the expression level of a cell and the doubling

time of that cell. Following each cell division, the

expression levels of mother and daughter cells

were sampled independently from an expression

distribution characterized by its mean and noise

(Figure 5A). This independent sampling ignores

any inheritance of expression noise, which is a

conservative choice for detecting differences in

fitness among genotypes due to differences in

noise. The doubling time of each cell was then

calculated from its expression level (Figure 5B),

and each clonal population was allowed to

expand for the same amount of time, increasing

in size at a rate determined by the doubling

times of the cells sampled (Figure 5C). Empirical

measures of single-cell division rates were consis-

tent with these elements of the model, showing

more variable cell division times in genotypes

with greater TDH3 expression noise and shorter

cell division times in genotypes with mean TDH3

expression closer to the fitness optimum (Fig-

ure 5—figure supplement 1). Competitive fit-

ness was ultimately determined in the model by

comparing the population size obtained at the

end of each simulation experiment to the popula-

tion size obtain for a constant ‘wild type’ compet-

itor (Figure 5D, Figure 6—source data 1). 100

independent simulations were performed for

each unique combination of mean expression

level and expression noise. Three metrics of

expression noise were used for this work: noise

strength (similar to Fano factor, Figure 6), stan-

dard deviation (Figure 6—figure supplement

1A,C) and coefficient of variation (Figure 6—fig-

ure supplement 1B,D).

To calculate doubling times from single cell

expression levels, we first used a linear function

akin to directional selection in which increases in

expression level resulted in shorter doubling

times (faster growth) (Figure 6A). With this
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Figure 4. Direct competition between genotypes with

different levels of noise but similar median levels of

TDH3 expression in glucose. (A–C) Different colors are

used to distinguish pairs of genotypes (PTDH3 alleles)

with different median expression levels. (A) Median

expression level and expression noise (noise strength)

for five pairs of genotypes that were competed against

each other. Each pair comprises one genotype with low

expression noise (circle) and one genotype with high

expression noise (triangle). (B) Relative fitness for four

pairs of genotypes measured in competition assays

against the common GFP reference strain. One pair is

missing (purple in (A)) because the corresponding

Figure 4 continued on next page
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relationship, higher levels of expression noise

conferred higher population fitness for a given

mean expression level (Figure 6B), a pattern

more pronounced for high values of mean

expression and observed for all metrics of

noise (Figure 6—figure supplement 1A,B).

This finding is consistent with prior work dem-

onstrating that an increased variability of dou-

bling time among individual cells is sufficient to

increase fitness at the population level (Tănase-

Nicola and ten Wolde, 2008; Cerulus et al.,

2016; Hashimoto et al., 2016; Nozoe et al.,

2017). This is because the doubling time of a

population tends to be dominated by the dou-

bling time of the fastest dividing cells in the

population, i.e. population doubling time is

higher than the mean doubling time among all

cells in the population.

Next, we used a Gaussian function akin to

stabilizing selection in which an intermediate

expression level produced the shortest dou-

bling time (faster growth), while lower or higher

expression than this optimum would increase

doubling time (slower growth) (Figure 6C).

With this function, we found that the fitness

effects of increasing expression noise

depended on the mean expression level. Spe-

cifically, increasing expression noise increased

fitness when the average expression level was

far from the optimal expression level and it

decreased fitness when the average expression

level was close to the optimum (Figure 6D),

similar to the pattern we observed with our empirical fitness data and in agreement with theoretical

work by Tănase-Nicola and ten Wolde (2008). This result was observed for all three metrics of

noise, suggesting it is robust to the different scaling relationships between the mean expression

level and variability around the mean captured by different metrics of noise (Figure 6—figure sup-

plement 1C,D).

These in silico analyses not only provide a plausible mechanistic explanation for our empirical

finding that increasing noise can be both beneficial and deleterious in a single environment but they

also show that increasing expression noise can alter the effects of changes in mean expression level

on fitness. Specifically, when expression noise is high (red lines on Figure 6D and Figure 6—figure

supplement 1C,D), changes in mean expression level are predicted to have much smaller impacts

on fitness than equivalent changes when expression noise is low (blue lines on Figure 6 and Fig-

ure 6—figure supplement 1C,D). This pattern is also readily apparent when changes in expression

noise, instead of changes in mean expression level, are plotted as a function of population fitness

(Figure 6—figure supplement 2). These observations are consistent with a previously published

population genetic model showing that increasing expression noise can reduce the efficacy of natu-

ral selection acting on mean expression level (Wang and Zhang, 2011).

Conclusions
Despite many studies providing evidence that natural selection can (Tănase-Nicola and ten Wolde,

2008; Wang and Zhang, 2011; Barroso et al., 2018) and has (Fraser et al., 2004; Lehner, 2008;

Zhang et al., 2009; Metzger et al., 2015) acted on expression noise, the precise effects of expres-

sion noise on fitness have proven difficult to measure empirically. This difficulty arises from the facts

that (1) most mutations that alter expression noise also alter mean expression in a correlated fashion,

making it difficult to isolate the effects of changes in expression noise on fitness (Hornung et al.,

Figure 4 continued

PTDH3 alleles were not part of the 43 alleles included in

the initial competition experiment. (A–B) Error bars

show 95% confidence intervals obtained from at least

three replicates. (C) Competitive fitness of high noise

strains relative to low noise strains measured from

direct competition assays. Each box represents fitness

data from 16 replicate samples. The average median

expression level of the two genotypes compared is

shown below each box along with the difference in

expression noise between these two genotypes

(DNoise). Thick horizontal lines represent the median

fitness across replicates and notches display the 95%

confidence interval of the median. The bottom and top

lines of each box represent 25th and 75th percentiles.

Statistical difference from a fitness of 1 (same fitness

between the two genotypes) was determined using t-

tests (*: 0.01 < P < 0.05; **: 0.001 < P < 0.01; ***:

p<0.001). Data are available in Figure 4—source data

1.

DOI: https://doi.org/10.7554/eLife.37272.020

The following source data and figure supplement are

available for figure 4:

Source data 1. Fitness measured in direct competition

assays between strains with low and high values of

expression noise.

DOI: https://doi.org/10.7554/eLife.37272.022

Figure supplement 1. Median expression level and

expression noise for five pairs of genotypes that were

competed directly against each other.

DOI: https://doi.org/10.7554/eLife.37272.021
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2012; Keren et al., 2016; Liu et al., 2016), and (2) the magnitude of fitness effects resulting from

changes in expression noise is expected to be smaller than that resulting from changes in mean

expression level (Zhang et al., 2009). In this study, we overcame these challenges by surveying a

broad range of mutant promoter alleles for their effects on mean expression level and expression

noise, measuring the fitness effects of a subset of these alleles with reduced dependency between

effects on mean expression level and expression noise, and using an assay for fitness with power to

detect changes as small as 0.1%. We found that the fitness effects of changes in expression noise

are indeed generally much smaller than changes in expression level, although they are large enough

to be acted on by natural selection in wild populations of S. cerevisiae (Wagner, 2005;

Metzger et al., 2015).

We also show that changes in expression noise can be beneficial or deleterious depending on the

distance between the mean expression level and the expression level conferring optimal fitness in

the environment examined, with increases in expression noise deleterious near the optimal expres-

sion level, consistent with data for TDH3 in Metzger et al. (2015). Although our empirical work

focused solely on the TDH3 gene, the small number of parameters in our simulation model produc-

ing the same pattern as these empirical data suggests that the observed relationship among fitness,

average expression level and expression noise are likely generalizable to other genes. That said, the

precise relationship between expression noise and fitness at the population level is expected to be
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Figure 5. A simple model linking single cell expression levels to population fitness. (A) In our model, the expression level E of individual cells is

randomly drawn from a normal distribution N �E ;s
2

E

� �

. sE is lower for a genotype with low expression noise (top, green line) and higher for a genotype

with high expression noise (bottom, orange line). (B) The doubling time DT of individual cells is directly determined from their expression level using a

function DT ¼ f Eð Þ. (C) The growth of a cell population is simulated by drawing new values of expression converted into doubling time after each cell

division. In this example, doubling time is more variable among cells for the population showing the highest level of expression noise. (D) Population

growth is stopped after a certain amount of time (1000 minutes in our simulations) and competitive fitness is calculated from the total number of cells

produced by the tested genotype relative to the number of cells in a reference genotype with �E ¼ 1 and sE ¼ 0:1. In this example, fitness is lower for

the genotype with higher expression noise (bottom) because it produced less cells than the genotype with lower expression noise (top).

DOI: https://doi.org/10.7554/eLife.37272.023

The following source data and figure supplements are available for figure 5:

Figure supplement 1. Single-cell division rates estimated using time-lapse microscopy.

DOI: https://doi.org/10.7554/eLife.37272.024

Figure supplement 1—source data 1. Single-cell measures of doubling time in four strains with different median levels and noise of TDH3 expression.

DOI: https://doi.org/10.7554/eLife.37272.025

Figure supplement 1—source data 2. Summary statistics for comparing the distributions of single-cell doubling time between genotypes with different

expression noise levels.

DOI: https://doi.org/10.7554/eLife.37272.026
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shaped by the relationship between average expression level and doubling time of single cells as

well as the temporal dynamics of expression in single cells (Blake et al., 2006; Tănase-Nicola and

ten Wolde, 2008). We provide some experimental measures of single-cell division rates here (Fig-

ure 5—figure supplement 1), but studies that more directly compare expression levels and division

times in individual cells are needed to fully address this issue.
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Figure 6. Simulating the effect of expression noise on fitness at different median expression levels. (A) The linear

function DT ¼ �40 � E þ 160 relating the expression level of single cells to their doubling time used for the first

set of simulations. (B) Relationship between mean expression (�E ) and fitness at nine values of expression noise

(noise strength: s2

E=�E ) ranging from 50% to 2000% using the linear function shown in (A). (C) Gaussian function

DT ¼ �160 � exp � E � 1ð Þ2=0:18
� �

þ 240 relating the expression level of single cells to their doubling time used

in the second set of simulations. This function shows an optimal expression level at E ¼ 1, where doubling time is

minimal (i.e., fastest growth rate). (D) Relationship between mean expression (�E ) and fitness at 11 values of

expression noise (noise strength: s2

E=�E ) ranging from 50% to 1400% using the Gaussian function shown in (C). (B,

D) Error bars show 95% confidence intervals of mean fitness calculated from 100 replicate simulations for each

combination of mean expression and expression noise values. Data are available in Figure 6—source data 1.

DOI: https://doi.org/10.7554/eLife.37272.027

The following source data and figure supplements are available for figure 6:

Source data 1. Fitness data obtained by modeling the growth of cell populations with different levels of mean

expression and expression noise.

DOI: https://doi.org/10.7554/eLife.37272.030

Figure supplement 1. Simulating the effect of two different metrics of expression noise on fitness at different

median expression levels.

DOI: https://doi.org/10.7554/eLife.37272.028

Figure supplement 2. Relationship between expression noise and fitness at different values of mean expression in

simulations using a Gaussian function relating single cell expression to doubling time.

DOI: https://doi.org/10.7554/eLife.37272.029
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Assuming that the average expression level of a population is near the fitness optimum in a stable

environment, but further from the optimum following a change in the environment, our results unify

studies showing that increasing expression noise tends to be deleterious in a constant environment

but beneficial in a fluctuating one (Fraser et al., 2004; Blake et al., 2006; Batada and Hurst, 2007;

Lehner, 2008; Tănase-Nicola and ten Wolde, 2008; Zhang et al., 2009; Fraser and Kaern, 2009;

Ito et al., 2009; Wang and Zhang, 2011; Levy et al., 2012; Wolf et al., 2015; Liu et al., 2015;

Keren et al., 2016). Expression noise may be particularly important in the early phase of adaptation

to a fluctuating environment, when a new expression optimum makes an increase in noise beneficial

and before expression plasticity evolves as a more optimal strategy (Wolf et al., 2015). Such plastic-

ity in expression level seems to have already evolved for TDH3 (Duveau et al., 2017b). Our data

suggest that high levels of expression noise can also be beneficial in a stable environment when the

mean expression level is far from optimal. For example, if an allele driving suboptimally low expres-

sion were to be fixed in a population, selection should initially favor alleles that increase mean

expression and/or expression noise. After alleles driving mean expression close to the optimum are

fixed, selection should then favor alleles with lower levels of expression noise. The relative frequency

by which evolution proceeds through these two paths will depend on both the relative frequency of

alleles that increase mean expression and expression noise, as well as the fitness differences

between these alleles. We note, however, that the often correlated effects of promoter mutations

on mean expression level and expression noise (Hornung et al., 2012; Carey et al., 2013;

Sharon et al., 2014; Vallania et al., 2014) may limit the ability of natural selection to optimize both

mean expression level and expression noise. Future work investigating the effects of other types of

mutations on mean expression level, expression noise, and fitness in multiple environments is

needed to more fully define the range of variation affecting gene expression upon which natural

selection can act.

Materials and methods

Yeast strains: genetic backgrounds
All strains used in this work were haploids with similar genetic backgrounds that were derived from

crosses between BY4724, BY4722, BY4730 and BY4742 (Brachmann et al., 1998) and carry the

alleles RME1(ins-308A); TAO3(1493Q) from Deutschbauer and Davis (2005) and SAL1; CAT5(91M);

MIP1(661T) from Dimitrov et al. (2009) that contribute to increased sporulation efficiency and

decreased petite frequency relative to the alleles of the laboratory S288c strain. The construction of

this genetic background is described in more detail in Metzger et al. (2016). Strains used to assay

transcriptional activity and fitness (described in detail below) had different mating types and drug

resistance markers, but these differences did not significantly affect PTDH3 transcriptional activity

(Figure 2—figure supplement 2A,B).

Yeast strains: construction of strains used to assay transcriptional
activity
Transcriptional activity (average expression level and expression noise) was assayed for 171 PTDH3

alleles in S. cerevisiae strains carrying a fluorescent reporter construct inserted at the HO locus on

chromosome IV in MATa cells (Metzger et al., 2016). From these alleles (Figure 1—figure supple-

ments 1—source data 1), 43 were selected for assaying fitness effects of changing TDH3 expression

(Source data 1). 36 of the final 43 PTDH3 alleles carried a single copy of a reporter construct consist-

ing of the TDH3 promoter followed by the Venus YFP coding sequence, the CYC1 terminator and an

independently transcribed KanMX4 drug resistance cassette Metzger et al. (2016). 7 of the final 43

PTDH3 alleles variants consist of two copies of the PTDH3-YFP-TCYC1 construct in tandem separated by

a URA3 cassette. The different PTDH3 alleles contain mutations located either in the known binding

sites for GCR1 and RAP1 transcription factors, in the TATA box or in combinations of both, as

described below. The wild type allele of PTDH3 consists of the 678 bp sequence located upstream of

the TDH3 start codon in the genome of the laboratory strain S288c, with a single nucleotide substi-

tution that occurred during the construction of the PTDH3-YFP-TCYC1 construct (A - > G located 293

bp upstream of the start codon). This substitution is present in all PTDH3 alleles used in this study.
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The effect of this mutation on PTDH3 activity in YPD medium was previously described

(Metzger et al., 2015).

Single TFBS mutants
A set of 236 point mutations corresponding to almost all C - > T and G - > A substitutions in the

TDH3 promoter was previously inserted upstream of a YFP reporter gene on chromosome I in the

BY4724 genetic background (Metzger et al., 2015). From these, we selected seven PTDH3 alleles for

which the transcriptional activity spanned a broad range of median fluorescence levels when cells

were grown in glucose medium (25% to 90% relative to wild type expression level). These seven pro-

moters carried mutations either in the GCR1 or RAP1 transcription factor binding sites (TFBS) previ-

ously characterized in the TDH3 promoter (Yagi et al., 1994). Each PTDH3 allele was inserted

upstream of YFP at the HO locus using the dellitto perfetto approach (Stuckey et al., 2011). Briefly,

in the reference strain YPW1002 carrying the wild-type PTDH3-YFP-TCYC1 construct at HO

(Metzger et al., 2016), we replaced PTDH3 with a CORE-UH cassette (COunterselectable REporter

URA3-HphMX4 amplified from plasmid pCORE-UH using oligonucleotides 1951 and 1926 in

Supplementary file 2) to create strain YPW1784. Then, each of the seven PTDH3 alleles was amplified

by PCR using oligonucleotides 2276 and 2277 (Supplementary file 2) and transformed into

YPW1784 to replace the CORE-UH cassette and allow expression of YFP (Metzger et al., 2015).

Correct insertion of PTDH3 alleles was verified by Sanger sequencing of PCR amplicons obtained with

primers 2425 and 1208 (Supplementary file 2).

Double TFBS mutants
To sample average expression levels less than 25% of wild type, we created and measured the activ-

ity of 12 PTDH3 alleles containing mutations in two different TFBS. We then selected seven of these

alleles to be included in the final set of 43 PTDH3 alleles (Source data 1). Point mutations from differ-

ent alleles were combined on the same DNA fragment using PCR SOEing (Splicing by Overlap

Extension). First, left fragments of PTDH3 were amplified from genomic DNA of strains carrying the

most upstream TFBS mutations. These PCRs used a common forward primer (2425 in

Supplementary file 2) and a reverse primer containing the most downstream TFBS mutation to be

inserted (P4E8, P4E5, P4G8 or P4G7 in Supplementary file 2). In parallel, right fragments of PTDH3

were amplified from YPW1002 gDNA using forward primers containing the most downstream TFBS

mutations (P1E8, P1E5, P1G8 or P1G7 in Supplementary file 2) and a common reverse primer (104

in Supplementary file 2). Then, equimolar amounts of the overlapping upstream and downstream

fragments of PTDH3 were mixed and 25 PCR cycles were performed to fuse both fragments together

and to reconstitute the full promoter. Finally, the fused fragments were further amplified for 35

cycles using oligonucleotides 2425 and 1305 (Supplementary file 2) and the final products were

transformed in strain YPW1784. The presence of desired mutations in PTDH3 was confirmed by

Sanger sequencing of amplicons obtained with primers 1891 and 1208 (Supplementary file 2).

GCN4 binding sites
To try to create variation in noise independent of the median expression level, we inserted GCN4

binding sites at several locations in the TDH3 promoter because GCN4 binding sites in synthetic

promoters were shown to increase expression noise (CV2) relative to average expression level

(Sharon et al., 2014). We introduced substitutions in PTDH3 to create the GCN4 binding motif

TGACTCA at 10 different locations (�121,–152, �184,–253, �270,–284, �323,–371, �407 and �495

upstream of start codon) that originally differed by one, two or three nucleotides from this motif.

Targeted mutagenesis was performed using the same PCR SOEing approach as described in

Metzger et al. (2015) (see Supplementary file 2 for the list of primers used to insert GCN4 binding

sites) and the resulting PCR products were transformed into strain YPW1784. Correct insertion of

the TGACTCA motif was confirmed by Sanger sequencing. However, none of the 10 alleles of PTDH3

with GCN4 binding sites showed the expected increase in expression noise when cells were grown

in glucose (Figure 1—figure supplement 1). This could be due to the genomic context being differ-

ent from the synthetic library used in Sharon et al. (2014) or to the fact that PTDH3 is one of the

most highly active promoters in the yeast genome. None of these 10 alleles were included in the set

of 43 PTDH3 alleles used for fitness assays.
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TATA box mutants
A second strategy we employed to create variation in expression noise independent of median

expression was to mutate the TATA box in the TDH3 promoter because the presence of a canonical

TATA box in yeast promoters has been associated with elevated expression noise (Newman et al.,

2006). Mutations in the TATA box were also shown to have a clearly distinct impact on expression

noise compared to other types of cis-regulatory mutations (Blake et al., 2006; Hornung et al.,

2012). We used a random mutagenesis approach to create a large number of alleles with one or sev-

eral mutations in the PTDH3 TATA box. Variants were obtained using PCR SOEing as described

above, except that one of the internal overlapping oligonucleotides (primer 2478,

Supplementary file 2) used to amplify the downstream fragment of PTDH3 contained a degenerate

version of the wild type TATA box (TATATAAA at position �141 upstream of start codon). This oli-

gonucleotide was synthesized by Integrated DNA Technologies using hand-mixed nucleotides at the

eight bases of the TATA box with a proportion of 73% of the wild type nucleotide and 9% of each of

the three alternative nucleotides. At this level of degeneracy,~10% of the DNA molecules should

carry no mutation,~25% should carry a single mutation in the TATA box,~35% two mutations,~20%

three mutations and ~10% four mutations or more. The degenerate primer was used with oligonucle-

otide 104 to amplify the right fragment of PTDH3, and the overlapping primer 2479 was used with

oligo 2425 to amplify the left fragment (Supplementary file 2). Then, these fragments were fused

and amplified as described above for the TFBS mutants. Six independent transformations of the

fragments containing random mutations in the TATA box were performed in strain YPW1784 to

obtain a large number of colonies. After growth on selective medium (Synthetic Complete medium

with 0.9 g/L 5-FluoroOrotic Acid), 244 colonies selected regardless of their fluorescence level were

streaked on fresh plates (again SC +5 FOA medium) and then replica plated on YPD +Hygromycin B

(10 g/L Yeast extract, 20 g/L Peptone, 20 g/L Dextrose and 300 mg/L Hygromycin B) for negative

screening. 106 of the resulting strains turned out not to be fluorescent, among which the vast major-

ity were resistant to Hygromycin B, suggesting they were false positive transformants. The remaining

138 strains were all fluorescent and sensitive to Hygromycin B, as expected from true positive trans-

formants. We then tried to amplify PTDH3 in all 244 strains using oligonucleotides 1891 and 1208

(Supplementary file 2) and we only observed a band of correct size after electrophoresis for the

138 fluorescent strains. After Sanger sequencing of the PCR products for the 138 positive strains,

the type and frequency of mutations observed in the TATA box were found to be very close to

expectation (Figure 1—figure supplements 1—source data 1). Average expression level and

expression noise were measured for all 138 strains as described below. This set of alleles showed

broad variation in average expression level (Figure 1—figure supplement 1) and had a lower

expression noise than TFBS mutations with comparable average expression levels. We selected

seven TATA box variants (Source data 1) with expression levels ranging from 20% to 75% of wild

type to be included in the final set of 43 PTDH3 alleles. One of the random TATA box mutants con-

tained a PCR-induced mutation in the GCR1.1 TFBS and was also included in the final set (Var23 in

Source data 1).

TATA box and TFBS mutants
To obtain variation in expression noise at expression levels below 20%, we combined mutations in

TFBS with mutations in the TATA box in 12 additional PTDH3 alleles (Figure 1—figure supplements

1—source data 1). Two TATA box variants with 25% and 50% median fluorescence levels were each

combined with six different TFBS variants for which median expression ranged from 4% to 45% rela-

tive to wild type. The 12 variants were created by PCR SOEing as described above for the double

TFBS mutants, except in this case oligonucleotides 2425 and 2788 were used to amplify the

upstream PTDH3 fragments and oligonucleotides 2787 and 104 were used to amplify the downstream

fragments (Supplementary file 2). All 12 variants were transformed in strain YPW1784 and con-

firmed by Sanger sequencing.

Double-copy constructs
To create variation in average expression level and expression noise for expression levels more than

75% of wild type, we constructed 13 alleles with two copies of the whole PTDH3-YFP-TCYC1 construct

inserted in tandem at the HO locus (Figure 1—figure supplements 1—source data 1). One of these
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constructs carried two copies of the wild type TDH3 promoter, while the others carried mutated ver-

sions of PTDH3. We reasoned that the presence of a second copy of the construct would lead to over-

expression of YFP, as shown previously (Kafri et al., 2016), while differences in noise between the

different alleles should be conserved. To construct these alleles, we first fused the selectable marker

URA3 upstream of the PTDH3-YFP-TCYC1 allele located at the right end of each of the final constructs

(‘CONSTRUCT.2’ in Source data 1) using PCR SOEing. URA3 was amplified from the pCORE-UH

plasmid using oligonucleotides 2688 and 2686 and the 13 PTDH3-YFP-TCYC1 constructs were ampli-

fied from the strains carrying the corresponding PTDH3 alleles using oligonucleotides 2687 and 1893

(Supplementary file 2). URA3 and PTDH3-YFP-TCYC1 were then fused by overlap extension and the

resulting fragments were amplified with oligonucleotides 2684 and 2683 (Supplementary file 2).

Finally, each of the 13 different URA3-PTDH3-YFP-TCYC1 PCR products was transformed in the strain

carrying the desired allele of PTDH3-YFP-TCYC1 (strain carrying ‘CONSTRUCT.1’ in Source data 1).

During these transformations, the KanMX4 drug resistance cassette was replaced with URA3-PTDH3-

YFP-TCYC1 by homologous recombination so that the final constructs were ho::PTDH3-YFP-TCYC1-

URA3-PTDH3-YFP-TCYC1. To control for the impact of the URA3 marker on the activity of the TDH3

promoter, we constructed strain YPW2675 (ho::PTDH3-YFP-TCYC1-URA3) by replacing the KanMX4

cassette with URA3 amplified using primers 2684 and 2685 (Supplementary file 2). YPW2675 was

used as the reference when reporting the expression phenotypes (median and noise) of the alleles

with two copies of PTDH3-YFP-TCYC1. To validate the sequence of the full (5.2 kb) constructs, we per-

formed two overlapping PCRs using oligonucleotides 2480 and 1499, and 1872 and 2635

(Supplementary file 2). PCR products were sequenced using primers 2480, 1499, 1204, 1872, 2635,

2686, 1305 and 601 in Supplementary file 2) to confirm they contained the correct PTDH3 alleles.

However, using this PCR approach, insertion of more than two tandem copies of PTDH3-YFP-TCYC1
would remain undetected. Therefore, we used quantitative pyrosequencing to determine the exact

number of copies inserted in the 13 strains. We took advantage of the fact that all PTDH3 alleles

inserted at HO carried the mutation A293g upstream of the start codon, while the endogenous

TDH3 promoter did not. This allowed us to determine the total number of PTDH3 copies at the HO

locus by quantifying the relative frequency of A and G nucleotides at position �293 across all copies

of the TDH3 promoter in the genome. For instance, if only one copy of PTDH3 is present at HO, then

the frequency of G at position �293 is expected to be 0.5, since there is one copy of the G allele at

the HO locus and one copy of the A allele at the endogenous TDH3 locus. If two copies are present

at HO, a frequency of 2/3 is expected for G, and if three copies are present, a frequency of 0.75 is

expected. To determine these allele frequencies, we amplified PTDH3 in five replicates from all strains

carrying two copies of the construct as well as from YPW2675 carrying a single copy using oligonu-

cleotides 2268 and 3094 (Supplementary file 2). PCR products were denatured and purified using a

PyroMark Q96 Vacuum Workstation (Qiagen) and pyrosequencing was performed on a PyroMark

Q96 ID instrument using oligonucleotide 2270 for sequencing (Supplementary file 2). Allele fre-

quencies were determined from the relative heights of the peaks corresponding to the A and G

alleles on the pyrograms, with the typical correction factor of 0.86 applied to A peaks. Using this

method, a small but significant bias toward the G allele was detected, as the observed frequency of

G in strain YPW2675 was 0.55 instead of 0.5. This could be caused by PCR bias due to the fact that

the A and G alleles are located at different genomic positions. We applied the linear correction

y = x * (0.5/0.45)–0.111 to remove the effect of this PCR bias when calculating the frequency of G

alleles. Overall, we found that six strains had a frequency of G significantly higher than 2/3 (t-test,

p<0.05). This suggested that these strains carried more than two copies of the PTDH3-YFP-TCYC1 con-

struct and they were therefore removed from all subsequent analyses (except Var42 for reasons

explained below).

Extra mutations
Sanger sequencing revealed that a substantial fraction of all PTDH3 alleles constructed (~25% of

sequenced strains) carried an indel of one nucleotide in one of the homopolymer runs present in the

promoter (Source data 1). These mutations probably result from polymerase slippage during PCR

amplification. For some PTDH3 alleles, we were able to isolate independent clones that differed only

by the presence or absence of these homopolymer mutations, giving us the opportunity to test the

impact of homopolymer length variation on transcriptional activity. Using the fluorescence assay

described below, we found that del431A, del54T and ins432A had no detectable effect on median
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expression level or expression noise (Figure 2—figure supplement 2C,D). Therefore, strains carry-

ing these mutations were included in the expression and fitness assays.

Yeast strains: construction of strains used to assay fitness
The strains described above all carried the ho::PTDH3-YFP-TCYC1 reporter construct, allowing sensitive

quantification of the transcriptional activity of different PTDH3 alleles. In these strains, the endoge-

nous promoter driving expression of the native TDH3 protein was left unaltered. To measure how

variation in TDH3 protein levels induced by mutations in the TDH3 promoter could impact cell

growth, we inserted the final set of 43 PTDH3 alleles described above upstream of the endogenous

TDH3 coding sequence. PTDH3 variants were integrated in the genetic background of strain

YPW1001, which is almost identical to the reference strain YPW1002 used for the expression assays,

except that the mating type of YPW1001 is MATa and it carries a PTDH3-YFP-TCYC1-NatMX4 con-

struct at HO conferring resistance to Nourseothricin. The reporter construct served a dual purpose:

it ensured that the strains used in the expression and fitness assays carried the same number of cop-

ies of TDH3 promoter in their genomes and it allowed high-throughput counting of yellow-fluores-

cent cells carrying PTDH3 variants in the competition experiments described below. Importantly, we

did not detect any difference in fluorescence levels between strains YPW1002 and YPW1001 (Fig-

ure 2—figure supplement 2A,B), indicating that the few genetic differences between the back-

ground of the strains used in the expression and fitness assays did not significantly affect the activity

of the TDH3 promoter.

Single-copy constructs
To insert the 35 alleles containing a single copy of PTDH3 at the native TDH3 locus, we first replaced

the endogenous TDH3 promoter of strain YPW1001 with a CORE-UK cassette (URA3-KanMX4)

amplified with oligonucleotides 1909 and 1910 (Supplementary file 2) to create strain YPW1121.

Then, the 35 PTDH3 alleles were amplified from the HO locus in the strains previously constructed

(Source data 1) using oligonucleotides 2425 and 1305 (Supplementary file 2). PCR products were

purified using a DNA Clean and Concentrator kit (Zymo Research), amplified using primers 1914 and

1900 (Supplementary file 2) to attach appropriate homology tails and transformed in strain

YPW1121. In addition, because all the PTDH3 variants inserted at HO carried the PCR-induced muta-

tion A293g, we created the strain YPW1189 that carried mutation A293g in the endogenous TDH3

promoter. YPW1189 served as the reference strain when calculating relative fitness. In all these

strains, the presence of the correct mutations in PTDH3 at the native locus was confirmed by Sanger

sequencing of PCR products obtained with oligonucleotides 1345 and 1342 (Supplementary file 2).

Double-copy constructs
To measure the impact on fitness of overexpression of the native TDH3 protein, we created seven

tandem duplications of the whole TDH3 locus (TDH3::PTDH3-TDH3-URA3- PTDH3-TDH3) that con-

tained the same combinations of promoter alleles as those inserted at HO (Source data 1). Duplica-

tions of TDH3 were built in a similar way as the double-copy constructs inserted at HO. First, URA3

was amplified from the pCORE-UH plasmid using oligonucleotides 2688 and 2686 and the TDH3

variants corresponding to the copy located on the right in the final constructs (‘CONSTRUCT.2’ in

Source data 1) were amplified using oligonucleotides 2687 and 1893 (Supplementary file 2). URA3

and PTDH3-TDH3 PCR products were then fused by overlap extension and the resulting fragments

were amplified with oligonucleotides 2696 and 2693 (Supplementary file 2). Finally, each of the

seven different URA3-PTDH3-TDH3 products was transformed in the strain carrying the desired allele

for the left PTDH3-TDH3 copy (‘CONSTRUCT.1’ in Source data 1). To control for the impact of URA3

expression on fitness, we constructed strain YPW2682 (TDH3::PTDH3-TDH3-URA3) by transforming a

URA3 cassette amplified from plasmid pCORE-UH with oligonucleotides 2696 and 2697 in strain

YPW1189. YPW2675 was used as the reference when reporting the relative fitness of the seven

strains carrying two copies of TDH3. To sequence the full TDH3 duplications (5.5 kb), we performed

four overlapping PCRs using oligonucleotides 1345 and 1499, 2694 and 1911, 2670 and 1342, 601

and 2695 and sequenced them with oligonucleotides 1345, 1499, 601, 2691, 2053, 2670, 1342, 601,

2695 (Supplementary file 2).
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As described for the double-copy constructs at HO, we used quantitative pyrosequencing to

determine the exact number of TDH3 copies inserted in the seven strains. However, we could not

directly quantify the frequency of mutation A293g in these strains, because all copies of TDH3 pro-

moters present in their genomes carry the G mutation. Therefore, we first crossed all seven strains

to YPW1139 (Metzger et al., 2016), a strain that contains the A allele at position �293 of the native

TDH3 promoter. In the resulting diploids, the frequency of G allele at the native TDH3 locus is

expected to be 0.5 if the original haploid strain carried a single copy of TDH3 at the native locus, 2/

3 if it carried two copies of TDH3 at the native locus and 3/4 if it carried three copies. To determine

allele frequency at position �293 of PTDH3 for the native TDH3 locus only, we amplified the promoter

using primers 2268 and 3095 specific to the native locus (Supplementary file 2) and then used pyro-

sequencing as described above. We found that one strain carried three copies of TDH3 at the native

locus instead of two (Figure 4—figure supplement 1—source data 1). However, we did not exclude

the corresponding variant (Var42) from subsequent analyses, because it also integrated three copies

of the reporter construct at HO.

Finally, during growth rate assays, cells carrying a tandem duplication of TDH3 could potentially

lose a copy of TDH3 through intrachromosomal homologous recombination, which could affect fit-

ness estimates. In strains carrying TDH3::TDH3-URA3-TDH3 constructs, the loss of a TDH3 copy by

recombination should be accompanied by the deletion of the URA3 marker. To estimate how fre-

quently such recombination events might occur, we quantified the frequency of Ura- cells in strain

YPW2679 (TDH3::TDH3-URA3-TDH3) at four time points over the course of 50 generations of

growth in similar conditions as used in competition growth assays. Four replicate cultures of

YPW2679 were grown to saturation in SC - Ura medium at 30˚C. Then, 0.1 ml of each culture was

plated on SC +5 FOA medium and each culture was diluted to a density of 104 cells/ml in YPD rich

medium. Dilution to 104 cells/ml in YPD was repeated every 12 hr for 72 hr and plating on SC +5

FOA was repeated every 24 hr. After three days of incubation at 30˚C, colony-forming units were

counted on all SC +5 FOA plates, allowing the estimation of the frequency of Ura- cells every ~17

generations for a total of ~50 generations. The frequency of Ura- cells was found to increase during

the first 34 generations of growth before reaching a plateau representing a state of mutation-selec-

tion balance. At this stage, the average frequency of Ura- cells was about 5.2 � 10�5. Therefore,

even if spontaneous loss of one TDH3 copy occurred in a fraction of cells, these events were found

to be too rare to have a significant impact on fitness estimates. Data used to estimate the frequency

of intrachromosomal recombination can be found in Supplementary file 1 – Dataset 6.

TDH3 deletion
We deleted the native TDH3 locus in the genetic background of strain YPW1001 to create strain

YPW1177. To do this, we amplified a region of 171 bp immediately upstream of the TDH3 promoter

using oligonucleotides 1345 and 1962 (Supplementary file 2). Oligonucleotide 1962 is composed of

a 5’ sequence of 22 nucleotides priming directly upstream of the TDH3 promoter fused to a 3’

sequence of 38 nucleotides homologous to the 3’UTR sequence immediately downstream of TDH3

coding sequence. Therefore, transformation of the PCR product in strain YPW1121 (tdh3::URA3-

KanMX4-TDH3) led to the deletion of the URA3-KanMX4 cassette and of the TDH3 coding

sequence. In this strain, both the TDH3 promoter and the TDH3 coding sequence are deleted, and

the coding sequence of the upstream gene PDX1 is fused to the terminator sequence of TDH3, so

that PDX1 would remain functional. Correct deletion of TDH3 was confirmed by Sanger sequencing

of the region amplified with oligonucleotides 1345 and 2444 (Supplementary file 2) in strain

YPW1177.

GFP competitor
To measure how variation in TDH3 expression affected growth rate, the strains described above

were all grown competitively against a common strain, YPW1160, which carried a PTDH3-GFP-TCYC1-

KanMX4 construct inserted at the HO locus in the same genetic background as the other strains.

The expression of Green Fluorescent Protein in YPW1160 cells allowed for highly efficient discrimina-

tion from cells expressing the Yellow Fluorescent Protein using flow cytometry. To construct strain

YPW1160, the GFP-TCYC1 sequence was amplified from strain YPW3 (swh1::PTDH3-GFP-TCYC1,

obtained from Barry Williams) using oligonucleotides 601 and 2049 (Supplementary file 2). In
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parallel, KanMX4 was amplified from strain YPW1002 using oligonucleotides 2050 and 1890

(Supplementary file 2). The two fragments were fused by PCR SOEing and the product was ampli-

fied using oligonucleotides 601 and 1890 (Supplementary file 2) before transformation in strain

YPW1001 (ho::PTDH3-YFP-TCYC1-NatMX4). Selection on G418 allowed the recovery of cells that

switched the YFP-TCYC1-NatMX4 cassette for the GFP-TCYC1-KanMX4 cassette. The fluorescence

emission detected on the flow cytometer was consistent with expression of GFP.

Expression assays
Quantification of fluorescence using flow cytometry
Fluorescence level was measured as a proxy for PTDH3 transcriptional activity using flow cytometry as

described in (Metzger et al., 2016). All strains were revived from �80˚C glycerol stocks on YPG

plates (10 g Yeast extract, 20 g Peptone, 30 ml Glycerol, 20 g agar per liter) and, after 2 days of

growth, arrayed in 96-well plates containing 0.5 ml of YPD medium per well. In addition to the

tested strains, the reference strain YPW1002 was inoculated in 24 positions, which were used to cor-

rect for plate and position effects on fluorescence. Strain YPW978, which does not contain the YFP

reporter construct (Metzger et al., 2016), was inoculated in one well per plate and used to correct

for autofluorescence. Cells were maintained in suspension at 250 rpm by the presence of a 3 mm

glass bead in each well. After 20 hr of growth at 30˚C, cells were transferred on YPG omnitrays using

a V and P Scientific pin tool and grown for 2 days. Next, samples from each omnitray were inocu-

lated in six replicate 96-well plates in 0.5 ml of YPD and grown for 22 hr at 30˚C until they reached

saturation. At this point, 15 ml of each culture was diluted into 0.5 ml of PBS (phosphate-buffered

saline) in 96-well plates. Fluorescence was recorded for ~20,000 events per well using a BD Accuri

C6 instrument coupled with a HyperCyt autosampler (IntelliCyt Corp). A 488 nm laser was used for

excitation and a 530/30 optical filter for acquisition of the YFP signal. A modified version of this pro-

tocol was used to measure the fluorescence of the final set of 43 PTDH3 variants with experimental

conditions more similar to those experienced during the competition growth assays. After the 22 hr

of growth in YPD, samples were not immediately run on the flow cytometer, but instead they were

diluted to fresh medium every 12 hr for 36 hr to reach steady exponential phase of growth. Prior to

each dilution, cell density was measured for all samples using a Sunrise absorbance reader (Tecan)

and one dilution factor was calculated for each 96-well plate so that the average cell density would

reach 5 � 106 cells/ml after 12 hr of growth. This procedure ensured that all samples were main-

tained in constant exponential growth since no sample reached a density above 107 cells/ml, while

limiting the strength of genetic drift since the number of cells transferred during dilution was larger

than 10,000. Another difference with the protocol mentioned above is that no glass bead was added

to the plates. Instead, cells were maintained in suspension by fitting the culture plates on a rotating

wheel. After 36 hr of growth, samples were diluted to 2.5 � 106 cells/ml in PBS and the fluorescence

of 20,000 events per well was acquired by flow cytometry. Flow data (FCS files) used to quantify fluo-

rescence levels produced by the 43 TDH3 promoter alleles are available in the FlowRepository (flow-

repository.org) under experiment ID FR-FCM-ZY8Y.

Relationship between mRNA levels and fluorescence
The relationship between fluorescence intensity measured by flow cytometry and fluorophore con-

centration in a cell is expected to be positive and monotonic, but this relationship is not necessarily

linear (Wang and Gaigalas 2011). For most flow cytometers, the photomultiplier tube (PMT) voltages

can be calibrated to approach a linear relationship for the range of fluorescence intensities covered

by the samples, but this cannot be done on the Accuri C6 because PMT voltages are fixed. Instead,

we empirically determined the function relating fluorescence intensities to YFP mRNA levels using

eight strains with different fluorescence levels and then we applied this function to transform fluores-

cence intensities for each cell of every sample. The function between fluorophore concentration (y)

and fluorescence intensity (x) was previously determined to be of the form log yð Þ ¼ a � log xð Þ þ b

(Wang and Gaigalas 2011). In our case, y represents mRNA level instead of fluorophore concentra-

tion, but this should not affect the shape of the function since previous studies found a linear rela-

tionship between mRNA levels and fluorophore concentration (Wolf et al. 2015; Kafri et al. 2016). To

determine the constants a and b, we measured fluorescence intensity and YFP mRNA levels in eight

strains covering the whole range of fluorescence levels expressed by the strains included in this
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study. First, three replicates of YPW978 (non-fluorescent strain), YPW2683 (ho::PTDH3-YFP-TCYC1/ho::

PTDH3-GFP-TCYC1 diploid) and seven strains carrying variants of the ho::PTDH3-YFP-TCYC1 construct

with different PTDH3 alleles (Figure 1—source data 1) were grown for 24 hours at 30˚C in 5 ml of

YPD, along with 24 replicates of strain YPW1182 expressing GFP (same genetic background as

YPW1160, except with MATa mating type). All samples were then diluted to a density of 2 x 106

cells/ml in fresh YPD medium and grown for another 4 hours. Next, 0.1 ml of each culture was trans-

ferred to 0.4 ml of PBS and fluorescence intensity was immediately scored for ~20,000 events per

sample on the BD Accuri C6 instrument.

In parallel, for each replicate of the tested strains, 0.5 ml of culture was mixed with 0.5 ml of one

of the 24 cultures of YPW1182 strain in a microcentrifuge tube. Genomic DNA and RNA were co-

extracted from the 24 mixed populations using a modified version of Promega SV Total RNA Isola-

tion System and cDNA was synthesized from RNA samples as previously described (Metzger et al.

2015). Then, pyrosequencing was performed to quantify the relative frequency of YFP and GFP

sequences in gDNA and cDNA samples (Wittkopp 2011). The pyrosequencing assay was designed

to quantify allele frequency at a position located 607 bp downstream of the YFP start codon, for

which a GT/TA difference exists between YFP and GFP coding sequences. A region that encom-

passed this polymorphism was amplified in all gDNA and cDNA samples using oligonucleotides

2723 and 2725 (Supplementary file 2). These oligonucleotides were designed to anneal both to

YFP and GFP coding sequences, which are 98% identical. Pyrosequencing was performed on a Pyro-

Mark Q96 ID instrument using oligonucleotide 2726 for sequencing (Supplementary file 2). Because

the sequenced region contained two variable positions (G/T and T/A), we determined allele frequen-

cies separately for each position and used the average as the relative frequency of YFP and GFP

alleles. For each sample, we then calculated YFP mRNA level relative to the reference strain

YPW1002 using the measured frequency of YFP allele in gDNA and cDNA. First, we corrected for

small biases in allele frequencies that could be caused by PCR bias. To do this, we took advantage

of the fact that true allele frequencies were known for gDNA samples of YPW1002 (100% YFP),

YPW2683 (50% YFP) and YPW1182 (0% YFP). We regressed the measured allele frequencies on the

true allele frequencies for all gDNA replicates of these three samples using R smooth.spline function.

The fitted model was then used to correct allele frequencies for all other gDNA and cDNA samples.

Our next goal was to calculate A, defined as the abundance of YFP mRNA expressed by each tested

strain relative to the abundance of GFP mRNA expressed by YPW1182. If G is the frequency of YFP

allele in the gDNA sample and C the frequency of YFP allele in the cDNA sample, then

C ¼ A�G
A�G þ 1� 1�Gð Þ. From this equation, we can deduce that A ¼ 1�Gð Þ�C

1�Cð Þ�G
. We applied this formula to

our measured estimates of G and C to calculate A. For each sample, the calculated value of A was

divided by the value obtained for the reference strain YPW1002 to obtain an estimate of YFP mRNA

level expressed relative to the reference. Finally, we identified the function of form log yð Þ ¼
a � log xð Þ þ b that best fitted to our measures of mRNA levels and fluorescence intensities using R

function nls. The least-square estimates of the parameters were a ¼ 10:469 and b ¼ �9:586. As

expected, we observed a nonlinear relationship between YFP mRNA level and fluorescence intensity

(Figure 1B, R2 = 0.83), but a linear relationship between the logarithm of YFP mRNA level and the

logarithm of fluorescence intensity (Figure 1C, R2 = 0.99). Data used to establish the relationship

between YFP mRNA levels and fluorescence can be found in Figure 1 – source data 1 and

Supplementary file 1 – Dataset 1.

Analysis of flow cytometry data for expression
Flow cytometry data were analyzed using R packages flowCore (Hahne et al. 2009) and flowClust (Lo

et al. 2009) with modifications of the methods described in Duveau et al. (2017a) linked to the trans-

formation of fluorescence intensities mentioned above. First, the clustering functions of flowClust

were used to filter out all events that did not correspond to single cells based on the height and the

area of the forward scatter signal. Then, the intensity of the fluorescence signal was scaled by cell

size in several steps. We first performed a principal component analysis on the logarithm of forward

scatter (FSC.A) and logarithm of fluorescence (FL1.A) for all filtered events. Next, we defined the

vector nPTDH3 between the origin and the intersection of the two eigenvectors. We then calculated

the angle �PTDH3 between the first eigenvector and nPTDH3. FSC.A and FL1.A data were trans-

formed by a rotation of angle �PTDH3 centered on the intersection between the two eigenvectors.
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Finally, for each event, the transformed FL1.A value was divided by the transformed FSC.A value to

obtain a measure of fluorescence level independent of cell size. The fluorescence level of each indi-

vidual cell was then rescaled using the function log yð Þ ¼ 10:469 � log xð Þ � 9:586PTDH3 to follow a

linear relationship with YFP mRNA levels, as explained in the previous paragraph. For each sample,

the median mYFPPTDH3 and the standard deviation sYFPPTDH3 of expression were calculated from

the fluorescence levels of at least 1000 cells. Next, we corrected for variation in fluorescence levels

caused by factors beyond experimental control by using the 24 control samples present on each

plate at the same positions. For each environment, log mYFPð ÞPTDH3 and log sYFPð Þ= log mYFPð ÞPTDH3
of control samples were fitted to a linear model that included explanatory variables such as average

cell size, replicate, plate, row, column and flow run. The variable that had the greatest impact on

fluorescence was found to be “flow run”. This effect is caused by random variation in the sensitivity

of the flow cytometer to measure fluorescence intensity between each run of 48 samples, rather

than actual variation in YFP expression, as indicated by the observation of random shifts when run-

ning the same plate multiple times. Therefore, for each sample, the effect of “flow run” was

removed on a scale that was linearly related to fluorescence intensity and not mRNA level. Given

that the logarithm of mRNA levels log yð ÞPTDH3 scales linearly with the logarithm of fluorescence

intensity, the linear model to correct for “flow run” and “row” effects was applied on linear esti-

mates of median log yð Þð ÞPTDH3 and s log yð Þð ÞPTDH3. log mYFPð ÞPTDH3 scales linearly

with median log yð Þð ÞPTDH3 and log sYFPð Þ= log mYFPð ÞPTDH3 is expected to scale approximately linearly

with s log yð Þð ÞPTDH3. Indeed, the delta method (Ver Hoef 2012) postulates that

s
2 f xð Þð Þ ¼ s

2 � f 0 xð Þð Þ2PTDH3 and the first derivative of log xð ÞPTDH3 is 1=xPTDH3. The corrected

values of log mYFPð ÞPTDH3 and log sYFPð Þ= log mYFPð ÞPTDH3 were then used to calculate corrected val-

ues for mYFPPTDH3 and sYFPPTDH3. This procedure was found to uniformly decrease the variance of

mYFPPTDH3 and sYFPPTDH3 among replicates of a same strain, independently of the average

mYFPPTDH3 of the strain. Next, we corrected for autofluorescence by subtracting the mean values of

mYFPPTDH3 and sYFPPTDH3 among replicates of the non-fluorescent strain YPW978 from the values

of mYFPPTDH3 and sYFPPTDH3 of each sample. At this stage, in addition to sYFPPTDH3, we calculated

three other metrics of expression variability (i.e., noise), CV* ¼ sYFP
mYFP

PTDH3,

logCV* ¼ log10
sYFP
mYFP

� �

PTDH3 and Noise strength ¼ s2
YFP

mYFP
PTDH3. These metrics are similar to the coeffi-

cient of variation, the logarithm of the coefficient of variation and the Fano factor (Kaern et al. 2005),

except that mYFPPTDH3 is a median instead of a mean. The four metrics of expression noise were

used in parallel in all subsequent analyses. For each strain, samples for which mYFPPTDH3 and

sYFPPTDH3 departed from the median value among replicate populations by more than four times

the median absolute deviation were discarded. For each sample, median expression and expression

noise were then divided by the mean phenotypic value obtained among replicate populations of the

reference strain YPW1002 (for single-copy PTDH3 variants) or YPW2675 (for double-copy PTDH3 var-

iants). Finally, these relative measures of median expression and expression noise were averaged

among replicate populations of each genotype. Processed fluorescence data can be found in

Supplementary file 1 – Dataset 2 and Source data 1.

Fitness assays
Doubling time in each environment
Prior to performing competition assays, we measured the doubling time of the reference strain

YPW1160 when grown in YPD medium. Three replicate cultures of YPW1160 were started in parallel

in 5 ml of YPD and incubated for 36 hours at 30˚C with dilution to 5 x 105 cells/ml every 12 hours.

After the last dilution, cell density D was quantified every 60 minutes for 10 hours and then after

another 800 minutes by measuring optical density at 660 nm. Doubling time was calculated as the

inverse of the slope of the linear regression of log Dð Þ= log 2ð Þ on time during the logarithmic phase

of growth where the relationship between log Dð Þ and time is linear. The average doubling time of

the reference strain YPW1160 used in subsequent competition assays was found to be 80 minutes in

YPD.
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Competition assays against a common reference
Because the deletion of TDH3 is known to cause only a ~ 5% reduction in growth rate, detecting a

significant impact on fitness of a change in TDH3 expression level or expression noise required

highly accurate measurements of growth rate. For this reason, we decided to use head-to-head com-

petition assays between strains expressing different levels of TDH3 protein and a common reference

strain (YPW1160) to measure relative growth rate, which is a more sensitive method than directly

measuring the absolute growth rate of each isolated strain (Gallet et al., 2012). Indeed, the additive

effect of micro-environmental variation on growth estimates is nullified during competitive growth,

because the two competitors are grown in the same microenvironment. Relative growth rate during

log-phase was used as a proxy for fitness in this study, although this is not the only component of

fitness.

To identify experimental conditions that would allow accurate estimates of fitness (precision of at

least 10�3) while keeping cost and labor reasonable, we first performed a power analysis based on

simulations to determine how experimental parameters affected accuracy. We decided that during

the competition assays cells would be maintained in the logarithmic phase of growth by repeated

dilutions in small volume of medium in 96-well plates to handle large number of samples in parallel.

Six different parameters associated with this experimental design were varied in the simulations: (1)

The number of biological replicates for each sample; (2) The starting frequency of the two strains

competed against each other; (3) The difference in fitness between the two competitors; (4) The

number of generations after dilution to fresh medium, a parameter that determined the number of

cells transferred (or the bottleneck size) after each dilution; (5) The number of dilution cycles, which

also determined the number of times the relative frequency of the competed strains was assessed;

(6) The number of cells counted each time the relative frequency of the competed strains was

assessed. For each of 20,160 combinations of parameter values, the competition assay was simu-

lated 5000 times to estimate the standard deviation of the selection coefficient. Then, given this

standard deviation and the tested number of replicates, R function power.t.test was used to deter-

mine the minimum difference in selection coefficient that could be detected with a significance level

of 0.05 and a power of 0.95. All six parameters were found to have an impact on the precision of the

selection coefficient, but to different degrees. Interestingly, precision was maximized for intermedi-

ate values of the number of generations between two consecutive dilutions and for intermediate val-

ues of the total number of dilution cycles, because of the impact of these parameters on genetic

drift. To achieve a precision close to 10�3 in the actual competition experiment, we decided to use

eight replicates per sample, to mix the two competing strains in equal proportion, to use a common

competitor strain (YPW1160) that had a similar fitness as the wild-type strain (YPW1189), to grow

cells for about eight generations of the common competitor after each dilution, to use a total of four

phases of growth followed by dilutions and to score genotype frequencies at four time points by

screening at least 50,000 cells per sample on the flow cytometer.

The tested strains carrying different alleles of the TDH3 promoter at the native locus and express-

ing YFP (Source data 1) were arrayed on four 96-well plates in 0.5 ml of YPD, with two replicates of

each strain on each plate. In parallel, the common competitor YPW1160 expressing GFP was also

arrayed on four 96-well plates in 0.5 ml of YPD. All plates were incubated for 24 hr at 30˚C on a

rotating wheel. After measuring cell densities using a Sunrise plate reader, an equal volume of YFP

and GFP cell cultures were mixed together and diluted in 0.5 ml of YPD in four 96-well plates. The

dilution factor was calculated for each plate based on the doubling time of the GFP strain

(YPW1160) so that the average cell density would reach ~5�106 cells/ml after 12 hr of growth. This

procedure of cell density measurement and dilution followed by 12 hr of growth was repeated three

times and constituted the acclimation phase of the experiment, during which the relative frequency

of YFP and GFP strains was not recorded. After this acclimation phase, samples were diluted every

10 hr in fresh YPD for a total of 30 hr of exponential growth. Cell density was measured for all sam-

ples prior to each dilution. Immediately after dilution to fresh medium, samples were diluted in 0.3

ml of PBS to a final density of 1.5 � 106 cells/ml in four 96-well plates and placed on ice to stop

growth. ~75,000 events were recorded for each sample on a BD Accuri C6 flow cytometer, using a

488 nm laser for excitation and two different optical filters (510/10 and 585/40) to acquire fluores-

cence. These filters allowed separation of the GFP and YFP signals. With this protocol, the relative

frequency of YFP and GFP cells was measured at four time points during the competition assays.
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Flow cytometry data (FCS files) used to quantify competitive fitness for the 43 TDH3 promoter alleles

are available in the FlowRepository (flowrepository.org) under experiment ID FR-FCM-ZYJN (strains

with a single copy of TDH3 at the native locus) and FR-FCM-ZY7E (strains with two copies of TDH3

at the native locus). For analysis of flow data using R scripts provided in Supplementary file 3, FCS

files need to be sorted as follows. The 96 files with a name starting by ‘EXP.C_T1’ in experiment FR-

FCM-ZY7E should be inserted between files ‘TimePoint1_Plate3_H12.fcs’ and ‘TimePoint2_Pla-

te1_A01.fcs’ in experiment FR-FCM-ZYJN. The 96 files with a name starting by ‘EXP.C_T2’ in experi-

ment FR-FCM-ZY7E should be inserted between files ‘TimePoint2_Plate3_H12.fcs’ and

‘TimePoint3_Plate1_A01.fcs’ in experiment FR-FCM-ZYJN. The 96 files with a name starting by ‘EXP.

C_T3’ in experiment FR-FCM-ZY7E should be inserted between files ‘TimePoint3_Plate3_H12.fcs’

and ‘TimePoint4_Plate1_A01.fcs’ in experiment FR-FCM-ZYJN. The 96 files with a name starting by

‘EXP.C_T4’ in experiment FR-FCM-ZY7E should be inserted after the last file ‘TimePoint4_Pla-

te3_H12.fcs’ in experiment FR-FCM-ZYJN.

Analysis of flow cytometry data for fitness
The number of cells expressing either YFP or GFP was counted for each sample using custom R

scripts (Supplementary file 3). After log10 transformation of the raw data, artifacts were removed by

excluding events with extreme values of forward scatter (FSC.A and FSC.H) or fluorescence intensity

(FL1.H and FL2.H). FL1.H corresponds to the height of the fluorescence signal acquired through the

510/10 filter, which is more sensitive to GFP emission, and FL2.H corresponds to the height of the

fluorescence signal acquired through the 585/40 filter, which is more sensitive to YFP emission.

Next, a principal component analysis was performed on the logarithm of FL1.H and FL2.H. The first

principal component captured differences in fluorescence caused by variation in cell size, while the

second component captured differences in fluorescence between cells expressing YFP and GFP. We

then computed the Kernel density estimate of the second component, which allowed the separation

of three populations of cells: (1) GFP cells with high scores on the second component, (2) YFP cells

with low scores and (3) a smaller population with intermediate scores considered as doublets, i.e.

events corresponding to two cells scored simultaneously, one expressing YFP and the other GFP.

Doublets for which the two cells expressed the same fluorophore should also occur at low frequency

in the GFP and YFP populations, but these doublets cannot be distinguished from singletons based

on fluorescence. The number of YFP cells NY and the number of GFP cells NG can be calculated from

the total number of YFP events TY , the total number of GFP events TG, the number of YFP doublets

DY , the number of GFP doublets DG and the number of YFP-GFP doublets DYG using the following

equations:

NY ¼ TY þ DY þDYG (1)

NG ¼ TGþ DGþDYG (2)

By analogy with the Hardy-Weinberg principle, we could expect that:

DYG ¼ 2 �
ffiffiffiffiffiffi

DY

p
�

ffiffiffiffiffiffiffi

DG

p
(3)

Therefore,

DY ¼
DYG

2 �
ffiffiffiffiffi

DG

DY

q (4)

If we assume that doublets were formed randomly, then we should expect the same proportion

of doublets in the YFP and GFP populations:

DY

TY
¼DG

TG
(5)

We can deduce from

Equations (1), (4) and (5) that:
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NY ¼ TY þ
DYG

2 �
ffiffiffiffi

TG
TY

q þ DYG (6)

Similarly,

NG ¼ TGþ DYG

2 �
ffiffiffiffi

TY
TG

q þ DYG (7)

As all variables in the right-hand sides were known, we used Equations (6) and (7) to estimate

the number of YFP cells and the number of GFP cells in the sample. Then, for each sample, we

determined the number of cell generations that occurred during the three dilution cycles, by using

the measured cell densities before each dilution as well as the dilution factor. The median number of

generations for all samples grown on a same 96-well plate was used as a rough estimate of the num-

ber of generations for the samples of the plate. The number of generations over the entire experi-

ment was found to be about 22. The fitness of the YFP strain relative to the GFP competitor was

calculated as the exponential of the slope of loge NY=NGð Þ regressed on the number of generations at

the four time points when genotype frequency was measured, based on equation (5.3) in

Cormack et al. (1990). For each tested strain, samples for which fitness departed from the median

fitness among all eight replicate populations by more than five times the median absolute deviation

were considered outliers and were excluded from further analysis. Outliers could occur for several

reasons, one of them being the random appearance of a beneficial (or compensatory) de novo muta-

tion during competitive growth (Gallet et al., 2012). For each sample, the fitness relative to the GFP

strain was then divided by the mean fitness obtained for all replicate populations of the reference

strain YPW1189 (for single-copy PTDH3 variants) or YPW2682 (for double-copy PTDH3 variants). We

then calculated the mean relative fitness and standard deviation over the eight replicate populations

of each tested strain. This measure of fitness expressed relative to a strain with the reference TDH3

promoter sequence was used in all subsequent analyses. Processed fitness data are available in

Supplementary file 1 – Dataset 3 and Source data 1.

Pairwise competition assays
To directly determine how expression noise impacts fitness at different levels of TDH3 expression,

we competed five pairs of strains with similar average expression levels but differences in TDH3

expression noise, with each pair having a different average expression level (Figure 4—source data

1). This experimental design allowed differences in fitness caused by variation in noise to be directly

observed without the assumption of transitivity (Gallet et al., 2012) and without the need to correct

for the correlation between median expression and noise. In these experiments, we doubled the

number of replicate populations (16) and the number of generations of growth (~42) to achieve

greater precision in the fitness estimates for each pair of strains. We also measured the relative fre-

quency of the two competitors using quantitative pyrosequencing instead of flow cytometry. This

method did not require the expression of different fluorescent markers to distinguish cells from the

two strains, allowing us to compete strains that only differed genetically by the mutations in the

TDH3 promoter affecting expression noise.

The competition assays were performed as described above, with the following differences in the

protocol. First, strains with low noise and strains with high noise were arrayed each on two 96-well

plates, with 16 replicates per genotype. After incubation on YPG omnitrays and growth to saturation

in YPD, equal volumes of cultures of strains with low noise and high noise were mixed together and

diluted in 0.5 ml of YPD. Following 36 hours of acclimation (as described above), six cycles of dilu-

tion followed by 12 hours of growth were performed. Dilution factors were calculated so that the

average cell density on each plate would reach ~5 x 106 cells/ml at the next dilution time point.

Once every two cycles, the remaining cell cultures were centrifuged immediately after dilution and

the pellets were stored in 30 ml of water at -80˚C for later PCR amplification and pyrosequencing, so

that genotype frequencies were quantified at four time points during the experiment. Cell pellets

were thawed in the week after freezing and 15 ml of each sample was transferred in 30 ml of Zymo-

lyase 20T (3 mg/ml) in 0.1M Sorbitol. After 15 minutes of incubation at 37˚C, plates were vortexed

vigorously for 15 seconds to disrupt cell wall and centrifuged at 3220 rcf for four minutes in an
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Eppendorf 5810 R centrifuge. 5 ml of supernatant were used as PCR template in 50 ml reactions that

also included 1 ml of dNTPs (10 mM of each dNTP), 2.5 ml of forward and reverse primers (10 mM

each), 10 ml of 5x KAPA2G Buffer B, 0.4 ml of KAPA2G Robust HotStart DNA polymerase (5U/ml) and

28.6 ml of water. The oligonucleotides used for each sample were specific to the target mutation in

PTDH3 (Supplementary file 2). After 42 cycles of amplification, PCR products were denatured and

purified using a PyroMark Q96 Vacuum Workstation (Qiagen) and pyrosequencing was performed

on a PyroMark Q96 ID instrument using sequencing primers specific to the target mutations (Fig-

ure 4—source data 1 and Supplementary file 2). The frequency of the two genotypes was deter-

mined for each sample from the relative heights of the peaks corresponding to the two alternative

nucleotides on the pyrograms. Samples with an average peak height below 5 were excluded, as this

could result from weak PCR and cause biases in measured allele frequency. The number of genera-

tions between each time point was estimated using the cell densities before each dilution and the

dilution factors as described above. Relative fitness was calculated as the exponential of the slope of

loge fH=fLð Þ regressed on the number of generations across the four time points, where fH and fL were

the relative frequency of the genotypes conferring high and low noise respectively (fH þ fL ¼ 1).

Therefore, a fitness value above 1 meant that the strain with high noise grew faster than the strains

with low noise, while a fitness value below 1 meant that the strain with low noise grew faster than

the strain with high noise. For each pair of strains, replicates for which fitness departed from the

median fitness across all 16 replicates by more than five times the median absolute deviation were

considered outliers and were excluded. Fitness data for these direct competition assays are available

in Supplementary file 1 – Dataset 5 and Figure 4—source data 1.

Analyzing the relationship between expression and fitness
The relationship between the average expression level of TDH3 and fitness is not expected to follow

a simple mathematical function. Therefore, we used LOESS regression to describe the relationship

between median expression and fitness from the data collected with the set of 43 PTDH3 alleles,

using the R function loess with a span of 2/3. Next, we tested the impact of expression noise on fit-

ness, which was complicated by the fact that expression noise is correlated with median expression

and by the fact that median expression is expected to have a larger impact on fitness than expres-

sion noise. To disentangle the effects of median expression and noise on fitness, we first calculated

the residuals (DNoise) from a LOESS regression (span = 2/3) of expression noise on median expres-

sion. Next, we used a similar approach to calculate the residuals (DFitness) from a LOESS regression

(span = 2/3) of fitness on median expression. DFitness is the variation in fitness that cannot be

explained by a difference in median expression in our dataset. To test whether DFitness could be at

least partially explained by variation in expression noise, we calculated the Pearson’s correlation

coefficient between DNoise and DFitness and used the R function cor.test to test for significance of

this correlation. We excluded the two strains that showed a median expression level above 125%,

because the number of samples with high expression was too low for meaningful interpretation of

DNoise and DFitness in this range of expression levels. In addition, we compared the correlations

between DNoise and DFitness for two different classes of promoter variants determined based on

their expression levels. First, we determined the maximum fitness from the LOESS regression of fit-

ness on median expression. Next, we estimated the median expression value that would lead to a

0.005 reduction in fitness relative to the maximum. This expression value was used as a threshold to

determine which strains had an expression close to the optimum or far from it. Three quantitative

parameters were determined arbitrarily in these analyses: the span of the two LOESS regressions

and the reduction in fitness used to determine the expression threshold. To test the robustness of

the results to variation in these parameters, we calculated the correlations between DNoise and

DFitness for 100 combinations of parameters where the span of the LOESS regressions took one of

five values (2/6, 3/6, 4/6, 5/6 and 1) and the reduction in fitness took one of four values (0.0025,

0.005, 0.0075 and 0.01). In addition, we used permutation tests to compare median expression,

DNoise values and DFitness values between two groups of genotypes: those with DNoise values

below �1 (low noise) and those with DNoise values above 1 (high noise). For each parameter consid-

ered (median expression, DNoise and DFitness), the observed values were randomly shuffled

between the two groups 100,000 times. P-values were then calculated as the proportion of shuffled

groups for which the absolute difference of median was greater than the observed difference of
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median between the groups before shuffling. All analyses were repeated for the four different met-

rics of noise mentioned above (Noise strength, SD, CV* and log(CV*)).

Expression and fitness measured using TDH3-YFP fusion proteins
One important assumption in our analyses of the relationship between TDH3 expression and fitness

is that the median and noise of expression measured using the fluorescent reporter constructs

inserted at HO are representative of the expression level of the TDH3 protein when the promoter

variants are introduced at the native TDH3 locus. To test whether the effects of mutations in the

TDH3 promoter were the same when introduced at HO or at the native TDH3 locus, we constructed

a TDH3-YFP fusion gene at the TDH3 locus and then introduced 20 different PTDH3 alleles upstream

of this reporter gene, including eight TFBS and four TATA box variants that were present in the com-

petition assays (Figure 2—figure supplements 1—source data 1). To fuse the coding sequences of

TDH3 and YFP, we amplified the YFP-TCYC1-KanMX4 construct from strain YPW1002 using primers

3415 and 3416 and transformed the PCR product in the non-fluorescent strain YPW978. Primer 3415

was designed to remove the stop codon of TDH3 and the start codon of YFP and to insert a 30 bp

linker between the coding sequences of the two genes (Huh et al., 2003). Then, the TDH3 promoter

was replaced with a CORE-UH cassette (URA3-HphMX4) amplified with oligonucleotides 1909 and

1910 (Supplementary file 2) to create strain YPW1618. The 20 PTDH3 alleles were amplified from the

native locus in the strains previously constructed (Figure 2—figure supplements 1—source data 1)

using oligonucleotides 1344 and 1342 (Supplementary file 2) and transformed into YPW1618 to

replace the CORE-UH cassette. The presence of the expected mutations was confirmed by sequenc-

ing PCR products obtained with primers 1345 and 1952 (Supplementary file 2). The fluorescence

level of the strains expressing the fusion proteins was measured in parallel to the fluorescence of

strains carrying the same PTDH3 alleles at the HO locus. Four replicate samples of each strain were

analyzed by flow cytometry after growth in YPD medium as described above. The expression of the

reporter gene at the HO locus was found to be a strong predictor of the expression of the gene

fusion at the native TDH3 locus, both for median expression level (Figure 2—figure supplement

1A, R2 = 0.99) and for expression noise (Figure 2—figure supplement 1B, R2 = 0.76). These expres-

sion data are available in Supplementary file 1 – Dataset 4 and Figure 2—figure supplements 1—

source data 1. Flow data (FCS files) used to compare the effects of the PTDH3 alleles when inserted

at the HO locus and at the native TDH3 locus are available in the FlowRepository (flowrepository.

org) under experiment ID FR-FCM-ZYJX. In addition, the impact of fusing YFP to TDH3 on fitness

was quantified by comparing the competitive growth rate of strain YPW1002 expressing YFP from

the HO locus to the growth rate of strain YPW1964 expressing the TDH3-YFP protein fusion. The

expression of the fusion protein was found to cause a 2.5% reduction in fitness (Figure 2—figure

supplement 1C), which could be caused by altered function and/or stability of the TDH3 protein

when fused with YFP. For this reason, we decided not to use protein fusions to measure the fitness

associated with different levels of TDH3 expression.

Modeling the relationship between single cell expression level and
population fitness
To understand how cell-to-cell variability in gene expression level could contribute to population fit-

ness, we performed individual-based stochastic simulations of the growth of clonal populations of

cells covering a wide range of mean expression and expression noise values of a single gene. All sim-

ulations were run as short experiments of fixed duration (1,000 minutes) where variability in expres-

sion level impacting single cell division rate was the only determinant of population growth rate. The

behavior of the population was determined by: a) a normal distribution NE3 of expression levels for

the focal genotype described by its mean �E3 and variance s
2

E3, and b) a function DT ¼ f Eð Þ3 relat-

ing single cell expression level E3 to the time in minutes separating two consecutive cell divisions, or

doubling time DT3. Single cell expression levels sampled from the expression distribution defined

the doubling time for a given cell. Two different functions relating expression level to DT3 were

explored: 1) a linear function (DT ¼ �40 � E þ 1603) and 2) an inverted Gaussian function

(DT ¼ �160 � exp � E � 1ð Þ2=0:18
� �

þ 2403). In each run of the simulation, a population of cells was

tracked by recording information on the current expression level of each cell, the current DT3

derived from that expression level, and the amount of time remaining before the end of the
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experiment. For simplicity, the expression level of each mother and daughter cell was drawn from

the normal distribution NE3 at each cell division and this expression level directly determined the

DT3 value for the cell. To seed a starting population, 103 cells were sampled from the expression

distribution and their expression level was transformed into DT3. To desynchronize the founding

population, the initial values of DT3 were scaled by a random value between 0 and 1 to randomize

the time to first division and a complete simulation was run. 103 cells were drawn randomly at the

end of the seed experiment and used to found a population for which growth rate was quantified. In

the body of the simulation, each single cell was evaluated to determine if the current DT3 was

greater than the remaining time in the experiment assessed for that cell, and if so, the cell divided,

at which point new expression levels were drawn randomly from the normal distribution NE3 and

independently for the mother and daughter cells. After cell division, the time remaining in the exper-

iment for both mother and daughter cells decreased by the amount of the last DT3, the new expres-

sion levels were translated into new values of DT3, and the process repeated until DT3 values for all

cells were greater than the remaining time in the experiment. Competitive fitness was calculated

from the ratio of total number of cells Ni3 at the end of the experiment and the total number of cells

Nref3 obtained from simulating the growth of a reference genotype with mean expression �ref ¼ 13

and noise nref ¼ 0:13, as follows:

Fitness¼ exp
ln Ni

Nref

� �

T

0

@

1

A

Mean expression �E of experimental genotypes were explored in the interval [0,2]. Noise values

nE were explored in the interval [0, 3] where noise was specified separately as standard deviation,

coefficient of variation, and Fano factor. Experiment duration T was set at 1000 minutes for ease of

computation. 100 replicates of each stochastic simulation were run to estimate 95% confidence inter-

vals on fitness estimates. Simulations were coded in MATLAB R2015 (Supplementary file 5).

Measuring single-cell division rates
We performed time-lapse imaging of cells grown in microfluidic devices to compare the distributions

of doubling time among four strains chosen for their differences in TDH3 mean expression level and

expression noise (strains YPW2879, YPW2868, YPW3064 and YPW3047 in Figure 4—source data 1).

The four strains were assayed on four consecutive days using the same procedure. First, cells were

grown to saturation in liquid YPD medium at 30˚C for ~16 hr. Then, 100 ml of culture was transferred

in 5 ml of fresh YPD and grown for another 4 hr at 30˚C until it reached an optical density at 660 nm

comprised between 0.2 and 0.3 (~3�106 cells/ml). At this point, ~100 ml of cell culture was injected

in a microfluidic chip using a 1 ml syringe. Microfluidic devices consisted of a PDMS (Polydymethylsi-

loxane) chip mounted on a 24 mm x 60 mm coverslip, as described in Llamosi et al., 2016. Each

device contained five imaging chambers of 200 � 200�3.7 mm where a monolayer of cells could be

grown. These chambers were connected on two sides to wide flow channels of 100 mm height where

YPD medium was allowed to flow at 120 ul/min using an Ismatec IPC tubing pump. Cells were

imaged using an inverted microscope (Olympus IX83) equipped with a CoolLED pE-300 illumination

system, a Zyla sCMOS camera (Andor) and an IX3-ZDC2 system for autofocus. The temperature of

the entire microfluidic system was maintained at 30˚C in a Plexiglass chamber covering the micro-

scope (Life Imaging Services). After 60 min of acclimation to growth in the microfluidic device, one

bright field image and one fluorescence image were recorded once every six minutes for twenty

hours at five positions centered on each of the five imaging chambers using a 60x oil immersion

objective (Olympus PlanApo N 60x). Only images obtained during the first eight hours (80 frames)

were analyzed, because tracking was not reliable after this time because of high cell densities. Fluo-

rescence images captured expression from the PTDH3-YFP reporter gene in each strain with a wild-

type TDH3 promoter that was used for cell counting in the fitness assays. We were unable to reliably

track individual cells and to correctly assign buds to their mother cells with a software for automated

image analysis (ilastik v1.3.0) using this cytoplasmic YFP expression, thus we measured doubling

times by analyzing the bright field images manually with Fiji (Schindelin et al., 2012). Raw bright

field and fluorescence images, as well as bright field images where cell division events were anno-

tated, are available on Zenodo (https://zenodo.org) with DOI 10.5281/zenodo.1327545. For each
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movie, we randomly selected eight cells on the first frame and determined the doubling times of all

cells produced by these eight starting cells. The doubling time of a cell was defined as the time sep-

arating the appearance of two consecutive buds (Figure 5—figure supplement 1). Following this

procedure, we quantified the doubling time of at least 362 cells for each of the four genotypes. We

then compared the mean doubling time and the standard deviation of doubling time for pairs of

genotypes using permutation tests in R: doubling time values of the two genotypes were pooled

and resampled 105 times without replacement in two groups of same size as the number of cells

analyzed for the two genotypes. P-values were calculated as the proportion of permutations for

which the absolute difference of mean doubling time (or standard deviation) between the two

groups was greater than the observed absolute difference between the two genotypes.

Computational analyses
Custom R scripts containing the code used to process and analyze data as described above are pro-

vided as Supplementary file 3. Input files necessary to run the R scripts are available as. zip files in

Supplementary file 4. Matlab code used to model population growth is provided as

Supplementary file 5.
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