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Abstract Generating a comprehensive description of cortical networks requires a large-scale,

systematic approach. To that end, we have begun a pipeline project using multipatch

electrophysiology, supplemented with two-photon optogenetics, to characterize connectivity and

synaptic signaling between classes of neurons in adult mouse primary visual cortex (V1) and human

cortex. We focus on producing results detailed enough for the generation of computational models

and enabling comparison with future studies. Here, we report our examination of intralaminar

connectivity within each of several classes of excitatory neurons. We find that connections are

sparse but present among all excitatory cell classes and layers we sampled, and that most mouse

synapses exhibited short-term depression with similar dynamics. Synaptic signaling between a

subset of layer 2/3 neurons, however, exhibited facilitation. These results contribute to a body of

evidence describing recurrent excitatory connectivity as a conserved feature of cortical

microcircuits.

DOI: https://doi.org/10.7554/eLife.37349.001

Introduction
Generating well-informed, testable hypotheses about how the cortex represents and processes

information requires experimental efforts to characterize the connectivity and dynamics of cortical

circuit elements as well as efforts to build models that integrate results across studies

(Sejnowski et al., 1988). Estimates of connectivity and synaptic properties vary widely between

experiments due to differences in model organisms, experimental parameters, and analytic methods.

This variability limits our ability to generate accurate, integrative computational models.

Addressing this problem requires standardized experimental methods and large-scale data col-

lection in order to characterize synaptic connections between the large number of potential cell

types (Tasic et al., 2016). Although it may be possible to infer part of these results based solely on

anatomical constraints (Markram et al., 2015), evidence has shown that the rate of connectivity and

properties of synaptic signals can depend on the identity of the pre- and postsynaptic neuron

(Reyes et al., 1998; Galarreta and Hestrin, 1998; Larsen and Sjöström, 2015). To collect standard-

ized data at scale, we have established a pipeline to characterize local, functional connectivity in the
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adult mouse and human cortex. Initially, we seek to characterize connectivity among cell classes,

that is, groups of related cell types (Tasic et al., 2016). Here, we report on the characteristics of

local excitatory inputs among pyramidal neurons from within the same layer (recurrent connections)

obtained during the pipeline’s system integration test—an end-to-end test of the pipeline’s hard-

ware, software, and workflow carried out prior to initializing the pipeline.

Recurrent excitatory connectivity is thought to be important in behavior (Evans et al., 2018) and

disease (Jin et al., 2006). It is a common feature in computational models of cortical working mem-

ory, receptive field shaping, attractor dynamics, and sequence storage (Camperi and Wang, 1998;

Olshausen and Field, 1996; Mongillo et al., 2008; Brunel, 2016; Pernice et al., 2018). Empirical

measurements of recurrent connectivity and synaptic properties are needed in order to constrain

and validate these models. However, characterizing recurrent connectivity in a standardized, high-

throughput manner is challenging because the synaptic connections can be sparse and

weak (Braitenberg and Schüz, 1998; Song et al., 2005; Lefort et al., 2009). Furthermore, most

measurements of recurrent connectivity have been performed in juvenile rodents, leading to a recent

debate over the rate of connectivity in the adult cortex (Biane et al., 2015; Barth et al., 2016;

Jiang et al., 2016).

The data reported here demonstrate that sparse recurrent connectivity is present among excit-

atory neurons in all layers of adult mouse and human cortex. Using a novel automated method for

systematically estimating connectivity across experiments, we further demonstrate that different

populations of adult mouse pyramidal neurons exhibit characteristic distance-dependent connectiv-

ity profiles and short-term dynamics. Finally, we quantify and compare differences in short-term

dynamics with a mechanistic computational model.

Results
We performed in vitro whole-cell recordings from up to eight excitatory neurons simultaneously. We

probed 2836 putative connections in mouse V1 from excitatory cell classes defined by transgenic

eLife digest The outer sheet of brain tissue, the neocortex, is composed of circuits formed from

trillions of connections among billions of neurons, of which there are about one hundred different

neuron types. The scale and complexity of cortical circuitry pose experimental challenges, leading to

an incomplete understanding of how cortical cell types are connected and the computations that

take place at the connections.

About half of the cell types in the brain are excitatory, which means they can activate other cells.

The cortex consists of several distinct layers of cells, within which excitatory cells cooperate to

process the signals they receive from other cortical layers and brain areas. Using recordings of

electrical activity arising from the connections between pairs of excitatory neurons, Seeman,

Campagnola et al. measured the likelihood and strength of connectivity among related groups of

excitatory cell types in slices of cortex taken from human and mouse brains.

The initial results confirm previous findings that individual layers of human cortex can have more

and stronger excitatory connections than the same layers of mouse cortex. In most layers of mouse

cortex, repeatedly activating the excitatory cells leads to progressively weaker responses. However,

in the upper layers of mouse cortex, the opposite effect is sometimes seen: more excitatory activity

causes the connections to generate stronger responses. By feeding these data into a computer

model, Seeman, Campagnola et al. described and compared the activity of the groups of related

excitatory cell types.

These results are the first of a new, large-scale project where findings can be integrated across

experiments to gain a more detailed picture of cortical circuitry and computation. Neuroscientists

will be able to use the results to build advanced computer models of cortical circuits. Such models

will, for example, generate predictions for how the attributes of excitatory connectivity revealed by

Seeman, Campagnola et al. influence how information is processed in the cortex. In so doing, the

models will add to our understanding of how the human brain works both in health and in disease.

DOI: https://doi.org/10.7554/eLife.37349.002
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labeling, morphology, and cortical layer (Tasic et al., 2016). We further probed 616 putative connec-

tions in human frontal and temporal cortex from excitatory cell classes defined by morphology and

cortical layer (Table 1). Recurrent connectivity was tested and observed in layer 2/3 through layer 6

of mouse primary visual cortex and layer 2 through layer 6 of the human cortex. To assess connectiv-

ity, trains of action potentials were evoked in each cell, one at a time, while recording synaptic

responses in all other cells. Connections were identified by the presence of excitatory postsynaptic

potentials (EPSPs) evoked with a short latency and low jitter following the presynaptic spike, consis-

tent with monosynaptic connections (Figure 1—figure supplement 1). We encountered no exam-

ples of EPSPs eliciting spikes in any recorded pyramidal cells, further indicating that evoked

polysynaptic activity should be rare in these experiments.

Properties of intralaminar excitatory synaptic signaling in mouse cortex
Layer and projection-specific classes of excitatory neuron populations were identified either by post-

hoc morphologic evaluation in layer 2/3 (animals n = 11) or transgenic labelling to target layers 4–6

(layer 4: Rorb (n = 28), layer 5: Tlx3 (n = 57), Sim1 (n = 20), layer 6: Ntsr1 (n = 13); Figure 1A). Layer

5 recordings were subdivided into subcortical projecting cells (Sim1; http://connectivity.brain-map.

org) or corticocortical projecting cells (Tlx3; Kim et al., 2015). In layer 6, only the subcortically pro-

jecting cells were targeted (Ntsr1; Vélez-Fort et al., 2014). We probed 2836 potential connections

(layer 2/3: 180, Rorb: 315, Tlx3: 1108, Sim1: 783, Ntsr1: 450) across these excitatory populations in

mouse cortex (Table 1). Connections were detected between 131 putative pre- and post-synaptic

partners (layer 2/3: 15, Rorb: 20, Tlx3: 39, Sim1: 55, Ntsr1: 2; Table 1). For >75% of the recorded

cells, we recovered a biocytin fill (Figure 1A) and for all cells we obtained an epifluorescent image

stack (Figure 1B).

We first characterized the strength and kinetics in recurrent connections of each Cre-type and

layer (Figure 1). To measure these features with minimal influence of STP, only the first response on

each sweep (inter-trial interval (ITI) = 15 s) was included for this analysis. For each connection,

Table 1. The number of connections probed and the number of connections used in subsequent analyses per the analysis flow

diagram in Figure 1—figure supplement 1C–G.

For each column, the Figure 1—figure supplement 1 letter indicates the end level in the analysis flow diagram while the main figure

reference indicates n connections included in that figure. For example, the ‘Strength’ column indicates the number of connections for

each type used to measure the strength (or amplitude) of the connection as shown in Figure 1F. The inclusion criteria for these con-

nections can be followed in the diagram in Figure 1—figure supplement 1E. Similarly, these data are provided for kinetics (rise time

and latency) and short-term plasticity (STP).

Layer/
Cell
Type

Total probed
(Figure 1—
figure
supplement
1C)

Total
connected
(Figure 1—
figure
supplement 1C)

Total
connection
probability
(%)

Strength
(Figure 1—
figure
supplement 1E,
Figure 1F)

Kinetics
(Figure 1—
figure
supplement 1F,
Figure 1F)

Connection probability (%) w/in
100 mm (Connected/probed,
Figure 1—figure supplement 1D,
Figure 4A,C)

STP (Figure 1—
figure
supplement 1G,
Figures 5 and 6)

Mouse
L2/3

180 15 8.3 12 9 13/130 (10.0) 9

Rorb 315 20 6.3 13 13 18/247 (7.3) 9

Tlx3 1108 39 3.5 17 14 36/746 (4.8) 5

Sim1 783 55 7.0 18 18 41/527 (7.8) 7

Ntsr1 450 2 0.4 2 2 0/313 (0.0) N/A

Human
L2

132 22 16.7 18 18 13/69 (18.8) N/A

Human
L3

249 37 14.9 33 29 20/106 (18.9) N/A

Human
L4

123 4 3.3 2 2 1/51 (2.0) N/A

Human
L5

112 13 11.6 6 6 6/49 (12.2) N/A

DOI: https://doi.org/10.7554/eLife.37349.003
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individual sweeps were included based on a number of criteria, namely a maximum autobias current

to reach a holding potential of �70 ± 5 mV, a stable baseline, and absence of spontaneous spiking

(see Materials and methods; Figure 1—figure supplement 1E,F). A minimum of 5 QC-passed

Figure 1. Electrophysiological recordings of evoked excitatory synaptic responses between individual cortical pyramidal neurons in mouse primary

visual cortex. (A) Cartoon illustrating color, Cre-line, and cortical layer mapping in slice recording region (V1). Example maximum intensity projection

images of biocytin-filled pyramidal neurons for L2/3 and each Cre line. (B) Example epifluorescent images of neurons showing Cre-dependent reporter

expression and/or dye-filled recording pipettes. Connection map is overlaid on the epifluorescent image (colored: example connection shown in C). (C)

Spike time aligned EPSPs induced by the first AP of all � 50 Hz stimulus trains for a single example connection (individual pulse-response trials: grey;

average: colored). (D) First pulse average, like in C., for all connections within the synaptic type; grey: individual connections; thin-colored: connection

highlighted in C; thick-colored: grand average of all connections. (E) Overlay of grand average for each connection type. (F) EPSP amplitude (in log

units), CV of amplitude, latency, and rise time of first-pulse responses for each Cre-type (small circles) with the grand median (large). See Figure 1—

figure supplement 1 for data processing and analysis diagrams.

DOI: https://doi.org/10.7554/eLife.37349.004

The following source data and figure supplement are available for figure 1:

Source data 1. Electrophysiological recordings of evoked excitatory synaptic responses between individual cortical pyramidal neurons in mouse primary

visual cortex.

DOI: https://doi.org/10.7554/eLife.37349.006

Figure supplement 1. Experiment methodology and analysis workflow.

DOI: https://doi.org/10.7554/eLife.37349.005
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sweeps were required for each connection to be included. Figure 1C shows EPSPs recorded from

one example connection found in each of the chosen excitatory cell groups. For the large majority of

connections, it was not possible to unequivocally distinguish synaptic failures from detection failures,

thus we used the mean response from all sweeps (Figure 1C) to evaluate the EPSP features.

Consistent with previous reports that recurrent connectivity is weak (Song et al., 2005;

Lefort et al., 2009), we found that a majority of the connections had amplitudes less than 0.5 mV. In

this small sample, we did not observe statistical difference in the EPSP amplitudes (Figure 1E,F)

between groups (KW p=0.07), although there was a trend toward overall smaller Tlx3 EPSP ampli-

tudes (median ± SD 0.14 ± 0.24 mV). The range of amplitudes for layer 2/3 (0.032–0.902 mV), Rorb

(0.105–1.626 mV), Sim1 (0.068–1.254 mV), and Tlx3 (0.02–0.833 mV) spanned an order of magni-

tude. We could not assess the range of recurrent Ntsr1 connections due to the low number of con-

nections measured; however, the amplitude and relatively long latency (Figure 1F) are consistent

with connections between corticothalamic (CT) layer six neurons in the rat cortex (West et al., 2006;

Table 1). The mean EPSP amplitude was consistently larger than the median (Table 2) due to a

skewed (long-tailed) distribution of response amplitudes. Similar observations in the rat visual cortex,

and mouse somatosensory cortex, has led to the suggestion that rare, large-amplitude connections

are important for reliable information processing (Song et al., 2005; Lefort et al., 2009;

Cossell et al., 2015). The majority of EPSP latencies were less than 2.5 ms (Table 2), and similar

across populations (KW p=0.17), consistent with a direct, monosynaptic connection between

recorded neurons.

We could not directly quantify synaptic failures and thus calculated the coefficient of variation of

synaptic amplitudes (CV; Figure 1F) to assess release probability. The CV of each connection

describes the variability in a particular response in relation to the mean (ratio of standard deviation

to mean) and is negatively correlated with release probability (Markram, 1997). The range of coeffi-

cient of variation in our data suggests differences in release probability between cell classes and is

consistent with STP modeling results (see Figure 6).

Properties of intralaminar excitatory synaptic signaling in human cortex
To what extent is recurrent connectivity in mouse V1 representative of connectivity in other regions

and species? To make this comparison, we performed multipatch recordings from human frontal and

temporal cortex. Specimens were collected during surgical resection of epileptic or tumorous tissue,

but were distal to the site of pathology. We sampled recurrent intralayer connectivity in all layers

containing pyramidal cells. Pyramidal cells were identified by their morphology visualized via biocytin

(Figure 2A) or fluorescent dye (Figure 2B). We found 22 connections between layer 2 pyramidal

cells (132 probed), 37 connections between layer 3 pyramidal cells (249 probed), four connections

between layer 4 pyramidal cells (123 probed), and 13 connections between layer 5 pyramidal cells

(112 probed). We found 1 connection in layer 6 (16 probed connections) but have not yet probed

this layer sufficiently to make confident measurements of connection probability or synaptic proper-

ties. We selected 1.3 mM [Ca++]e for our human experiments because of reports that synaptic

strength is higher than in mouse and to minimize the complex events that can be initiated by individ-

ual spikes in human tissue (Molnár et al., 2008) that make identifying monosynaptic connectivity

challenging. Indeed we found that human cortex had a higher connectivity rate and mean amplitude

Table 2. Properties of mouse EPSPs.

Median, mean, and standard deviation of EPSP properties plotted in Figure 1F for each layer and Cre-type. Number of connections

used in the amplitude and CV analysis are found in Table 1 ‘Strength’, or for latency and rise time in Table 1 ‘Kinetics’.

Amp
median
(mV)

Amp
mean
(mV)

Amp SD
(mV)

Latency
median (ms)

Latency
mean (ms)

Latency
SD (ms)

Rise Time
median (ms)

Rise Time
mean (ms)

Rise Time
SD (ms)

CV
median

CV
mean

CV
SD

L2/3 0.26 0.34 ±0.32 1.48 1.87 ±1.0 1.24 1.45 ±0.57 0.55 0.56 ±0.15

Rorb 0.31 0.54 ±0.49 1.31 1.50 ±0.6 1.32 1.63 ±0.94 0.59 0.55 ±0.24

Sim1 0.33 0.52 ±0.51 1.86 2.05 ±0.82 1.91 1.86 ±1.1 0.36 0.43 ±0.2

Tlx3 0.14 0.24 ±0.24 1.81 2.07 ±0.74 1.44 1.35 ±1.1 0.51 0.51 ±0.18

DOI: https://doi.org/10.7554/eLife.37349.007
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(Figure 2C,D) compared to mouse cortex (despite a higher [Ca++]e in mouse), consistent with previ-

ous reports (Molnár et al., 2008). Layers 2, 3, and 5 had a sufficient number of connections to char-

acterize strength and kinetics. However, we found no differences in response properties among

these three layers (amplitude p=0.22, latency p=0.51, rise time p=0.22, Table 3). We did observe

differences in CV between layers 2, 3, and 5 (p=0.0004, Table 3) suggesting layer-specific differen-

ces in release probability of recurrent connections, similar to findings in mouse V1.

It is reasonable to question if the recurrent connectivity we see in tissue from epilepsy and tumor

patients differs from that of healthy individuals. Although we cannot rule this out, we saw no signifi-

cant differences in overall connectivity between tumor and epilepsy-derived specimens (p=0.833,

Fisher’s Exact Test). We also found recurrent connections within multiple cortical regions and disease

Figure 2. Electrophysiological recordings of evoked excitatory synaptic responses between individual human cortical pyramidal neurons. (A) Cartoon

illustrating color and cortical layer mapping in slice recording region (temporal or frontal cortex). Example maximum intensity projection images of

biocytin-filled pyramidal neurons for layers 2–5. (B) Example epifluorescent images of neurons showing dye-filled neurons and recording pipettes.

Connection map is overlaid on the epifluorescent image (colored: example connection shown in C). (C) Spike time aligned EPSPs induced by the first

AP of all � 50 Hz stimulus trains for a single example connection (individual pulse-response trials: grey; average: colored). (D) First pulse average, like in

C., for all connections within the synaptic type; grey: individual connections; thin-colored: connection highlighted in C; thick-colored: grand average of

all connections. (E) Overlay of grand average for each connection type. (F) EPSP amplitude, CV of amplitude, latency, and rise time of first-pulse

responses for each layer (small circles) with the grand mean (large circles). See Figure 1—figure supplement 1 for data processing and analysis

diagrams.

DOI: https://doi.org/10.7554/eLife.37349.008

The following source data is available for figure 2:

Source data 1. Electrophysiological recordings of evoked excitatory synaptic responses between individual human cortical pyramidal neurons.

DOI: https://doi.org/10.7554/eLife.37349.009
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states in the human. Taken together, this may indicate that our results capture a common architec-

ture of the mouse and human microcircuit.

Detection limit of synaptic responses
When using whole cell recordings to characterize synaptic connectivity, a major limitation is that

some EPSPs may be too weak to be detected at the postsynaptic soma. Detection limits are influ-

enced by several factors including the kinetics of EPSPs, the amplitude and kinetics of background

noise, the frequency and properties of spontaneous EPSPs, and the number of evoked presynaptic

spikes. One consequence is that we expect to generally underestimate connectivity, and in some

cases, cell class differences in synaptic strength can be misinterpreted as differences in connectivity.

Another consequence is that it may not be possible to obtain an accurate measurement of the distri-

bution of synaptic weights, since the weakest synapses are undetectable.

To address these issues, we characterized the sensitivity of our experiments by testing whether a

machine classifier could detect simulated EPSPs of varying, known strength (see

Materials and Methods). The classifier was trained to detect connections based on features

extracted from the averaged response to evoked spikes (Figure 3B; features listed in

Supplementary file 1) and from the distributions of features measured on individual responses

(Figure 3C). For each putative connection probed, we collected recordings of background activity

when no cells were being stimulated and superimposed EPSP-like deflections. These recordings

were then processed for features (Figure 3 – table supplement 1) which were fed to the classifier to

generate connectivity predictions. By testing several sets of artificial EPSPs in which we systemati-

cally varied the average amplitude, we were able to measure the relationship between EPSP

strength and the probability that a connection could escape detection (Figure 3D).

This analysis provides, for every connection that we probed, an estimate of the minimum detect-

able EPSP amplitude (Figure 3A). Recordings with low background noise and adequate averaging

will generally allow the detection of very small EPSPs (Figure 3D, top panel has a detection limit

of 10–20 mV), whereas lower quality recordings will have higher detection thresholds and will report

lower connectivity rates (Figure 3D, bottom panel has a poor detection limit near 100 mV). Likewise,

EPSPs with shorter rise time (or other properties that distinguish the EPSP from background) are

more likely to be detected (Figure 3D). These results confirm that the differences in experimental

protocol between studies (for example, the number of presynaptic spikes evoked for each connec-

tion) can have a substantial impact on the apparent connectivity reported, but also suggests that

future studies could reconcile these differences by carefully characterizing their detection limits.

The results of this analysis also suggest a means of estimating the shape of the underlying distri-

bution of synapse strengths at the low end, where synapses become more difficult to detect.

Figure 3E shows the distribution of EPSP amplitudes across all detected synapses (light grey area)

as well as the curve representing the probability that synapses would be detected as a function of

EPSP amplitude (red line). Dividing the measured distribution by the probability of detection yields a

corrected distribution (dark grey) with an overall 10% increase in connectivity. Although this estimate

becomes unstable as the detection probability nears zero, an interesting result is that the left edge

of the distribution trends downward even in the region where detection probability is high, suggest-

ing that the sensitivity of our experiments is adequate to capture the majority of synapses and that

Table 3. Properties of human EPSPs.

Median, mean, and standard deviation of EPSP properties plotted in Figure 1F for each layer and Cre-line. Number of connections

used in the amplitude and CV analysis are found in Table 1 ‘Strength’, for latency and rise time in Table 1 ‘Kinetics’.

Amp
median
(mV)

Amp
mean (mV)

Amp SD
(mV)

Latency
median (ms)

Latency
mean (ms)

Latency
SD (ms)

Rise time
median (ms)

Rise time
mean (ms)

Rise time
SD (ms)

CV
median

CV
mean

CV
sd

L2 0.22 0.30 ±0.22 1.84 1.79 ±0.78 1.47 1.53 ±0.59 0.80 0.64 ±0.29

L3 0.34 0.54 ±0.68 1.57 1.58 ±0.97 1.60 2.07 ±1.36 0.39 0.44 ±0.23

L4 0.97 0.97 ±1.05 2.70 2.70 ±1.80 2.02 2.02 ±0.47 0.37 0.37 ±0.20

L5 0.62 0.80 ±0.69 1.64 1.75 ±0.59 1.16 1.23 ±0.46 0.29 0.34 ±0.10

DOI: https://doi.org/10.7554/eLife.37349.010
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Figure 3. Characterization of synapse detection limits. (A) Scatter plot showing measured EPSP amplitude versus minimum detectable amplitude for

each tested pair. Detected synapses (manually annotated) are shown as blue diamonds; pairs with no detected EPSPs are grey dots. The region under

the red dashed line denotes the region in which synaptic connections are likely to be misclassified as unconnected. Three example putative

connections are highlighted in A and described further in panels B-D. One connection (top row) was selected for its large amplitude PSP and low

background noise. Another connection (middle row) is harder to detect (PSP onset marked by yellow arrowhead) due to low amplitude and high

background noise. The bottom row shows a recorded pair that was classified as unconnected. (B) A selection of postsynaptic current clamp recordings

in response to presynaptic spikes. Each row contains recordings from a single tested pair. The vertical line indicates the time of presynaptic spikes,

measured as the point of maximum dV/dt in the presynaptic recording. Yellow triangles indicate the onset of the EPSP. (C) Histograms showing

distributions of peak response values measured from deconvolved traces (see Materials and methods). Red area indicates measurements made on

background noise; blue area indicates measurements made immediately following a presynaptic spike. (D) Characterization of detection limits for each

Figure 3 continued on next page
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we have accurately represented the underlying distribution of synaptic strengths. We are cautious,

however, in our interpretation of this result–the analysis relies on several assumptions about the

behavior of the classifier and the realism of the simulated EPSPs. Ultimately, the approach must be

validated against a larger dataset.

Connection probability of excitatory synapses
Estimates of connectivity vary widely across studies, in part due to methodological differences. In

addition to the effects of detection sensitivity described above, estimated connection probability is

affected by the intersomatic distances over which connections are sampled. This spatial distribution

of connections may also offer insight into the organization of functional microcircuits. In mouse, con-

nectivity in layer 2/3, Rorb, and Sim1 neurons within 100 mm was similar (~10%; Figure 4, left; con-

nected/probed, L2/3: 13/130, Rorb: 18/247, Sim1: 41/527). However, within this range, Tlx3

connectivity was markedly lower (~5%; Tlx3: 36/746). Consistent with previous experiments in rat L6

CT neurons (West et al., 2006), Ntsr1 connectivity was very sparse as only two connections were

detected (out of 313 probed) and were relatively far apart (intersomatic distance of 163 and 127 mm;

Bonferroni corrected p<0.01 relative to all other groups). Most connectivity versus distance profiles

(Figure 4B) showed a progressive reduction in the connection probability with increasing distance.

We did not carry out an analysis of reciprocal (bi-directional) connectivity because we lacked the sta-

tistical power to detect differences between our classes. Furthermore, measuring reciprocal connec-

tivity at the cell class level can yield misleading results (Hoffmann and Triesch, 2017).

In human cortex, layers 2 and 3 had a similar connection probability (~15%; layer 2: 22/132; layer

3: 37/249; Figure 4C), while layer 4 recurrent connectivity was much smaller (3.3%, 4/123, Bonferroni

corrected p<0.02 relative to all other layers). More data are needed to accurately resolve the dis-

tance dependence of recurrent connectivity in the human (Figure 4D).

Utilizing a multipatch technique limits our ability to probe connectivity at high density and long

distances. We used two-photon optogenetic stimulation to overcome these limitations, which allows

for focal stimulation of many (mean = 56 cells, range = 8–117 cells) presynaptic cells in a single

experiment, and critically, allows probing distances greater than is generally feasible with multipatch

experiments. ReaChR expressing Tlx3-Cre neurons in layer 5 were photo-stimulated with a two-pho-

ton laser while one or two putative postsynaptic cells were monitored in whole-cell current clamp

configuration (Figure 4—figure supplement 1; Figure 4—figure supplement 1A).; With this tech-

nique, using 12 mice, we found a similar connection probability over the distance range of multi-

patch experiments (4/136, 2.15%) and reduced connectivity at extended distances up to 785 mm

(Figure 4E; 13/1594, 0.82%) with the furthest connection found at 459 mm.

Short-term plasticity of excitatory synapses
For a subset of synaptic connections in mouse cortex (Figure 1—figure supplement 1G, Table 1

STP), we characterized and modeled short-term synaptic dynamics. We probed short-term dynamics

with stimulus trains consisting of 8 pulses to induce STP, followed by a variable delay and 4 more

pulses to measure recovery (Figure 5A, left). The 8 initial pulses allowed responses to reach a steady

state, from which we could characterize the extent of depression (or facilitation) at frequencies from

10 to 100 Hz. The 50 Hz stimulation protocol had additional recovery intervals ranging from 250 to

4000 ms (Figure 5A, right). Although typical experiments use a single delayed pulse to measure

Figure 3 continued

example. Plots show the probability that simulated EPSPs would be detected by a classifier, as a function of the rise time and mean amplitude of the

EPSPs. Each example has a different characteristic detection limit that depends on the recording background noise and the length of the experiment.

(E) An estimate of the total number of false negatives across the entire dataset. The measured distribution of EPSP amplitudes is shown in light grey

(smoothed with a Gaussian filter with s = 1 bin). The estimated correction show in dark grey is derived by dividing the measured distribution by the

overall probability of detecting a synapse (red dashed line) at each amplitude. See Supplementary file 1 for features included in classifier.

DOI: https://doi.org/10.7554/eLife.37349.011

The following source data is available for figure 3:

Source data 1. Characterization of synapse detection limits.

DOI: https://doi.org/10.7554/eLife.37349.012

Seeman et al. eLife 2018;7:e37349. DOI: https://doi.org/10.7554/eLife.37349 9 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.37349.011
https://doi.org/10.7554/eLife.37349.012
https://doi.org/10.7554/eLife.37349


Figure 4. Distance dependent connectivity profiles of mouse and human E-E connections. (A) Recurrent connection probability and distribution of

connections for mouse -linesand layer 2/3. Mean connection probability (filled circles) and 95% confidence intervals (bars) for connections probed within

100 mm (n connections in Table 1). (B) Connection probability over distance for mouse Cre-lines and layer 2/3. Top: Histogram of putative connections

probed. Bottom: Mean connection probability (thick line) with 95% confidence intervals (shading) binned in 40 mm increments. (C) Like-to-like

connection probability and distribution of connections between human pyramidal neurons. Mean connection probability (filled circles) and 95%

confidence intervals (bars) for connections probed within 100 mm. (D) Connection probability over distance for human pyramidal neurons, formatted as

in panel B. (E) Tlx3-Tlx3 connection probability measured by two-photon mapping. X-Y distance distribution of connections probed onto a postsynaptic

cell (black triangle), detected presynaptic neurons (filled circles), no connection detected (empty circles), and direct event artifact due to undesired

activation of opsin in the dendritic arbor of the recorded cell (red circles). (F) Connection probability and stimulation artifact over distance measured by

two-photon mapping. Mean connection probability vs. distance (blue line; starting at 50 mm) with 95% confidence intervals (shading) and direct event

artifact amplitude vs. distance (dotted red line) for Tlx3-Tlx3 connections probed with two-photon stimulation. See Figure 4—figure supplement 3 for

distribution of connectivity as a function of cortical slice position and cell depth. See Figure 4—figure supplements 1,2 for details on two-photon

connectivity experiments.

DOI: https://doi.org/10.7554/eLife.37349.013

The following source data and figure supplements are available for figure 4:

Source data 1. Distance dependent connectivity profiles of mouse and human E-E connections.

DOI: https://doi.org/10.7554/eLife.37349.017

Figure supplement 1. Intralaminar connectivity rates were unaffected by recording depth and medial-lateral position in V1.

DOI: https://doi.org/10.7554/eLife.37349.014

Figure 4 continued on next page
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recovery, we used a short train of 4 pulses to improve sensitivity in modeling the recovered state of

the synapse. Figure 5B shows average synaptic responses to a 50 Hz stimulus with eight initial

pulses followed by four pulses at a 250 ms delay from individual Sim1-Sim1 connections shown in

grey, with the grand average overlaid (blue). We used exponential deconvolution (Figure 5B, mid-

dle; Equation 2) to estimate the amplitudes of individual PSPs in the absence of temporal summa-

tion (arising from the relatively long cell membrane time constant).

We measured the peak amplitude of the deconvolved response for every pulse (blue dots) and

normalized to the first pulse in the train in order to characterize short-term dynamics across four fre-

quencies. Figure 5C (top) highlights frequency dependent depression in recurrent Sim1 connections.

Across cell classes we saw depression in Rorb, Tlx3, and Sim1 synapses, whereas layer 2/3 synapses

showed modest facilitation on average (Figure 5C, bottom left). The two Ntsr1 connections (data

not shown) also showed facilitation as has been previously reported for layer 6 CT neurons

(West et al., 2006). The amplitude ratio of the last pre-recovery pulse (8) to the first, for individual

connections (Figure 5D, left), highlights the heterogeneity in layer 2/3 dynamics where some synap-

ses depressed strongly (ratio < 1) and others facilitated (ratio > 1). Individual dynamics in Rorb, Tlx3,

and Sim1 generally showed more depression than layer 2/3 (KW p=0.04). In addition to probing

induction of short-term plasticity, we also measured recovery from short-term effects at various time

delays (Figure 5B, bottom, blue dots) for layer 2/3, Rorb, Sim1, and Tlx3 connections (Figure 5C,

bottom). All types showed a similar time-course of recovery as measured by the ratio of the first

recovery pulse (9) to the first induction pulse (Figure 5D, right).

Although we observed depression in both layer 5 classes, previous reports in rat somatosensory

cortex showed that recurrent connections between thick tufted layer 5b cortical neurons can facili-

tate (Reyes and Sakmann, 1999; Lefort and Petersen, 2017). The availability of free calcium in the

presynaptic terminal impacts release probability and thus short-term dynamics of a synapse

(Rozov et al., 2001). We hypothesized that 0.3 mM EGTA in the intracellular solution may buffer

presynaptic calcium accumulation and reduce the magnitude of facilitation observed in our layer 5

connections. We tested this in a subset of recurrent Sim1 connections (23 connections found/210

probed) and Tlx3 connections (five connections found/52 probed) in which there was no EGTA in the

internal solution ([Ca++]e = 2.0mM). Over the course of a 50 Hz train, we saw overall depression in

both Tlx3 and Sim1 (Figure 5—figure supplement 1A) such that the 8:1 pulse ratio was statistically

indistinguishable in the two EGTA concentrations (Tlx3 KS test p=0.47; Sim1 KS test p=0.35; Fig-

ure 5—figure supplement 1B; Table 4). We did observe, however, that Tlx3 synapses show tran-

sient facilitation during the second pulse of the train (paired-pulse ratio; KS test p=0.04; Figure 5—

figure supplement 1C, top; Table 4). We did not see a significant difference in paired-pulse ratio

for Sim1 connections in the absence of EGTA (KS test p=0.35; Figure 5—figure supplement 1C,

bottom; Table 4). This suggests that Tlx3 and Sim1 cell classes have different synaptic dynamics but

are nonetheless dominated by depression.

To more fully capture the dynamic processes contributing to short-term plasticity and how they

may differ among connection types we turned to a model of short-term dynamics which has been

well described (Hennig, 2013; Mongillo et al., 2008; Richardson et al., 2005). For homogeneous

populations, we expect that applying the model to an average response will accurately represent

the short-term dynamics of a particular cell class. Layer 2/3, Rorb, Tlx3, and Sim1 synapses were

modeled with depression (Equation 4, Materials and methods) and use-dependent replenishment

Figure 4 continued

Figure supplement 1—source data 1. Intralaminar connectivity rates were unaffected by recording depth and medial-lateral position in V1.

DOI: https://doi.org/10.7554/eLife.37349.018

Figure supplement 2. Characterization of two-photon photostimulation.

DOI: https://doi.org/10.7554/eLife.37349.015

Figure supplement 2—source data 1. Characterization of two-photon photostimulation.

DOI: https://doi.org/10.7554/eLife.37349.019

Figure supplement 3. Two-photon optogenetic mapping details.

DOI: https://doi.org/10.7554/eLife.37349.016

Figure supplement 3—source data 1. Two-photon optogenetic mapping details.

DOI: https://doi.org/10.7554/eLife.37349.020

Seeman et al. eLife 2018;7:e37349. DOI: https://doi.org/10.7554/eLife.37349 11 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.37349.018
https://doi.org/10.7554/eLife.37349.015
https://doi.org/10.7554/eLife.37349.019
https://doi.org/10.7554/eLife.37349.016
https://doi.org/10.7554/eLife.37349.020
https://doi.org/10.7554/eLife.37349


(Equation 5, Materials and methods). For the more homogeneous cell classes (Rorb, Tlx3, and

Sim1), the model performed well (Figure 6A, Sim1 connections r2 = 0.845, Table 5) in capturing

depression during the eight initial pulses at various frequencies (Figure 6A) as well as modeling

recovery at various delays for 50 Hz stimuli (Figure 6A, open circles). Heterogeneity among layer 2/3

synapses made it difficult to constrain the model and thus were not included in further analysis.

From this model, we can extract free parameters such as P0 which estimates release probability and

tr0 which estimates the time course of recovery from depression. Rorb connections had the largest

release probability (P0 = 0.30, Figure 6B, left) which is consistent with faster entry into depression

Figure 5. Short-term dynamics of mouse recurrent connections by Cre-line and layer (n in Table 1 ‘STP’). (A) Schematic of STP and STP recovery

stimuli. (B) Sim1-Cre EPSPs in response to a 50 Hz stimulus train (top; eight induction pulses and four recovery pulses delayed 250 ms; individual

connection: gray traces; blue: Sim1-Cre average EPSP at 50 Hz). Exponential deconvolution followed by lowpass filter of EPSPs above (middle, filled

circles: pulse amplitudes in C). Exponential deconvolution of 50 Hz stimulus with all five recovery time points in A (bottom, filled circles: pulse

amplitudes in C). (C) The mean normalized amplitude of deconvolved response versus pulse number at multiple stimulation frequencies for Sim1-Cre

(top). Normalized amplitude of the deconvolved response at 50 Hz with first recovery pulse at each interval for each Cre-line and L2/3 connections

(bottom). (D) The depth of depression during 50 Hz induction (left) as measured by the amplitude ratio of the 8th to 1st pulse for each Cre-line and

layer (small circles) and grand mean (large circles). Amount of recovery at 250 ms latency (right) for each Cre-line and layer (small circles) and grand

mean (large circles). See Figure 5—figure supplement 1 for results of STP at different EGTA concentrations and Figure 1—figure supplement 1 for

data analysis diagram.

DOI: https://doi.org/10.7554/eLife.37349.021

The following source data and figure supplements are available for figure 5:

Source data 1. Influence of internal EGTA on short-term dynamics.

DOI: https://doi.org/10.7554/eLife.37349.023

Figure supplement 1. Influence of internal EGTA on short-term dynamics.

DOI: https://doi.org/10.7554/eLife.37349.022

Figure supplement 1—source data 1. Influence of internal EGTA on short-term dynamics.

DOI: https://doi.org/10.7554/eLife.37349.024
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(Figure 5C, bottom pulse 2). Conversely, Tlx3 connections had a lower initial release probability

(P0 = 0.16) and recovered more quickly (tr0 = 0.736 s). Table 5 shows full results of the model across

these three types as well as calculated paired Z-scores (Equation 6) for P0 and tr0.

Discussion
We leveraged the sub-millisecond sampling, high gain, and low noise of multipatch recordings to

investigate the functional connectivity and short-term dynamics of recurrent synapses in the adult

mouse and human cortex. We observed sparse recurrent connections between excitatory neurons in

layers 2/3 through 6 in adult mouse visual cortex and layers 2 through 6 of adult human cortex. We

supplemented mouse multipatch experiments with high-throughput 2P optogenetic stimulation to

sample connectivity at greater distances than is generally feasible using the multipatch approach.

Most excitatory recurrent connections in mouse cortex were dominated by short-term synaptic

depression.

Estimates of connectivity derived from multipatch experiments in brain slices should be consid-

ered as a lower bound on the underlying population connectivity due to sensitivity to false negatives

from several sources. These effects may contribute to differences in reported connectivity across

studies. A fraction of synaptic connections are expected to be severed during slicing; one estimate

of connectivity perturbed by slicing approaches 50% (Levy and Reyes, 2012). The effect on mea-

sured connection probability depends on the thickness of the slice, the depth of recorded cells from

the cut surface, the morphology of recorded cells, and the distance between them. Although we

minimize lost connections by patching deep in the slice (>40 mm; Figure 4—figure supplement 2C,

D) and by selecting cells in close proximity, this is still a likely source of false negatives in our data.

Another fraction of synapses are expected to be either too weak (Isaac et al., 1995) or too distal

from the recording pipette to be detected. The magnitude of this effect is difficult to estimate, but

our initial analysis hints that our methods are sensitive enough to capture the majority of synapses.

To obtain more accurate estimates of connectivity, it will be necessary to combine these results with

other methods such as in vivo multipatch recordings, transsynaptic tracing, and serial section elec-

tron microscopy. These methods are also limited, but in each case the constraints are different and

potentially complementary.

There is a wide range of reported rates of recurrent connectivity among excitatory neurons in

rodent studies (Thomson et al., 2002; Hofer et al., 2011; Jiang et al., 2015). One suggestion is

that differences between the juvenile and adult rodent can explain the variance (Jiang et al., 2016).

To avoid changes associated with development, we carried out our experiments in the adult (about

two months old) cortex. Nevertheless, our conclusion that recurrent connectivity is sparse but not

absent is similar to results from experiments in other adult (Reyes and Sakmann, 1999; Lee et al.,

2016) and juvenile animals (Mason et al., 1991; Holmgren et al., 2003; Song et al., 2005;

Sjöström et al., 2001; Morishima et al., 2011; Perin et al., 2011; Lefort et al., 2009; Levy and

Reyes, 2012; Cossell et al., 2015). A notable difference, however, is that we never observed rates

of recurrent connectivity as high or synaptic amplitudes as large as those reported in juvenile

rodents, consistent with the observation that the rate of recurrent connectivity and synaptic strength

declines with age (Bourgeois and Rakic, 1993; Reyes and Sakmann, 1999).

Table 4. Mean and standard deviation of 8:1 ratio at 50 Hz and 9:1 ratio at 50 Hz and 250 ms delay for individual synapses.

Unless noted, EGTA was 0.3 mM and n’s are listed in Table 1, STP.

8:1 pulse ratio (50 Hz) mean ± SD Recovery (9:1) ratio (250 ms) mean ± SD Paired-pulse ratio (50 Hz) mean ± SD

L2/3 0.92 ± 0.57 0.76 ± 0.48 1.14 ± 0.63

Rorb 0.39 ± 0.14 0.55 ± 0.26 0.66 ± 0.13

Sim1 0.37 ± 0.18 0.46 ± 0.26 0.73 ± 0.17

Tlx3 0.48 ± 0.32 0.72 ± 0.24 0.8 ± 0.15

Sim1 (0 EGTA), n = 6 0.27 ± 0.17 N/A 0.68 ± 0.22

Tlx3 (0 EGTA), n = 2 0.51 ± 0.12 N/A 1.15 ± 0.03

DOI: https://doi.org/10.7554/eLife.37349.025
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All excitatory cell classes investigated in this study, in human and in mouse, exhibited recurrent

connectivity but the rate of recurrent connectivity depended on the class. For example, in two sub-

cortically projecting neuron classes, the connectivity rate was approximately 10% in Sim1 (layer 5)

expressing cells, whereas Ntsr1 expressing cells (layer 6) had the lowest rate of intralaminar connec-

tivity among all excitatory cell classes tested in this study. This low connectivity is consistent with

previous work on layer 6 CT cells using multipatch (West et al., 2006) and single cell rabies tracing

(Vélez-Fort et al., 2014). Our results suggest that recurrent connectivity may be a general property

of excitatory neurons that is regulated depending on the target region.

How do the rates of recurrent connectivity in mouse compare to other species? In human cortex,

we and others (Molnár et al., 2008) find that the frequency of connectivity among excitatory neu-

rons is at least two and half times greater than the highest connectivity rate observed in the adult

Figure 6. Modeling of short-term depression in recurrent Rorb, Sim1, and Tlx3 connections (n in Table 1 ‘STP’). (A) Sim1 average dynamic response;

Same data as in Figure 5C, top plotted on a log-X time scale with modeling fits overlaid. (B) Results of model for parameters P0 and tr0. Values are

means with standard error of the covariance matrix. Paired Z-scores (Equation 6) in Table 5.

DOI: https://doi.org/10.7554/eLife.37349.026
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mouse. It may be that high rates of recurrent connectivity in human are a circuit feature of higher

mammals as this is also reported to be the case in cat and monkey (Kisvárday et al., 1986;

McGuire et al., 1991; Bopp et al., 2014). Another possibility, however, is that the observed differ-

ence between mouse and human is more related to the different cortical regions. Future work will

examine how relatively high recurrent connectivity might be counterbalanced by short-term dynam-

ics and/or inhibitory feedback.

In our study, the distance-dependent connection probability profiles fall off with distance and are

consistent with connectivity depending on the extent of overlap between neighboring axons and

dendrites (Peters, 1979; Binzegger et al., 2004, Braitenberg and Schüz 1998, van Pelt et al.,

2013). It is unlikely that the distance-dependent connectivity profiles we observed are an artifact of

tissue preparation as it has previously been demonstrated that the truncation of neuronal processes

reduces overall connectivity but maintains the spatial pattern of connections (Stepanyants et al.,

2009; Levy and Reyes, 2012). Further effort is required to determine whether our connectivity pro-

files cannot be predicted from neuronal morphology as has been observed in, for example, intrala-

minar connections between corticostriatal neurons (Brown and Hestrin, 2009).

Like most similar studies (e.g. Mason et al., 1991; Markram, 1997; Sjöström et al., 2001) that

have preceded this work, we have measured connectivity and synaptic properties within broad cell

classes that include multiple subtypes. Although we found differences between these classes, we

expect that in some cases, important cell-type-dependent differences will be obscured by this

approach. Initially, we can mitigate this by characterizing the distribution of properties and relating

these to morphological and electrophysiological properties that relate to narrower cell classes or

types. However, transcriptomic analysis (Tasic et al., 2016; Chevée et al., 2018) has refined and

expanded the catalog of cell types, necessitating the development of new methods to measure syn-

aptic properties with greater cell type resolution and with enough throughput to address the size-

able combinatorial space of connections between types.

In the primary visual cortex of the adult mouse, we found that recurrent connections, except for

Ntsr1 connections and a subset of L2/3 connections, depressed after eight action potentials across a

range of frequencies. Although depression dominates the net response, it is important to consider

that facilitation, depression, and other mechanisms may simultaneously contribute to overall short-

term dynamics. Furthermore, the availability of calcium in the presynaptic terminal can strongly influ-

ence the balance between mechanisms in a cell-class-dependent manner (e.g., Tlx3 vs. Sim1; Fig-

ure 5—figure supplement 1). Despite differences in intracellular EGTA buffering between our study

and others, the STP we observed in mouse recurrent synapses is mostly consistent with previous

work (West et al., 2006; Lefort and Petersen, 2017) with the primary exception being the lack of

facilitation in paired pulses in layer 5 neurons. Interestingly, when facilitation was unmasked by low-

ering the intracellular EGTA concentration it was not in the mouse line with thick-tufted pyramidal

neurons (Sim1; Gouwens and Berg, 2018) as we expected from work in other brain regions

(Reyes and Sakmann, 1999; Lefort and Petersen, 2017), suggesting that the recurrent connectivity

STP may differ across brain regions for the same projection class.

Ultimately, we seek a description of the cortical circuit from which mechanistic computational

models can be built and hypotheses about cortical function can be tested. Although many parts of

the circuit have been described in the past, incompatibilities between experiments have made it dif-

ficult to assemble a complete, coherent picture of the whole. We have taken steps toward ensuring

Table 5. Model parameter values and statistics for Rorb, Sim1, and Tlx3 recurrent connections.

Parameter values are from the model performed on the grand mean for each connection type with the standard error of the covariance

matrix. The Z-score was computed following Equation 6; the Z-score between each possible pair should be read as a matrix with the

corresponding Cre-line in the row. Number of connections used in this analysis in Table 1 ‘STP’.

Connection type/Model Parameter tr0 (sec ± SE) P0 (±SE) tFDR (ms ± SE) aFDR (±SE) r2 Rorb Z-score Sim1 Z-score Tlx3 Z-score

Rorb 1.26 ± 0.29 0.30 ± 0.03 130.6 ± 56.8 0.85 ± 0.09 0.836 N/A P0 = 2.02 P0 = 3.55

Sim1 3.55 ± 0.93 0.22 ± 0.02 269.4 ± 128.2 0.77 ± 0.12 0.836 tr0 = 2.31 N/A P0 = 2.12

Tlx3 1.20 ± 0.62 0.16 ± 0.02 276.3 ± 213.2 0.47 ± 0.09 0.737 tr0 = 1.12 tr0 = 2.79 N/A

DOI: https://doi.org/10.7554/eLife.37349.027
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that our results can be interpreted in the context of future experiments, but more work is needed to

generate a consistent description of the cortical circuit. To that end, we have begun a large-scale

project to replicate these measurements across a wider variety of cell types in the mouse and human

cortex; the results of our early-stage data collection presented here suggest that systematic and

standardized characterization will provide a detailed, quantitative, and comprehensive description of

the circuit wiring diagrams and will facilitate the investigation of circuit computation.

Materials and methods

Animals and tissue preparation
Adult mice of either sex (mean age P46.7 ± 6.4; SD) were housed and sacrificed according to proto-

cols approved by the Institutional Animal Care and Use Committee at the Allen Institute (Seattle,

WA), in accordance with the National Institutes of Health guidelines. Transgenic mouse lines were

used for experimentation and chosen based on cortical layer specific expression and/or known pro-

jection patterns. In the following mouse lines, subpopulations of excitatory neurons are selectively

labeled with fluorescent reporters (tdTomato or GFP): Tlx3-Cre_PL56;Ai14 (n = 57, mean age ± SD

P45.8±5.7), Sim1-Cre_KJ18;Ai14 (n = 20, P50.8 ± 8.2), Rorb-T2A-tTA2;Ai63 (n = 28, P45.8 ± 3.4),

Ntsr1-Cre_GN220;Ai140 (n = 13, P43.5 ± 2.8) (Allen Institute; see also http://connectivity.brain-map.

org/transgenic). Two drivers, Sim1-Cre (subcortical projecting; CS or PT type; Allen Brain Atlas,

http://connectivity.brain-map.org/) and Tlx3-Cre, (corticocortical projecting; CC or IT type;

Kim et al., 2015), were used to label layer 5 pyramidal cells, in order to sample projection-specific

subpopulations. We did not utilize transgenic labeling for targeting layer 2/3 pyramidal cells (n = 11,

P47.8 ± 8), but instead relied on post-hoc morphological analysis. For optogenetic experiments,

Tlx3-Cre driver mice were bred with ROSA26-ZtTA/J mice (Jackson Laboratory) and Ai136 mice

(Daigle et al., 2018), in which a fusion of the ReaChR opsin (Lin et al., 2013) with EYFP is expressed

from the TIGRE locus (Zeng et al., 2008) in a Cre- and tTA-dependent manner. Previous studies

have emphasized the differences in cortical connectivity particularly at older ages. To assess whether

age impacted the results reported here, a subset of experiments were repeated for Sim1 connec-

tions in older mice (mean age 61 ± 1; SD, n = 10). We saw no difference in recurrent connectivity

rate (<100 mm; P40-60: 36/423,>P60: 15/269, Fisher’s p=0.23) or response amplitude (P40-60:

0.53 ± 0.12 mV,>P60: 0.59 ± 0.2 mV, p=0.98 KS test) among across the two time points.

To facilitate comparisons across pipeline datasets and for logistical considerations, we adopted

the slicing methods established for cell-types pipelines (Gouwens and Berg, 2018); http://celltypes.

brain-map.org/). Animals were deeply anesthetized with isoflurane and then transcardially perfused

with ice-cold oxygenated artificial cerebrospinal fluid (aCSF) containing (in mM): 98 HCl, 96

N-methyl-d-glucamine (NMDG), 2.5 KCl, 25 D-Glucose, 25 NaHCO3, 17.5 4-(2-hydroxyethyl)�1-

piperazineethanesulfonic acid (HEPES), 12 N-acetylcysteine, 10 MgSO4, 5 Na-L-Ascorbate, 3 Myo-

inositol, 3 Na Pyruvate, 2 Thiourea, 1.25 NaH2PO4�H2O, 0.5 CaCl2, and 0.01 taurine (aCSF 1). All

aCSF solutions were bubbled with carbogen (95% O2; 5% CO2).

Acute parasagittal slices (350 mm; maximum thickness for which healthy slices could be obtained)

containing primary visual cortex from the right hemisphere were prepared with a Compresstome

(Precisionary Instruments) in ice-cold aCSF 1 solution at a slice angle of 17˚ relative to the sagittal

plane in order to preserve pyramidal cell apical dendrites. Slice angle was based on a Laplacian anal-

ysis of the Allen Mouse Common Coordinate Framework (Mouse CCF; http://help.brain-map.org/

display/celltypes/Documentation) to determine the angle that maximally preserved cell arbors. Slices

were recovered for 10 min in a holding chamber (BSK 12, Scientific Systems Design) containing oxy-

genated aCSF 1 maintained at 34˚C (Ting et al., 2014; Hájos and Mody, 2009). After recovery, sli-

ces were kept in room temperature oxygenated aCSF holding solution (aCSF 2) containing (in mM):

94 NaCl, 25 D-Glucose, 25 NaHCO3, 14 HEPES, 12.3 N-acetylcysteine, 5 Na-L-Ascorbate, 3 Myo-ino-

sitol, 3 Na Pyruvate, 2.5 KCl, 2 CaCl2, 2 MgSO4, 2 Thiourea, 1.25 NaH2PO4 . H2O, 0.01 Taurine for a

minimum of one hour prior to recording.

Human tissue surgically resected from adult cortex was obtained from patients undergoing neu-

rosurgical procedures for the treatment of symptoms associated with epilepsy or tumor. Data were

collected from 67 total slices from 22 surgical cases (17 epilepsy, 5 tumor, mean age ± SD 40 ± 17

years; min: 18, max: 75). Tissue obtained from surgery was distal to the core pathological tissue and
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was deemed by the physician not to be of diagnostic value. Specimens were derived from the tem-

poral lobe (13 epilepsy, 4 tumor) and the frontal lobe (4 epilepsy, 1 tumor). Specimens were placed

in a sterile container filled with prechilled (2–4˚C) aCSF 3 containing decreased sodium replaced

with NMDG to reduce oxidative damage (Zhao et al., 2011) composed of (in mM): 92 NMDG, 2.5

KCl, 1.25 NaH2PO4, 30 NaHCO3, 20 HEPES, 25 glucose, two thiourea, 5 Na-ascorbate, 3 Na-pyru-

vate, 0.5 CaCl2 . 4H2O and 10 MgSO4 . 7H2O. pH was titrated to 7.3–7.4 with HCl and the osmolal-

ity was 300–305 mOsmoles/Kg. Although it has been noted that human CSF has a lower osmolality

than that of mouse (Bourque, 2008), the solutions chosen here were previously optimized to pro-

mote tissue stability during dissection. Surgical specimens were transported (10–40 min) from the

surgical site to the laboratory while continuously bubbled with carbogen.

Resected human tissue specimens were trimmed to isolate specific regions of interest, and larger

specimens were cut into multiple pieces before trimming. Specimens were trimmed and mounted in

order to best preserve intact cortical columns (spanning pial surface to white matter) before being

sliced in aCSF 3 using a Compresstome. Slices were then transferred to oxygenated aCSF 3 main-

tained at 34˚C for 10 min. Slices were kept in room temperature oxygenated aCSF holding solution

(aCSF 4) containing, in mM: 92 NaCl, 30 NaHCO3, 25 D-Glucose, 20 HEPES, 5 Na-L-Ascorbate, 3 Na

Pyruvate, 2.5 KCl, 2 CaCl2, 2 MgSO4, 2 Thiourea, 1.2 NaH2PO4�H2O for a minimum of one hour prior

to recording.

Electrophysiological recordings
Recording slices from mouse and human tissue were processed in largely the same manner, with a

key difference being the external calcium concentration used for recording. Human slices were held

in aCSF containing 1.3 mM calcium while mouse slices utilized 2.0 mM calcium. Below we discuss the

full preparation for slice processing as well as the rationale for this calcium difference.

Slices were transferred to custom recording chambers perfused (2 mL/min) with aCSF maintained

at 31–33˚C, pH 7.2–7.3, and 30–50% oxygen saturation (as measured in the recording chamber).

aCSF (aCSF 5) containing (in mM), 1.3 or 2 CaCl2 (2.0 in mouse experiments and either 1.3 or 2.0 in

human experiments), 12.5 D-Glucose, 1 or 2 MgSO4, 1.25 NaH2PO4�H2O, 3 KCl, 18 NaHCO3, 126

NaCl, 0.16 Na L-Ascorbate. The concentration of calcium in the external recording solution, [Ca++]e,

affects release probability and other aspects of synaptic dynamics (Borst, 2010; Pala and Petersen,

2015; Jouhanneau et al., 2015; Urban-Ciecko et al., 2015). Although [Ca++]e concentrations close

to 1 mM are expected to most closely approximate in-vivo-like synaptic dynamics, most prior multi-

patch studies used elevated calcium concentrations to increase the amplitude of EPSPs and improve

throughput. In our mouse recordings, we used 2.0 mM [Ca++]e to be consistent with previous con-

nectivity studies (Markram, 1997; Reyes and Sakmann, 1999; Perin et al., 2011; Jiang et al.,

2015) and to help ensure the success of our system integration test. We selected 1.3 mM [Ca++]e for

our human experiments because of reports that the synaptic strength is higher than in mouse and to

minimize the complex events that can be initiated by individual spikes in human tissue

(Molnár et al., 2008) that make identifying monosynaptic connectivity challenging.

Slices were visualized using oblique (Olympus; WI-OBCD) infrared illumination using 40x or 4x

objectives (Olympus) on a custom motorized stage (Scientifica), and images were captured using a

digital sCMOS camera (Hamamatsu; Flash 4.0 V2). Pipette positioning, imaging, and subsequent

image analysis were performed using the python platform acq4 (acq4.org, Campagnola et al.,

2014). Eight electrode headstages were arranged around the recording chamber, fitted with custom

headstage shields to reduce crosstalk artifacts, and independently controlled using modified triple

axis motors (Scientifica; PatchStar). Signals were amplified using Multiclamp 700B amplifiers (Molec-

ular Devices) and digitized at 50–200 kHz using ITC-1600 digitizers (Heka). Pipette pressure was con-

trolled using electro-pneumatic pressure control valves (Proportion-Air; PA2193) and manually

applied mouth pressure.

Recording pipettes were pulled from thick-walled filamented borosilicate glass (Sutter Instru-

ments) using a DMZ Zeitz-Puller (Zeitz) to a tip resistance of 3–8 MW (diameter ~ 1.25 mm), and filled

with internal solution containing (in mM): 130 K-gluconate, 10 HEPES, 0.3 ethylene glycol-bis(b-ami-

noethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), 3 KCl, 0.23 Na2GTP, 6.35 Na2Phosphocreatine, 3.4

Mg-ATP, 13.4 Biocytin, and either 25 mM Alexa-594 (excited at 880 nm) for optogenetic experi-

ments, 50 mM Cascade Blue dye (excited at 490 nm), or 50 mM Alexa-488 (excited at 565 nm). Osmo-

larity was between 280 and 295 mOsm titrated with ~ 4 mM sucrose, pH between 7.2 and 7.3
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titrated with ~ 10 mM KOH. The liquid junction potential between our internal solution and aCSF

five was measured to be 9.40 mV ± 0.59; SD. All electrophysiological values are reported without

junction potential correction.

In experiments on human tissue and wild-type mice, clusters of up to eight excitatory neurons

were selected based on cortical layer, somatic appearance, and depth from the surface of the slice;

Neurons deep in the tissue (depth from slice surface � 40 mm; Figure 4—figure supplement 2D)

were patched with the assistance of automated pipette control. Tissue distortion and damage was

minimized by moving through the tissue on a trajectory that was collinear with long axis of the

pipette with minimal positive pressure. In transgenic mice, cells were also targeted based on fluores-

cent reporter expression. All cells were confirmed as excitatory post-experiment either by their

EPSPs onto other recorded neurons (Figure 1—figure supplement 1A) or by their pyramidal mor-

phology, visualized using either biocytin (Figure 1A) or fluorescent dye from the pipette

(Figure 1B). Cell intrinsic fluorescence was confirmed post-hoc via manual inspection of image stacks

to evaluate signal overlap of the transgenic fluorescent reporter and the fluorescent dye introduced

via pipettes (Figure 1B). Whole-cell patch clamp electrophysiological recordings were performed at

�70 mV to preferentially measure excitatory inputs. Resting membrane potential was maintained

within 2 mV of �70 mV using automated bias current injection during the inter-trial interval. Custom

software, Multi-channel Igor Electrophysiology Suite (MIES; https://github.com/AllenInstitute/MIES),

written in Igor Pro (WaveMetrics), was used for data acquisition and pipette pressure regulation. A

brief, 10 ms test pulse was used to monitor access (24.18 ± 9.24 MW) and input (166.59 ± 84.0 MW)

resistance over the duration of the recording. During recordings, cells were stimulated using brief

current injections (1.5 or 3 ms) to drive trains of 12 action potentials (Figure 1—figure supplement

1A) at frequencies of 10, 20, 50, or 100 Hz to induce short-term plasticity (STP). Stimulus amplitudes

(mean ± SD, 1.2 ± 0.5 nA) were adjusted to ensure spiking on every pulse across a range of cell types

and frequencies. A delay period inserted between the 8th and 9th pulses allowed testing of recovery

from STP. In most recordings this delay period was 250 ms; for 50 Hz stimulation, longer delay peri-

ods (500, 1000, 2000, and 4000 ms) were used as well (see Figure 5A). Connectivity was first evalu-

ated in voltage clamp (holding at �70 mV), prior to entering the experimental workflow shown in

Figure 1—figure supplement 1C–G in the current clamp recording configuration. Individual record-

ings were assessed against standardized quality control metrics in order to be included in each sub-

sequent analysis (see Figure 1—figure supplement 1C–G and Table 1). Experimental protocols

were repeated five times for each stimulation frequency and delay interval. Stimuli were interleaved

between cells such that only one cell was spiking at a time, and no two cells were ever evoked to

spike within 150 ms of each other.

Data analysis
Postsynaptic recording traces were aligned to the time of the presynaptic spike evoked from the

stimuli described above (Figure 1—figure supplement 1B). Postsynaptic potentials (PSPs) were

identified by manual inspection of spike-aligned and averaged recordings in response to evoked

spikes, as well as a parallel inspection of background noise. A classifier (described below) was later

used to highlight possible identification errors, which were then manually corrected. Connection

probabilities within 100 mm intersomatic distance were compared between cell types using Fisher’s

exact test of 2 � 2 contingency tables (connected, unconnected). The relationship between connec-

tivity and intersomatic distance (measured from 3D cell positions) was analyzed by binning connec-

tions in 40 mm windows and calculating the 95% Jeffreys Bayesian confidence interval for each bin.

Subsets of the 131 mouse and 76 human connections found in this study were analyzed for

strength, kinetics, and STP based on specific quality control criteria Figure 1—figure supplement

1C–G, Table 1). EPSP strength, kinetics, and coefficient of variance (CV) measurements (Figures 1

and 3) were conducted on the first-pulse response from 10, 20, and 50 Hz stimulation trains which

were time-aligned to the presynaptic spike and averaged for each connection. Connections were

included for strength and kinetics analysis according to the analysis flowchart in Figure 1—figure

supplement 1E and F. Briefly, the postsynaptic cell had an auto bias current less than 800 pA (mean

bias current �95 ± 182 pA), there was no spontaneous spiking, the stimulus artifact was minimal

(<30 mV), and the PSP was positive. Individual recording sweeps were included if the baseline poten-

tial drift was smaller than ±5 mV from holding (�70 mV) and the mean baseline 10 ms preceding

stimulation was less than three standard deviations of the mean baseline across sweeps. In the QC
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passed data, strength and kinetics were measured from a double exponential fit that approximates

the shape of the PSP:

y tð Þ ¼ A 1� e� t�t0ð Þ=tr
� �2

� e� t�t0ð Þ=td (1)

Best fit parameters were obtained using the Non-Linear Least-Squares Minimization and Curve-

Fitting package for Python (LMFIT; Newville and Allen, 2014). To improve the quality of fitting, the

root mean square error was weighted (WRMSE) differently throughout the trace. The rising phase of

the PSP was most heavily weighted, the baseline and decay regions were intermediately weighted,

and the region of the presynaptic stimulus, which often contained crosstalk artifacts was masked.

Amplitude was measured as the peak of the PSP fit (Figure 1—figure supplement 1B). Kinetics

were measured from connections in which the WRMSE of the fit was less than 8. Latency is reported

as the duration from the point of maximum dV/dt in the presynaptic spike until the foot of the PSP

(Figure 1—figure supplement 1B), taken from the x-offset in the double exponential fit. Rise time is

reported as the duration from 20% of the peak until 80% of the peak of the PSP (Figure 1—figure

supplement 1B). Significance of differences in PSP amplitude, latency, and rise time across layers or

Cre-lines were assessed with a Kruskal-Wallis test.

STP (Figures 5 and 6) was measured from a similar subset of connections that included the qual-

ity control criteria above and also excluded responses smaller than 0.5 mV in amplitude to minimize

the effect of noise on mean response which might impact the model (Figure 1—figure supplement

1G, Equations 4 and 5). Connections or individual sweeps that had a baseline holding potential of

�55 mV (±5 mV) were reintroduced for this analysis if they met the QC criteria. Normalized PSP

amplitudes (relative to the first pulse) were estimated using an exponential deconvolution (t = 15

ms; Richardson and Silberberg, 2008) to compensate for summation from prior PSPs and to

increase signal-to-noise in measuring PSP amplitudes:

D tð Þ ¼ V þ t
dV

dt
(2)

Although the fixed deconvolution time constant of 15 ms may differ significantly from the actual

time constant of each cell, in practice this has little effect on the normalized amplitudes used in STP

measurements (for example, using this time constant to measure amplitudes from a simulated 100

Hz train with a cell time constant of 30 ms only resulted in 3% error in the measurement of PSP

amplitudes relative to the first pulse; data not shown). The peak amplitudes from the deconvolved

traces were used to measure the change in response magnitude over the course of stimulus trains.

We measured the magnitude of short-term depression or facilitation using the ratio between the first

and last (eighth) pulses in an induction pulse train, whereas recovery from depression or facilitation

was measured by the ratio between the first pulse and the ninth pulse, which followed a recovery

delay. Kruskal-Wallis tests were used to assess significance of STP between multiple layers. A

descriptive model was used to capture features of short-term depression in Rorb, Sim1, and Tlx3

connections (Equations 4 and 5).

Automatic synapse detection
To aid in the detection of synaptic connections, a support vector machine classifier (implemented

with the ‘sklearn’ python package, Pedregosa et al., 2012) was trained to discriminate between

experiments in which EPSPs were either visible or not visible to a human annotator. The classifier

required a diverse set of features (Supplementary File 1) that were pre-processed from the raw

postsynaptic recordings immediately surrounding each evoked presynaptic spike. Averaged

responses were characterized by curve fitting (Equation 1; Figure 1—figure supplement 1B) and

the fit parameters as well as the normalized RMS error were provided as features to the classifier.

Additionally, individual response recordings were analyzed by measuring the amplitude and time of

the peak of each exponentially deconvolved response over a 3 ms window beginning 1 ms after the

presynaptic spike, compared to a 10 ms window preceding the stimulus pulse (Figure 1—figure

supplement 1B, bottom). Although these individual measurements were often noisy (average back-

ground RMS noise 607 ± 419 mV), their distribution over hundreds of trials could be compared to

similar distributions measured from background noise (e.g. Figure 4C). Distributions were compared
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using a Kolmogorov-Smirnov test (from the ‘scipy.stats’ Python package) and the p values were used

as input features for the classifier.

After training on 1854 manually labeled examples, the classifier was tested against a withheld set

of 2642 examples and achieved an overall accuracy of 95% (56/61 true positive, connected; 2457/

2581 true negative, not connected). False positives and negatives were manually reassessed and the

annotations corrected when appropriate. Whereas false negatives were usually the result of a classi-

fier failure, false positives were frequently found to have been misclassified during the initial manual

annotation.

Analysis of synapse detection sensitivity
To measure the minimum detectable PSP size for each connection probed, artificial PSPs were

added to recordings of background noise taken from the postsynaptic cell. PSPs were generated

using Equation 1 with a foot-to-peak rise time of 2 ms (except where specified in Figure 3D). PSP

latencies were selected from a gaussian distribution centered at 2 ms with a 200 ms standard devia-

tion. PSP amplitudes were generated by the product of two random variables: one binomially dis-

tributed (p=0.2, n = 24) to mimic stochastic vesicle release, and the other normally distributed

(mean = 1, SD = 0.3) to account for differences in vesicle size and receptor efficacy. PSPs were then

scaled uniformly to achieve a specific mean amplitude. The resulting simulated responses were quali-

tatively similar to typical synaptic responses encountered in our dataset, although they lacked the

synapse-to-synapse variability in CV, due to the selection of fixed distribution parameters listed

above.

For each connection probed, the number of simulated PSPs generated was the same as the num-

ber of presynaptic spikes elicited during the experiment. These PSPs were then fed through the

same preprocessing and classification system that was used to detect synaptic connections in real

data, and the classification probability was calculated from the classifier (using sklearn.svm.SVC.pre-

dict_proba). This process was repeated eight times (with PSPs generated randomly each time) and

the average classification probability was recorded. This yields an estimate of whether a synaptic

connection would be detected or overlooked, given the combination of sample count, background

noise characteristics, and PSP strength and kinetics.

By repeating this process for several different values of mean PSP amplitude, we could identify,

for each putative connection probed, a plausible minimum detectable PSP amplitude. This minimum

detectable amplitude was defined as the PSP amplitude at which the classifier would detect the syn-

apse in 50% of trials (interpolated from adjacent amplitudes).

EPSP amplitude run-down over duration of experiment
The amplitude of the EPSPs initiated by the first pulse of the stimulus trains through-out the duration

of the experiment were characterized by fitting the exponential fit (Equation 1) to individual EPSPs.

Individual EPSPs are often noisy, thus, only connections where individual EPSPs looked well fit were

used to assess rundown. In order to further discount variations in the measurements of individual

responses, the run-down was characterized via a linear regression of EPSP amplitude versus time for

sweeps with a holding potential between �75 and �65 mV. We observed run-down in all synapse

types in percent per minute as follows: layer 2/3 to layer 2/3: median 1.9, average 3.7, std 3.8, Rorb

to Rorb: median 4.0, average 3.9, std 0.81, Sim1 to Sim1: median 1.4, average 0.61, std 3.2, Tlx3 to

Tlx: median 1.5, average 1.9, std 5.3.

Theoretical synaptic modeling
Among the wealth of mechanisms described to contribute to short-term plasticity, we chose to focus

on depression and use-dependent replenishment, as these models provide the best fits when cor-

rected for the number of parameters used. The standard depression model (Hennig, 2013;

Mongillo et al., 2008; Richardson et al., 2005) was not sufficient to account for changes during

multiple stimulating frequencies, thus we included use-dependent replenishment. The PSP, w = A�n �

P0, is modeled as being proportional to the fraction of vesicles (n) and the release probability (P0);

the constant A determines the strength of the connection. Synaptic depression was modelled via

depletion of vesicles (Hennig, 2013; Mongillo et al., 2008; Richardson et al., 2005),

Seeman et al. eLife 2018;7:e37349. DOI: https://doi.org/10.7554/eLife.37349 20 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.37349


dn

dt
¼

1� n

tr
�P0nd t� tkð Þ (4)

where tk is the time of presynaptic spike and tr is the time constant for vesicle replenishment. The

speed of replenishment can vary over time depending on the history of presynaptic spikes, which

can be captured by time constant tr evolving according to Equation 5 (Fuhrmann et al., 2002;

Hennig, 2013),

dtr
dt

¼
tr0� tr
tFDR

� aFDRtrd t� tkð Þ (5)

where tFDR is the time constant of use-dependent replenishment, aFDR represents the amount of

updates elicited by a presynaptic spike and tr0 is the baseline time constant.

For Rorb, Sim1, and Tlx3 synapses, we optimized the parameters (P0, tr0, t FDR and aFDR) to

account for time courses of PSPs. To characterize the short-term synaptic plasticity of synapse clas-

ses, we averaged PSPs over all available synapses depending on stimulation frequencies and delays

between 8th and 9th presynaptic pulses and fitted to the model. We used LMFIT (Newville and

Allen, 2014) to perform non-linear least-square minimization and report the optimal values and stan-

dard errors estimated from the covariance matrix.

Paired Z-scores for P0 and t r0 were calculated from the standard error returned during parameter

optimization according to Equation 6,

Z� score¼
jX1 � X2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SE2

1
þ SE2

2

p (6)

where X1 and X2 are P0 or t r0 for two groups and their associated standard error.

Histology and morphology
After completing electrophysiological recordings, slices were transferred from the recording cham-

ber and fixed in solution containing 4% PFA and 2.5% glutaraldehyde for 2 days (>40 hr) at 4˚C.
After fixation, slices were transferred and washed in phosphate buffer saline (PBS) solution for 1–7

days.

Sections were processed using 3,3’-diaminobenzidine (DAB) peroxidase substrate kit to identify

recorded neurons filled with biocytin. Free floating sections were first incubated with 5 mM 4’,6-dia-

midino-2-phenylindole (DAPI) in PBS for 15 min at room temperature and then triple washed in PBS

(3 � 10 min). Sections were transferred to a 1% H2O2 (in PBS) for 30 min and then triple washed in

PBS. A DAB substrate kit (VectorLabs) was used to stain for neurons filled with biocytin. Sections

were mounted on gelatin-coated slides and coverslipped with Aqua-Poly/Mount (Polysciences).

Slides were imaged on an AxioImager Z2 microscope (Zeiss) equipped with an Axiocam 506 cam-

era (Zeiss) and acquired via the Zeiss Efficient Navigation software. Tiled mosaic images of whole sli-

ces were acquired via automated scanning and stitching of several 20X images to generate both

biocytin-labeled images (used to assess cell morphology) and DAPI-labeled images (used to identify

cortical layer boundaries) of the entire slice.

Two-photon optogenetic experiments
Connectivity mapping experiments were performed on a two-photon laser scanning microscope

(Bruker Corp) with a tunable pulsed Ti:Sapphire laser (Chameleon Ultra, Coherent) for imaging, and

a fixed wavelength (1060 nm) pulsed laser (Fidelity Femtosecond, Coherent) for stimulation. A 63x,

1.0 NA water immersion objective (Zeiss) was used for all experiments. Two-photon images were

acquired with PrairieView software (Bruker Corp), and stimulation targets were manually placed on

these reference images to target ReaChR-positive cells. Photoactivation stimuli were triggered by a

TTL pulse generated within MIES acquisition software. The voltage output controlling the photoacti-

vation Pockels cell was recorded within MIES for post-hoc alignment of physiological recordings with

the timing of photoactivation. To characterize the effectiveness and specificity of stimulation param-

eters, we made loose seal recordings on to EYFP/ReaChR-labelled neurons (Figure 4—figure sup-

plement 2A). For all data presented here, the photostimulation pattern consisted of a spiral 5 mm in

diameter with five revolutions traced over a 25 ms duration. We first determined the minimum light
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power necessary to evoke reliable firing of action potentials. This minimum power varied across cells

from 2.6 to 20.3 mW (Figure 4—figure supplement 2B). A photostimulus of 18 mW intensity was

sufficient to evoke spiking in 92% of cells tested (12/13 cells). The average latency of firing at this

power was 12.9 ± 6.1 ms and the associated jitter was 0.98 ± 0.58 ms (Figure 4—figure supplement

2C,D).

Within the same experiments, we characterized the spatial specificity of these stimulation param-

eters. First, to determine the probability of off-target photoactivation of cells within the same focal

plane, we delivered stimuli in a radial grid pattern containing seven spokes with stimuli spaced 10,

20 and 30 mm away from the center of the recorded cell ((Figure 4—figure supplement 2E). Spike

probability fell to 0.5 at a lateral distance of 12.0 mm. Finally, we determined the axial resolution of

our photoactivation paradigm by offsetting the focus of the objective relative to the recorded cell.

Consistent with previous studies (Packer et al., 2012; Prakash et al., 2012), axial resolution was

inferior compared to lateral resolution (spike probability = 0.5 at 26.7 mm) but was still near cellular

resolution ((Figure 4—figure supplement 2F).

For two-photon mapping experiments, 1–2 neurons were patched and membrane potential was

maintained near �70 mV with auto bias current injection. Neurons were filled with 50 mM Alexa-594

to visualize cell morphology ((Figure 4—figure supplement 1A). The orientation of the apical den-

drite was utilized to align photostimulation sites across experiments in downstream analyses. Each

putative presynaptic neuron was stimulated 10–20 times, with the parameters described above. Pho-

tostimulation was performed in ’rounds’ during which EYFP-labelled neurons within a single field of

view were sequentially targeted (3–12 neurons/round). Stimulation protocols were constrained such

that the inter-stimulus interval between neurons was � 2 s and the inter-stimulus interval for a given

neuron was � 10 s.

Importantly, the photostimulus utilized in our mapping experiments generated spiking in most -

but not all – Tlx3 neurons tested (92% spike probability; (Figure 4—figure supplement 2). To esti-

mate a false negative rate associated with incomplete photosensitivity, we utilized the multipatch

dataset to establish a prior probability of Tlx3 recurrent connectivity (4.74%; Table 1). Assuming con-

nection probability to be independent of photosensitivity, we estimate the false negative rate as

(1-photosensitivity)*prior probability of connectivity = (1–0.92)*0.0474 = 0.0038 or 0.38%.

Notably, this low false negative rate is partly due to the observed sparsity of recurrent connectiv-

ity between Tlx3-positive neurons. Higher error rates are to be expected when using two-photon

optogenetics to probe high-probability synaptic connections.

Photostimulus responses were scored as connection, no connection or as containing a direct stim-

ulation artifact by manual annotation. To assist in these user-generated calls, we incorporated a sig-

nal-to-noise measure for our optogenetic mapping data. Current clamp traces were low pass filtered

at 1 kHz and baseline subtracted. The voltage-deconvolution technique (Equation 2) was then

applied. The value of t was set between 10 and 40 ms. Deconvolved traces were high-pass filtered

at 30 Hz, and peaks larger than three standard deviations above pre-stimulus baseline were used for

further analysis ((Figure 4—figure supplement 1B,C). We then measured the number of peaks in

both ‘signal’ and ‘noise’ regions. The ‘signal’ region was a 100 ms window 5–105 ms after the onset

of the photostimulus, and the ‘noise’ region was a 100 ms window 145–45 ms before the stimulus

onset. To compensate for jitter known to be present in two-photon mediated stimulation, we deter-

mined a 10 ms subset within each 100 ms window that gave the maximum number of unique trials

containing threshold-crossing events. The median of the peak within this 10 ms window was found

across all trials in both ‘signal’ and ‘noise’ regions, and the mean of a 25 ms window preceding both

regions was subtracted to produce our final signal and noise values.

We plotted the signal against the noise for all stimulus locations ((Figure 4—figure supplement

1D), and found that most points with a high signal-to-noise ratio contained either a synaptic

response or an artifact produced by direct stimulation of the recorded (opsin-expressing) cell. 88%

(15/17) manually identified connections had a signal to noise ratio > 1.5 ((Figure 4—figure supple-

ment 1E). By contrast, the same was true of only 1.8% (31/1720) of cells scored as ‘no connection’.

Therefore, our signal-to-noise analyses highlight quantitatively distinct features of our connection

calls. The presence of direct stimulation artifacts prevents us from unambiguously identifying synap-

tic connections between nearby neurons. Therefore, when estimating connection probability by two-

photon optogenetics, we did not include putative presynaptic cells within 50 mm of the recorded

neuron where the direct stimulation artifact was largest (Figure 4F). It is also important to consider
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differences in detection limits between multipatch and two-photon optogenetics. The amplitudes of

EPSPs from optogenetically identified connections ranged from 0.10 to 0.78 mV (mean amplitude

0.30 ± 0.21; SD). Multipatch recordings allowed spike-aligned averaging over many trials and

resulted in detection of synaptic responses < 0.10 mV (Figure 1F). Therefore, while two-photon

optogenetics provides dense sampling over large inter-somatic distances, estimates of connectivity

are likely biased toward large and reliable synaptic connections.
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Bopp R, Maçarico da Costa N, Kampa BM, Martin KA, Roth MM, Kampa, KAC M R. 2014. Pyramidal cells make
specific connections onto smooth (GABAergic) neurons in mouse visual cortex. PLoS Biology 12:e1001932.
DOI: https://doi.org/10.1371/journal.pbio.1001932, PMID: 25137065

Borst JG. 2010. The low synaptic release probability in vivo. Trends in Neurosciences 33:259–266. DOI: https://
doi.org/10.1016/j.tins.2010.03.003, PMID: 20371122

Bourgeois JP, Rakic P. 1993. Changes of synaptic density in the primary visual cortex of the macaque monkey
from fetal to adult stage. The Journal of Neuroscience 13:2801–2820. DOI: https://doi.org/10.1523/
JNEUROSCI.13-07-02801.1993, PMID: 8331373

Bourque CW. 2008. Central mechanisms of osmosensation and systemic osmoregulation. Nature Reviews
Neuroscience 9:519–531. DOI: https://doi.org/10.1038/nrn2400, PMID: 18509340
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