Theta-modulation drives the emergence of connectivity patterns underlying replay in a network model of place cells

  1. Panagiota Theodoni
  2. Bernat Rovira
  3. Yingxue Wang
  4. Alex Roxin  Is a corresponding author
  1. Centre de Recerca Matemàtica, Spain
  2. Max Planck Florida Institute for Neuroscience, United States

Abstract

Place cells of the rodent hippocampus fire action potentials when the animal traverses a particular spatial location in any environment. Therefore for any given trajectory one observes a repeatable sequence of place cell activations. When the animal is quiescent or sleeping, one can observe similar sequences of activation known as replay, which underlie the process of memory consolidation. However, it remains unclear how replay is generated. Here we show how a temporally asymmetric plasticity rule during spatial exploration gives rise to spontaneous replay in a model network by shaping the recurrent connectivity to reflect the topology of the learned environment. Crucially, the rate of this encoding is strongly modulated by ongoing rhythms. Oscillations in the theta range optimize learning by generating repeated pre-post pairings on a time-scale commensurate with the window for plasticity, while lower and higher frequencies generate learning rates which are lower by orders of magnitude.

Data availability

All electrophysiological data has been uploaded to the Dryad website. The DOI is doi:10.5061/dryad.n9c1rb0

The following data sets were generated

Article and author information

Author details

  1. Panagiota Theodoni

    Computational Neuroscience, Centre de Recerca Matemàtica, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Bernat Rovira

    Computational Neuroscience, Centre de Recerca Matemàtica, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Yingxue Wang

    Max Planck Florida Institute for Neuroscience, Jupiter, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex Roxin

    Computational Neuroscience, Centre de Recerca Matemàtica, Bellaterra, Spain
    For correspondence
    aroxin@crm.cat
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1015-8138

Funding

Ministerio de Economía y Competitividad (BFU-2012-33413)

  • Alex Roxin

Ministerio de Economía y Competitividad (MTM-2015-71509)

  • Alex Roxin

Generalitat de Catalunya (CERCA program)

  • Alex Roxin

Howard Hughes Medical Institute

  • Yingxue Wang

Max-Planck-Gesellschaft

  • Yingxue Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Theodoni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,229
    views
  • 341
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Panagiota Theodoni
  2. Bernat Rovira
  3. Yingxue Wang
  4. Alex Roxin
(2018)
Theta-modulation drives the emergence of connectivity patterns underlying replay in a network model of place cells
eLife 7:e37388.
https://doi.org/10.7554/eLife.37388

Share this article

https://doi.org/10.7554/eLife.37388

Further reading

    1. Neuroscience
    François Kroll, Joshua Donnelly ... Jason Rihel
    Research Article

    By exposing genes associated with disease, genomic studies provide hundreds of starting points that should lead to druggable processes. However, our ability to systematically translate these genomic findings into biological pathways remains limited. Here, we combine rapid loss-of-function mutagenesis of Alzheimer’s risk genes and behavioural pharmacology in zebrafish to predict disrupted processes and candidate therapeutics. FramebyFrame, our expanded package for the analysis of larval behaviours, revealed that decreased night-time sleep was common to F0 knockouts of all four late-onset Alzheimer’s risk genes tested. We developed an online tool, ZOLTAR, which compares any behavioural fingerprint to a library of fingerprints from larvae treated with 3677 compounds. ZOLTAR successfully predicted that sorl1 mutants have disrupted serotonin signalling and identified betamethasone as a drug which normalises the excessive day-time sleep of presenilin-2 knockout larvae with minimal side effects. Predictive behavioural pharmacology offers a general framework to rapidly link disease-associated genes to druggable pathways.

    1. Neuroscience
    Kaspar E Vogt, Ashwinikumar Kulkarni ... Robert W Greene
    Research Article

    Sleep loss increases AMPA-synaptic strength and number in the neocortex. However, this is only part of the synaptic sleep loss response. We report an increased AMPA/NMDA EPSC ratio in frontal-cortical pyramidal neurons of layers 2–3. Silent synapses are absent, decreasing the plastic potential to convert silent NMDA to active AMPA synapses. These sleep loss changes are recovered by sleep. Sleep genes are enriched for synaptic shaping cellular components controlling glutamate synapse phenotype, overlap with autism risk genes, and are primarily observed in excitatory pyramidal neurons projecting intra-telencephalically. These genes are enriched with genes controlled by the transcription factor, MEF2c, and its repressor, HDAC4. Sleep genes can thus provide a framework within which motor learning and training occur mediated by the sleep-dependent oscillation of glutamate-synaptic phenotypes.