1. Evolutionary Biology
Download icon

Evolution of cation binding in the active sites of P-loop nucleoside triphosphatases in relation to the basic catalytic mechanism

  1. Daria N Shalaeva
  2. Dmitry A Cherepanov
  3. Michael Y Galperin
  4. Andrey V Golovin
  5. Armen Y Mulkidjanian  Is a corresponding author
  1. University of Osnabrück, Germany
  2. Lomonosov Moscow State University, Russian Federation
  3. National Institutes of Health, United States
Research Article
  • Cited 15
  • Views 1,517
  • Annotations
Cite this article as: eLife 2018;7:e37373 doi: 10.7554/eLife.37373

Abstract

The ubiquitous P-loop fold nucleoside triphosphatases (NTPases) are typically activated by an arginine or lysine 'finger'. Some of the apparently ancestral NTPases are, instead, activated by potassium ions. To clarify the activation mechanism, we combined comparative structure analysis with molecular dynamics (MD) simulations of Mg-ATP and Mg-GTP complexes in water and in the presence of potassium, sodium, or ammonium ions. In all analyzed structures of diverse P-loop NTPases, the conserved P-loop motif keeps the triphosphate chain of bound NTPs (or their analogs) in an extended, catalytically prone conformation, similar to that imposed on NTPs in water by potassium or ammonium ions. MD simulations of potassium-dependent GTPase MnmE showed that linking of alpha- and gamma phosphates by the activating potassium ion led to the rotation of the gamma-phosphate group yielding an almost eclipsed, catalytically productive conformation of the triphosphate chain, which could represent the basic mechanism of hydrolysis by P-loop NTPases.

Article and author information

Author details

  1. Daria N Shalaeva

    School of Physics, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Dmitry A Cherepanov

    A N Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  3. Michael Y Galperin

    National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2265-5572
  4. Andrey V Golovin

    School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
    Competing interests
    The authors declare that no competing interests exist.
  5. Armen Y Mulkidjanian

    School of Physics, University of Osnabrück, Osnabrück, Germany
    For correspondence
    amulkid@uos.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5844-3064

Funding

Deutsche Forschungsgemeinschaft (N/A)

  • Armen Y Mulkidjanian

Bundesministerium für Bildung und Forschung (Laseromix)

  • Armen Y Mulkidjanian

Deutscher Akademischer Austauschdienst (Ostpartnerschaftenprogramm)

  • Daria N Shalaeva

Russian Science Foundation (14-50-00029)

  • Daria N Shalaeva
  • Dmitry A Cherepanov

U.S. National Library of Medicine (Intramural Research Program)

  • Michael Y Galperin

Lomonosov Moscow State University (RFMEFI62117X0011)

  • Andrey V Golovin

Osnabrueck University, Germany (EvoCell Program)

  • Armen Y Mulkidjanian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nick V Grishin, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: April 9, 2018
  2. Accepted: November 26, 2018
  3. Accepted Manuscript published: December 11, 2018 (version 1)
  4. Version of Record published: December 28, 2018 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,517
    Page views
  • 197
    Downloads
  • 15
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    2. Genetics and Genomics
    Lea Stauber et al.
    Research Article

    Invasive microbial species constitute a major threat to biodiversity, agricultural production and human health. Invasions are often dominated by one or a small number of genotypes, yet the underlying factors driving invasions are poorly understood. The chestnut blight fungus Cryphonectria parasitica first decimated the North American chestnut, and a more recent outbreak threatens European chestnut stands. To unravel the chestnut blight invasion of southeastern Europe, we sequenced 230 genomes of predominantly European strains. Genotypes outside of the invasion zone showed high levels of diversity with evidence for frequent and ongoing recombination. The invasive lineage emerged from the highly diverse European genotype pool rather than a secondary introduction from Asia or North America. The expansion across southeastern Europe was mostly clonal and is dominated by a single mating type, suggesting a fitness advantage of asexual reproduction. Our findings show how an intermediary, highly diverse bridgehead population gave rise to an invasive, largely clonally expanding pathogen.

    1. Developmental Biology
    2. Evolutionary Biology
    Koh Onimaru et al.
    Research Article Updated

    How genetic changes are linked to morphological novelties and developmental constraints remains elusive. Here, we investigate genetic apparatuses that distinguish fish fins from tetrapod limbs by analyzing transcriptomes and open-chromatin regions (OCRs). Specifically, we compared mouse forelimb buds with the pectoral fin buds of an elasmobranch, the brown-banded bamboo shark (Chiloscyllium punctatum). A transcriptomic comparison with an accurate orthology map revealed both a mass heterochrony and hourglass-shaped conservation of gene expression between fins and limbs. Furthermore, open-chromatin analysis suggested that access to conserved regulatory sequences is transiently increased during mid-stage limb development. During this stage, stage-specific and tissue-specific OCRs were also enriched. Together, early and late stages of fin/limb development are more permissive to mutations than middle stages, which may have contributed to major morphological changes during the fin-to-limb evolution. We hypothesize that the middle stages are constrained by regulatory complexity that results from dynamic and tissue-specific transcriptional controls.