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Abstract Changes in DNA methylation are involved in development, disease, and the response

to environmental conditions. However, not all regulatory elements are functionally methylation-

dependent (MD). Here, we report a method, mSTARR-seq, that assesses the causal effects of DNA

methylation on regulatory activity at hundreds of thousands of fragments (millions of CpG sites)

simultaneously. Using mSTARR-seq, we identify thousands of MD regulatory elements in the human

genome. MD activity is partially predictable using sequence and chromatin state information, and

distinct transcription factors are associated with higher activity in unmethylated versus methylated

DNA. Further, pioneer TFs linked to higher activity in the methylated state appear to drive

demethylation of experimentally methylated sites. MD regulatory elements also predict

methylation-gene expression relationships across individuals, where they are 1.6x enriched among

sites with strong negative correlations. mSTARR-seq thus provides a map of MD regulatory activity

in the human genome and facilitates interpretation of differential methylation studies.

DOI: https://doi.org/10.7554/eLife.37513.001

Introduction
DNA methylation—the covalent addition of methyl groups to nucleotide bases, most often at CpG

motifs—is a gene regulatory mechanism that plays a fundamental role in development (Smith and

Meissner, 2013), disease susceptibility (El-Maarri, 2005; Heyn and Esteller, 2012), and the

response to environmental conditions (Jirtle and Skinner, 2007; Feil and Fraga, 2012; Joshi et al.,

2018). These observations argue that between-individual variation in DNA methylation should be

important in explaining trait variation. In support of this argument, epigenome-wide association

studies (EWAS) have identified thousands of correlations between DNA methylation levels at individ-

ual CpG sites and age (Winnefeld and Lyko, 2012; Day et al., 2013; Marioni et al., 2015), short-

term (Barrès et al., 2012; Pacis et al., 2015) and long-term (Dominguez-Salas et al., 2014;

Tobi et al., 2014) reactions to environmental perturbations, and disease, including cancer
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(Hansen et al., 2011; Hinoue et al., 2012; Aran et al., 2013), type II diabetes (Dayeh et al., 2014),

and Alzheimer’s disease (Bakulskia et al., 2012; De Jager et al., 2014).

If differential DNA methylation is mechanistically important in trait variation, it should also have

downstream consequences for gene regulation. However, while a functional relationship between

differential methylation and gene expression levels is often assumed, experimental studies have

shown that it does not always hold. For example, targeted demethylation of CpG sites within the

human HBB promoter using TALE-TET1 fusion proteins revealed that demethylation of some CpG

sites causally alters gene transcription (Maeder et al., 2013). At other CpG sites in the same pro-

moter, however, demethylation had no effect on HBB expression. Mapping methylation-dependent

(MD) regulatory activity on a genome-wide scale is therefore essential for both sifting through the

growing number of DNA methylation-trait associations and for understanding the basic biology of

epigenetic gene regulation. However, current approaches for assaying MD activity are limited, as

they either do not provide locus-specific information (Christman, 2002) or can only assay a single

locus per experiment (Rivenbark et al., 2012; Maeder et al., 2013; Liu et al., 2016) (Table 1).

Large-scale analyses to date have thus been restricted to in vitro assays performed on sheared or

synthesized DNA (Hu et al., 2013; Mann et al., 2013; O’Malley et al., 2016; Zuo et al., 2017).

These studies suggest widespread differential TF sensitivity to DNA methylation levels (Hu et al.,

2013; O’Malley et al., 2016; Yin et al., 2017; Zuo et al., 2017), but leave open whether and to

what degree differential sensitivity translates to differences in gene expression itself.

To address this limitation, we developed a new method, ‘methyl-STARR-seq’ (mSTARR-seq), that

can be used to assay the causal relationship between initial differences in DNA methylation and sub-

sequent regulatory activity in high-throughput, within the cellular environment. mSTARR-seq relies

on a newly engineered reporter vector, similar in setup to those used in other massively parallel

reporter assays (Arnold et al., 2013; Arnold et al., 2014; Vanhille et al., 2015; Vockley et al.,

2015; Vockley et al., 2016), but designed to eliminate all CpG sites and potential targets of bacte-

rial methylation. mSTARR-seq then combines high-throughput cloning of hundreds of thousands of

query fragments (containing millions of CpG sites) with enzymatic manipulation of DNA methylation

using the enzyme M.SssI (Figure 1). Using this novel approach, we map MD regulatory activity

across the human genome in the K562 immortalized human cell line. Further, we test whether

regions with MD activity can be reliably predicted using information about CpG site density, endog-

enous chromatin state, and TF binding, and we identify both known and candidate novel TFs

involved in DNA methylation-mediated gene regulation and active demethylation. Finally, we dem-

onstrate the relevance of mSTARR-seq to data from real populations by showing that inter-individual

variation in DNA methylation is more tightly coupled to inter-individual variation in gene expression

for CpG sites within MD regulatory elements than sites in methylation-insensitive (non-MD) regula-

tory elements. Our findings indicate that a minority of CpG sites in the genome have MD regulatory

activity. Thus, the functional importance of DNA methylation for gene expression at any given site

should be tested empirically and not assumed as a default.

Results

Description of the mSTARR-seq method
mSTARR-seq is inspired by the self-transcribing active regulatory region sequencing (STARR-seq)

protocol developed by Arnold et al. (2013). However, the original STARR-seq vector is not appro-

priate for isolating the effects of DNA methylation on gene expression because it contains over 300

CpG sites in the backbone, as well as potential targets of bacterial methylation. To eliminate these

confounds, we therefore engineered a novel CpG-free vector (pmSTARRseq1) that eliminates the

possibility of bacterial Dam or Dcm-mediated methylation (Figure 1A; Materials and methods). As in

STARR-seq, the pmSTARRseq1 vector enables a diverse library of query fragments to be inserted in

the 3’ untranslated region of a constitutively expressed reporter gene, such that fragments with reg-

ulatory activity drive their own transcription when transfected into a cell type of interest

(Arnold et al., 2013). Prior to transfection, an aliquot of the plasmid input library is treated with the

methyltransferase M.SssI, which methylates all CpG sites (following the single locus method of

(Klug and Rehli, 2006)). A second aliquot is treated only with M.SssI buffer, producing a sham treat-

ment in which all query fragment CpG sites are left completely unmethylated. The regulatory activity
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of unmethylated versus methylated fragments can then be compared using high-throughput

sequencing to quantify their relative abundances in reporter gene-derived mRNA. In total, this

approach allows us to obtain a functional, quantitative readout of enhancer activity across the

genome, and to compare the activity levels of the same regulatory element in a methylated versus

unmethylated state.

To illustrate this approach, we generated an mSTARR-seq input library from randomly sheared

DNA from the human GM12878 cell line, combined with additional GM12878 MspI-digested geno-

mic DNA to enrich for CpG-containing fragments (Figure 1B; this input library contained 93% of

expected fragments from a full MspI digest of the human genome). We then transfected

Table 1. Current methods for testing the causal relationship between DNA methylation and gene

regulation.

Approach Method Throughput Output

Episomal reporter mSTARR-seq Genome-scale
(105–106

query fragments)

Expression

Luciferase reporter
assay
(Klug and Rehli, 2006)

Single locus Expression

Endogenous editing TALE fusion to
TET1 or
DNMT3a effector
domains
(Maeder et al., 2013;
Bernstein et al., 2015)

Single locus Expression

CRISPR-dCas9
fusion to
TET1 or DNMT3a
effector domains
(Liu et al., 2016;
Vojta et al., 2016)

Single locus Expression

ZF domain
fusion to DMNT3a
or DNA
glyocosylase
effector
(Rivenbark et al., 2012)

Single locus Expression

Inducible
overexpression of an
artificial ZF-DNMT3A
fusion protein
(Ford et al., 2017)*

Genome-scale
(104 query
fragments)

Expression

In vitro TF binding Electrophoretic
mobility shift assay

Single locus TF binding

Protein-binding microarray
(Mann et al., 2013)

Genome-scale
(104–105

query fragments)

TF binding

DNA affinity
purification
sequencing
(DAP-seq)
(O’Malley et al., 2016)

Genome-scale
(105–106

query fragments)

TF binding

Methylation sensitive
and bisulfite-SELEX
(Yin et al., 2017)

Genome-scale
(104 query
fragments)

TF binding

Methyl-Spec-seq
(Zuo et al., 2017)

Genome-scale
(102–103

query fragments)

TF binding

*This method is currently limited to testing off-target effects in the MCF-7 cell line, which contains an inducible artifi-

cial ZF-DNMT3A fusion protein.

DOI: https://doi.org/10.7554/eLife.37513.002
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unmethylated and methylated versions of the plasmid library into the K562 myeloid lineage cell line

(Figure 1C; we performed six replicate transfections per condition, giving us sample sizes that were

similar to or exceeded previous STARR-seq (Arnold et al., 2013; Arnold et al., 2014; Zabidi et al.,

2015) and MPRA (Melnikov et al., 2012; Patwardhan et al., 2012; Tewhey et al., 2016)

Figure 1. mSTARR-seq experimental design. (A) The CpG-free pmSTARRseq1 vector is designed so that functional regulatory elements self-transcribe

to produce a processed mRNA transcript, including a transcribed region (dark blue) that spans a synthetic intron (teal) and the sequence of the

regulatory element itself (green). (B) GM12878 DNA was fragmented through random shearing or Msp1 digest, which recognizes the sequence CCGG.

The resulting fragments were mixed in a 2:1 ratio, and (C) cloned into pmSTARRseq1 in high-throughput. We subjected the resulting library to either

experimental methylation (M.SssI treatment) or a sham treatment, and transfected each pool into the K562 cell line (n = 6 replicates per condition).

After a 48 hr incubation period, plasmid DNA and plasmid-derived mRNA were extracted and the variable insert regions were sequenced. (D) Inserts

were of mean size 321 bp ± 107 bp s.d. (E) Bisulfite sequencing of pre- and post-transfection plasmid DNA confirmed that M.SssI treatment successfully

methylates CpG sites introduced into pmSTARRseq1 and that methylation status is not substantially perturbed by transfection (y-axis: mean CpG

methylation level per experimental replicate, based on CpG sites in the region used for Gibson assembly, and therefore present on every plasmid).

Whiskers on boxplots represent the values for the third and first quartiles, plus or minus 1.5 � the interquartile range, respectively. Evidence for lack of

confounding by a transfection-induced type I interferon response is shown in Figure 1—figure supplement 1. An analysis of fragment diversity levels

in mSTARR-seq DNA-seq and RNA-seq libraries is shown in Figure 1—figure supplement 2. A comparison of fragment diversity between this

experiment and other high-throughput reporter assays, as well as the effect of repeated library transformation on diversity is shown in Figure 1—figure

supplement 3. mSTARR-seq coverage by genomic compartment and ENCODE chromatin state annotations is shown in Figure 1—figure supplement

4.

DOI: https://doi.org/10.7554/eLife.37513.003

The following figure supplements are available for figure 1:

Figure supplement 1. Plasmid transfection does not induce a strong type I interferon (IFN-I) response.

DOI: https://doi.org/10.7554/eLife.37513.004

Figure supplement 2. Diversity in plasmid DNA-seq libraries versus mRNA-seq libraries.

DOI: https://doi.org/10.7554/eLife.37513.005

Figure supplement 3. Fragment diversity in mSTARR-seq libraries is comparable to previous work, and this diversity can be easily regenerated across

experiments.

DOI: https://doi.org/10.7554/eLife.37513.006

Figure supplement 4. Regions covered by mSTARR-seq.

DOI: https://doi.org/10.7554/eLife.37513.007
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experiments). Forty-eight hours post-transfection, we isolated and sequenced both the plasmid-

derived mRNA and the fragment inserts from each of the 12 replicates (Figure 1D; Figure 1—figure

supplement 1; Supplementary file 1). We confirmed that transfection itself did not disrupt the

expected DNA methylation state by performing bisulfite sequencing on the plasmid DNA and esti-

mating methylation levels from 2 CpG sites introduced from Illumina-style adapters ligated to the

human DNA inserts (Figure 1E). We also confirmed that our results were not confounded by two

issues recently raised for classical STARR-seq assays (Muerdter et al., 2018), namely: (i) enhancer

interactions with the bacterial plasmid origin-of-replication, which contains core promoter sequence,

instead of the intended core promoter (see Materials and methods), and (ii) induction of a type I

interferon (IFN) response during DNA transfection (note that K562s do not express cGAS/STING

pathway genes and are thought to be unaffected by this issue (Muerdter et al., 2018)). To confirm

that K562s do not mount an IFN response to mSTARR-seq plasmid transfection, we measured the

expression levels of six genes identified by Muerdter and colleagues as diagnostic of IFN activity.

Expression levels of 5/6 genes were not affected by transfection (p>0.05); one gene, OAS3 did

increase, but this increase was not significant after correction for multiple hypothesis testing (Fig-

ure 1—figure supplement 1). Additionally, we found that regions with significant mSTARR-seq

activity were not enriched for IFN-1 signaling or other immune-related pathways

(Supplementary file 2).

Using mSTARR-seq, we assayed ~750,000 unique DNA fragments (mean ± SD = 759,725±252,187

fragments per replicate; Figure 1D), comparable to or exceeding the diversity in published STARR-

seq and massively parallel reporter assay experiments (Figure 1—figure supplements 2 and 3). For

subsequent analysis, we binned the genome into 200 bp non-overlapping intervals and filtered these

regions to focus on the 262,829 intervals that overlapped at least one mSTARR-seq mRNA read and

one DNA read in at least half of the replicates in each condition (see Materials and methods). The

resulting data set covered 1.81 million unique CpG sites, 57% of fragments expected from a com-

plete MspI digest of the human genome, and 13% of the K562 euchromatic genome

(Figure 2A), (Figure 1—figure supplement 4). Within this data set, we identified 19,703 intervals

with an excess of plasmid-derived mRNA relative to DNA input in at least one condition (unmethy-

lated or methylated), which indicates regulatory/enhancer activity (8% of analyzed regions; linear

model, FDR < 10%: Supplementary file 3). Information on dynamic range, as well as how the num-

ber of assayed fragments, the number of analyzed CpG sites, and the coverage of CpG sites scales

with sequencing depth is provided in Figure 2—figure supplements 1 and 2.

Among regions with evidence for enhancer activity, 2969 exhibited significant methylation-depen-

dent (MD) activity (15% of analyzed regions; linear model, FDR < 10%). Eighty-six percent of these

MD enhancers were more active when unmethylated and 14% were more active when methylated

(Figure 3A; Supplementary file 4). Only 4 of the 325 CpG-free regions in the analysis set were

inferred to have MD activity, consistent with an overall low false discovery rate (Figure 3B).

Validation against low-throughput reporter assays and comparison with
endogenous measures of regulatory function
To validate mSTARR-seq’s performance, we compared it to luciferase reporter assays designed to

test for regulatory activity or DNA methylation-dependent regulatory activity at a single locus

(Klug and Rehli, 2006). We assayed 18 candidate regulatory elements spanning a range of enhancer

activities and MD enhancer activities inferred from our mSTARR-seq experiments (including loci with

no detectable MD enhancer activity; Supplementary file 5). In both cases, we observed strong

agreement between the conventional low-throughput method and results from mSTARR-seq:

enhancer activity inferred from unmethylated plasmids was strongly correlated between mSTARR-

seq and single locus assays (linear model, R2 = 0.86, p < 10�15, Figure 2C), as was MD enhancer

activity (based on comparisons between unmethylated and methylated plasmids; linear model,

R2 = 0.76, p < 10�15, Figure 2C). These results indicate that mSTARR-seq reliably scales previous

methods for assessing MD regulatory activity—in this case, by five orders of magnitude—without

loss of reliability.

To further validate mSTARR-seq, we also investigated concordance between our results and

endogenous enhancer annotations for K562 cells. As expected, the set of regions capable of

enhancer activity was highly enriched for ‘weak enhancer’, ‘strong enhancer’, and ‘active promoter’

ENCODE chromatin states (Dunham et al., 2012) (two-sided Fisher’s exact test, log2(odds) = 0.219–
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2.60, all p < 10�7; Figure 2A), and regions annotated as ‘strong enhancer’ contained the largest

proportion of mSTARR-seq-identified regulatory elements (31% of those tested). Further, regions

with mSTARR-seq enhancer activity that fell in enhancer or active promoter chromatin states consis-

tently displayed larger effect sizes than those found in other chromatin states (linear model,

R2 = 0.11, p < 10�15; Figure 2A). Hence, consistent with findings from previous massively parallel

reporter assays (Arnold et al., 2013), mSTARR-seq can identify both endogenously active regulatory

elements and additional loci with latent regulatory potential. Notably, power to detect enhancer

activity increased with larger query fragment sizes (Figure 2B) and the trade-off between sensitivity

and specificity also improved (Figure 2—figure supplement 3), possibly because short fragments

eliminate binding sites key to enhancer activity. Thus, while we used a mean fragment size typical for

STARR-seq experiments in this analysis (Arnold et al., 2013; Arnold et al., 2014; Zabidi et al.,

2015) (but larger than most synthesized fragments in MPRA experiments: (Melnikov et al., 2012;

Patwardhan et al., 2012; Tewhey et al., 2016)), additional increases in fragment size would likely

further increase assay sensitivity. Indeed, our results indicate that the current data set is more sensi-

tive to strong enhancers than weak enhancers (Figure 3A), and that we likely miss some true weak

Figure 2. mSTARR-seq identifies regions with endogenous regulatory activity. (A) Regions with significant regulatory activity are enriched for enhancer

chromatin states in K562 cells (blue). Y-axis shows the two-sided Fisher’s Exact Test log2(odds) for enrichment/depletion of mSTARR-seq enhancers in

15 K562-annotated chromatin states (p<0.05 for all tests except ‘Weak promoter’). Inset: mSTARR-seq effect size for regions in enhancer chromatin

states versus other chromatin states, for regions with significant activity only. (B) Binning regions with significant mSTARR-seq enhancer activity by

fragment length reveals that larger fragments are more strongly enriched for ENCODE-annotated ‘strong enhancers’. The y-axis depicts the log2(odds)

from a two-sided Fisher’s exact test for enrichment of mSTARR-seq enhancers (binned by deciles of fragment length) in either of the two ‘strong

enhancer’ chromatin states (p<0.05 for all tests). (C) Agreement between conventional CpG-free luciferase reporter assays (Klug and Rehli, 2006) and

enhancer activity (left) and MD-dependent activity (right) estimated from mSTARR-seq for 18 candidate regulatory elements (Supplementary file 3).

mSTARR-seq activity explains 86.0% and 76.1% (p < 10�15) of variance in normalized luciferase activity, respectively (linear mixed model controlling for

batch and assay fragment length). The dynamic range for mSTARR-seq enhancer detection is shown in Figure 2—figure supplement 1. The effects of

sample size and sequencing effort on coverage, regions analyzed, and CpG sites analyzed are shown in Figure 2—figure supplement 2. Sensitivity

versus specificity of enhancer detection as a function of fragment length is shown in Figure 2—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.37513.008

The following figure supplements are available for figure 2:

Figure supplement 1. Effect size distributions for regions identified as enhancers (FDR < 0.1).

DOI: https://doi.org/10.7554/eLife.37513.009

Figure supplement 2. Effect of sequencing depth and sample size on the data set properties.

DOI: https://doi.org/10.7554/eLife.37513.010

Figure supplement 3. Known enhancers on larger DNA query fragments are more likely to exhibit significant regulatory activity in mSTARR-seq.

DOI: https://doi.org/10.7554/eLife.37513.011
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Figure 3. mSTARR-seq identification and prediction of MD enhancers. (A) The distribution of differences in normalized mRNA transcript abundance

between the unmethylated and methylated conditions for all significant MD enhancers. (B) CpG-free MD enhancers occur at a 9.5-fold lower rate than

CpG-free windows with no MD enhancer activity. (C) Distribution of fragment CpG density for regions identified as MD versus non-MD enhancers. (D)

CpG-dense mSTARR-seq enhancers tend to be repressed by DNA methylation (positive y-axis value; Spearman’s rho = 0.284, p<10�15; n = 19,703

regions with mSTARR-seq regulatory activity). (E) The proportion of non-MD and MD enhancers that were accurately classified via a random forests (RF)

classifier. (F) Features that distinguish MD and non-MD enhancers in the RF classifier (10% FDR; note that the feature set [Supplementary file 6]

includes some repeated ChIP-seq experiments for the same TF). X-axis: mean decrease in predictive accuracy when permuting the focal variable. Blue:

positive prediction of non-MD enhancers; gray: positive prediction of MD enhancers. Mean decrease in accuracy is calculated as the mean difference in

accuracy between 1000 models in which the focal variable is permuted and one where it is not, normalized by the standard deviation of these

difference values; it is thus analogous to a standardized effect size. Statistical calibration and dynamic range of detection for models used to detect MD

activity are shown in Figure 3—figure supplement 1. Effect of varying the threshold used to predict MD versus non-MD enhancers is shown in

Figure 3—figure supplement 2. Motifs for TFs that are significant predictors of MD enhancer activity are shown in Figure 3—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.37513.012

The following figure supplements are available for figure 3:

Figure supplement 1. Linear models for detecting MD enhancers are well-calibrated, but primarily detect large effect size regions.

DOI: https://doi.org/10.7554/eLife.37513.013

Figure supplement 2. Impact of the threshold used to assign enhancers to the MD or non-MD class in random forests analyses.

DOI: https://doi.org/10.7554/eLife.37513.014

Figure supplement 3. Motifs for transcription factors identified as predictors of MD regulatory activity in random forest analyses.

DOI: https://doi.org/10.7554/eLife.37513.015
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and/or weakly MD enhancers, after FDR correction for multiple testing (Figure 2—figure supple-

ment 1; Figure 3—figure supplement 1).

Determinants of methylation-dependent (MD) regulatory activity
Our results allowed us to investigate the properties that predict MD regulatory activity and the tran-

scription factors associated with MD enhancers. Overall, we found that MD enhancers have higher

CpG densities and contain more CpG sites than non-MD enhancers (two-sided Wilcoxon-signed

rank test, p < 10�15; Figure 3C). However, CpG density explained only a small amount of variation

in the magnitude of methylation dependence, suggesting that other characteristics also contribute

to quantitative variation in MD activity (Spearman’s rho = 0.284, p < 10�15; Figure 3D).

To identify these characteristics, we used a random forests (RF) classifier to evaluate the contribu-

tion of 117 genomic features to differentiating MD and non-MD enhancers. Specifically, we com-

pared the 2553 regions suppressed by methylation to a set of 2503 regions with strong evidence

against methylation-dependence (i.e. >50% FDR in our analysis of MD activity). Our feature set

included information about absolute CpG number and density; endogenous chromatin state, chro-

matin accessibility, and DNA methylation levels (Dunham et al., 2012; Kundaje et al., 2015); evolu-

tionary conservation (Siepel et al., 2005); and TF binding from K562 ENCODE ChIP-seq data

(Dunham et al., 2012). The resulting RF model predicted MD regulatory element activity with 78.8%

accuracy (72.3% without the top features of CpG density and CpG number; Figure 3E and Fig-

ure 3—figure supplement 2). In addition to CpG number and density, 26 features were identified

as significant predictors (permutation-based (Archer, 2015) FDR < 10%; Figure 3F and

Supplementary file 6). Measures of DNase I hypersensitivity and endogenous methylation levels

were among the top predictive features: relative to non-MD enhancers, enhancers suppressed by

DNA methylation were more likely to occur in open chromatin or in highly methylated regions of the

genome. MD enhancers were also more likely to contain binding sites for TFs that contain CpG sites

in their canonical binding motifs (Figure 3F and Figure 3—figure supplement 3).

Consistent with these results, many TFs are thought to be sensitive to DNA methylation levels in

or near their binding motifs (Hu et al., 2013; O’Malley et al., 2016; Yin et al., 2017). This ability to

‘read’ epigenetic modifications to DNA sequence could contribute to variation in MD regulatory

activity in our data set. To test this possibility, we therefore investigated TF binding motif enrich-

ment within mSTARR-seq identified MD enhancers, using motifs defined in the HOMER database

(Heinz et al., 2010). Among the 2543 MD enhancers in which DNA methylation suppresses activity,

we identified 32 significantly enriched TF-binding motifs (relative to all regions with mSTARR-seq

regulatory activity, FDR < 1%; Figure 4A and Supplementary file 7). These results agree with known

cases of methylation-dependent binding for well-studied classes of TFs (e.g. ETS family TFs, some of

which are known to be methylation-sensitive (Polansky et al., 2010; Cooper et al., 2015;

Stephens and Poon, 2016)). Additionally, they are significantly correlated with estimates of methyla-

tion-dependent TF binding to naked DNA using a completely orthogonal method (Yin et al., 2017).

Specifically, when we compared estimates of motif enrichment from mSTARR-seq-identified MD

enhancers versus estimates of affinity for methylated DNA in SELEX experiments, we found signifi-

cant agreement for both TFs that preferentially bound unmethylated (linear model, R2 = 0.342;

p = 1.33 � 10�6) and TFs that preferentially bound methylated DNA (linear model, R2 = 0.113,

p = 0.028; Figure 5A–B).

Among the 13 TF motifs associated with increased enhancer activity when DNA was methylated,

we identified a strong overrepresentation of TFs from the GATA subfamily of zinc finger TFs (15.9x

enrichment, hypergeometric test p=1.74�10�8; Figure 4B and Supplementary file 8). This observa-

tion is consistent with reports that GATA3 and GATA4 can bind to methylated DNA outside the cel-

lular context (Hu et al., 2013). We therefore compared our findings to published chromatin

accessibility data for wild-type murine stem cells, which contain normal patterns of DNA methylation,

and triple knockouts for DNMT1, DNMT3a, and DNMT3b, in which DNA methylation is abolished

(Domcke et al., 2015). For five of ten tested GATA family TFs, open chromatin regions specific to

wild type (i.e. those absent in the triple knockouts) were significantly enriched for their cognate-bind-

ing sites (Figure 4C), in support of the idea that GATA family TFs preferentially bind methylated

DNA as part of their ‘pioneer’ factor activity (Zhu et al., 2016). In contrast, ETS family TF binding

sites were almost universally (38 of 41 tested) enriched in DNMT knockout-specific open chromatin

regions.
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Because the treatment condition—methylated versus unmethylated—is the only exogenous vari-

able in mSTARR-seq, all signals of MD activity we detect depend on the original treatment status. In

this respect, mSTARR-seq is conservative: rapid demethylation of the methylated treatment or de

novo methylation of the unmethylated treatment would attenuate or eliminate any MD signal, as the

two treatments would effectively become identical. However, methylation-dependent TF binding

could also lead to subsequent changes in DNA methylation, as some TFs are associated with deme-

thylating activity (Suzuki et al., 2017). To test this possibility, we generated an additional locus-spe-

cific bisulfite sequencing data set on fragments extracted 48 hr post-transfection. As in our previous

experiments (Figure 1E), introduced CpG sites in the fragment-backbone linker retained their exper-

imentally-induced methylation status (mean CpG methylation levels = 1.6% and 95.1% in the unme-

thylated and methylated condition, respectively). However, CpG sites in fragments that mapped to

the human genome partially converged towards endogenous levels in K562s, for both unmethylated

(rho = 0.476, p<10�16) and methylated replicates (rho = 0.223, p<10�16; Figure 4—figure supple-

ment 1). Specifically, 23.1% of sites in the unmethylated condition became methylated, while 15.7%

of sites in the methylated condition lost methyl marks.

This effect was driven in part by altered methylation levels at specific transcription factor binding

sites. We observed the strongest evidence for post-transfection demethylation at K562 ChIP-seq-

identified binding sites for ZNF274 and GATA2 (loss of a mean of 35.9% and 26.5% methylation,

respectively), and for post-transfection de novo methylation at ChIP-seq-identified binding sites for

Figure 4. mSTARR-seq identifies MD transcription factor-DNA binding. (A) Transcription factor motifs enriched in MD enhancers that are more active

when unmethylated, colored by TF family. (B) TF motifs enriched in MD enhancers that are more active when methylated. (C) DNase hypersensitive sites

(DHS) specific to murine stem cells that lack DNA methylation (DNMT triple knock-outs: TKO) are strongly enriched for ETS family binding sites relative

to wild-type cells with intact DNA methylation. In contrast, DHSs specific to wild-type cells are enriched for GATA family binding sites relative to triple

knock-outs. DHS data are from22. X-axis: % knockout-specific DHSs that contain a given TF-binding motif (n = 1251 motifs). Y-axis: Ratio of knockout

versus wild-type specific DHSs containing a given TF-binding site motif. Colored dots circled in black show significant enrichment for an ETS or GATA

family TF (10% FDR, hypergeometric test). Evidence for CpG site and TFBS-dependent convergence to endogenous K562 methylation levels for some

tested sites is shown in Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.37513.016

The following figure supplement is available for figure 4:

Figure supplement 1. Methylation levels of human insert fragments in mSTARR-seq experiments converge toward endogenous methylation patterns

post-transfection.

DOI: https://doi.org/10.7554/eLife.37513.017
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POL2 and KAP1 (gain of a mean 26.0%, and 18.6% methylation, respectively; Supplementary file 9).

Figure 5. Agreement with in vitro and in vivo estimates of methylation-dependence. (A–B) Comparison of motif

enrichment for mSTARR-seq-identified MD enhancers (x-axis) versus affinity for methylated DNA in SELEX

experiments (y-axis: higher values represent preferential binding to methylated DNA). Results are plotted for each

TF tested in both mSTARR-seq and in Yin et al. (2017) (A) TFs enriched for MD enhancers that were more active

when unmethylated. (B) TFs enriched for MD enhancers that were more active when methylated. Each TF is

colored by whether its binding motif was significantly enriched in the given MD enhancer set in mSTARR-seq. (C)

CDF of the effect of CpG methylation levels on gene expression levels (rho) for 32,843 gene pairs measured in

1202 human monocyte samples (Reynolds et al., 2014). The mean correlation between CpG methylation levels

and the expression of the closest gene is near zero. Inset shows the same distribution plotted as a histogram. (D)

Enrichment (Log2 odds ratio from a Fisher’s exact test) of CpG sites with significant DNA methylation-gene

expression correlations (FDR < 10%) in MD enhancers relative to non-MD enhancers. Bars show (i) enrichment

versus all CpG sites measured in both mSTARR-seq and the monocyte dataset; (ii) enrichment in the subset of

CpG sites with negative DNA methylation-gene expression correlations (of any magnitude); and (iii) enrichment in

the subset of CpG sites with negative DNA methylation-gene expression correlations located in gene promoters.

Error bars represent 95% confidence intervals. Evidence that major environmental perturbations to gene

expression (IFNA challenge) leads to correlated changes in DNA methylation is shown in Figure 5—figure

supplement 1.

DOI: https://doi.org/10.7554/eLife.37513.018

The following figure supplement is available for figure 5:

Figure supplement 1. IFNA treatment produces changes in enhancer activity that correlate with changes in post-

transfection plasmid DNA methylation levels.

DOI: https://doi.org/10.7554/eLife.37513.019
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However, GATA family TFs showed some of the most consistent evidence for demethylation overall:

among the top 20 TFs ranked by mean loss of methylation (in the methylated condition), GATA fam-

ily TFs were enriched 6.7-fold relative to chance expectations (p=3.60�10�4). Our data are thus con-

sistent with both methylation-dependent binding and subsequent demethylating activity at GATA-

bound TFBS (Zhu et al., 2016; Suzuki et al., 2017), and support the argument that sequence alone

provides important information about cell-typic DNA methylation levels (Schübeler, 2015). They

also suggest that, while not the original motivation for the method, mSTARR-seq could be applied

to screen for TFs associated with active demethylation.

mSTARR-seq explains site-to-site heterogeneity in the strength of DNA
methylation level-gene expression level correlations in vivo
Our mSTARR-seq results indicate that, at many CpG sites, DNA methylation may be functionally

silent (i.e. it has no effect on regulatory activity). This result may explain the observation that, in pop-

ulation data sets, inter-individual variation in DNA methylation levels is a good predictor of inter-

individual variation in gene expression levels at some CpG sites, but not others (Lam et al., 2012;

Reynolds et al., 2014). Specifically, DNA methylation-gene expression correlations are expected to

be stronger at CpG sites where DNA methylation causally affects gene expression than at sites

where DNA methylation is functionally silent.

To test this prediction, we drew on paired DNA methylation and gene expression data for 1202

human primary monocyte samples (Reynolds et al., 2014). In this data set, the correlation between

CpG methylation levels and the expression level of the closest gene is relatively strong within a sin-

gle individual’s genome (mean rho = -0.152 ± 0.018 s.d., rho calculated for each of n = 1202 paired

genome-wide methylation and gene expression data sets, all p<10�16), but near zero when esti-

mated across individuals (mean rho = 0.008 ± 0.188 s.d., n = 32,843 site-gene pairs measured in

1202 individuals each; Figure 5C). However, in mSTARR-seq identified MD enhancers, there is an

enrichment of sites with significant DNA methylation-gene expression correlations across individuals

(FDR < 10%), relative to non-MD enhancers (two-sided Fisher’s exact test, log2odds = 0.186,

p=4.967�10�8). This enrichment increases further for sites in the monocyte data set that display the

canonical negative correlation between DNA methylation and gene expression levels (log2-

odds = 0.491, p<10�16), and is strongest when these sites also occur in promoter regions (log2-

odds = 0.592, p<10�16; Figure 5D). Overall, CpG sites found in mSTARR-seq MD regulatory

elements are 1.6-fold more common among sites where DNA methylation is strongly negatively cor-

related with gene expression (rho <�0.2, FDR < 10%) than among all other sites.

mSTARR-seq data can therefore help discriminate between sites where population variation in

DNA methylation can drive differences in gene expression, and those where differential methylation

is either independent or downstream of gene expression variation. Notably, although mSTARR-seq

is designed to test the effects of experimentally induced DNA methylation on gene expression, it is

consistent with the observation that major environmental or developmental perturbations to gene

expression are also associated with changes in DNA methylation. To demonstrate this property, we

challenged K562s carrying methylated mSTARR-seq constructs with interferon alpha (IFNA), which

induces a strong antiviral innate immune response. We identified 7010 CpG sites that occurred

within 2678 regions tested for enhancer activity in both the control and IFNA-challenged samples,

and for which we were also able to measure IFNA-induced changes in DNA methylation levels.

Increased enhancer activity post-IFNA treatment was significantly correlated with loss of DNA meth-

ylation at individual sites (rho = 0.043, p=0.025; n = 7010 independently analyzed CpG sites), but

not significantly correlated with mean loss of CpG methylation across each region (n = 2678, 200 bp

regions; rho = 0.014, p=0.687). For both region- and site-level analyses, the strength of the correla-

tion between IFNA induction and loss of DNA methylation became progressively stronger for more

strongly induced enhancers (up to rho = 0.125 or rho = 0.139 for the 15th quantile of induced

enhancers, for regions and sites, respectively, p<0.05 for both; Figure 5—figure supplement 1).

The magnitude of the IFNA effect on enhancer activity thus was a significant predictor of CpG

demethylation versus maintenance (logistic regression: p=0.043, R2 = 0.071, n = 7010 CpG sites).
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Discussion
Here, we present a novel high-throughput assay for performing genome-scale tests of methylation-

dependent regulatory activity. Our results demonstrate the utility of mSTARR-seq for differentiating

between regions of the genome in which DNA methylation is causally important for gene regulation

and those in which it is effectively silent. mSTARR-seq thus provides an efficient, cost-effective strat-

egy for interrogating the functional importance of candidate genomic regions. Notably, the informa-

tion obtained from the original STARR-seq protocol (Arnold et al., 2013), which tests a sequence’s

capacity to act as an enhancer, is also generated as a by-product of the mSTARR-seq protocol (e.g.

data from the unmethylated condition is analogous to STARR-seq data, although the vector back-

bone differs).

Together, our findings emphasize substantial variability in the functional relationship between

DNA methylation and gene regulation across the genome. In particular, our data indicate that MD

activity is probably less common for CpG sites in the human genome than methylation-independent

activity, at least in any given cell type and environmental condition; further, where it does occur but

was missed by our analysis, dependence on DNA methylation is likely to be weak. In addition, in

agreement with several proposed models for the role of DNA methylation in gene regulation, we

find that both basic sequence characteristics (e.g. density of CpG sites) and the sensitivity of their

cognate TFs to local methylation play an important role in predicting MD elements (Domcke et al.,

2015; Schübeler, 2015). Our results provide support for the hypothesis that pioneer TFs, such as

members of the GATA TF family, have a higher affinity for methylated DNA, potentially aiding in

their ability to bind condensed chromatin (Zhu et al., 2016). Indeed, methylated fragments that con-

tained endogenous GATA-binding sites also tended to become demethylated during our experi-

ments, consistent with the role of pioneer TFs in remodeling the epigenome. Other TFs important in

development and cell fate, such as MyoD and TCF21, are also enriched among MD enhancers with

increased activity when methylated, supporting the idea that preferential binding of methylated

DNA could be used to aid in pioneer TF discovery (Zhu et al., 2016). A caveat to our approach is

that, like all massively parallel reporter assays, the regulatory elements we identify operate outside

the context of the endogenous genome (and thus, interactions between DNA methylation and

higher order chromatin structure will be missed). Consequently, mSTARR-seq isolates the effects of

DNA methylation alone, identifying the subset of MD elements for which changes in DNA methyla-

tion are sufficient to causally alter gene regulation.

Finally, mSTARR-seq results can be used to identify the CpG sites for which interindividual varia-

tion in DNA methylation is most tightly linked to gene expression variation in vivo. Thus, maps of

MD regulatory activity obtained from mSTARR-seq can help prioritize DNA methylation-trait associa-

tions for further investigation. Notably, the effects of DNA methylation on gene expression are not

only cell-type-dependent, but may also vary depending on environment, genotype, or species

(Jirtle and Skinner, 2007; Zhang and Meaney, 2010; Hernando-Herraez et al., 2013;

Banovich et al., 2014; Hernando-Herraez et al., 2015). mSTARR-seq can be adapted to investigate

these dependencies by varying the transfected cell types, input DNA fragment library (e.g. via tar-

geted capture or ChIP (Vanhille et al., 2015; Vockley et al., 2016)), or the cellular environment

(e.g. through in vitro stimulation of transfected cells, similar to the IFNA treatment reported here).

Thus, we expect that mSTARR-seq will become a useful tool for facilitating screening and dissection

of the causal relationship between DNA methylation and gene expression levels in many contexts.

Materials and methods

Key resources table

Reagent type
(species)or resource Designation Source or reference Identifiers Additional

Cell line (human) K562 ATCC ATCC CCL-243

Recombinant
DNA reagent

pmSTARRseq1 Addgene Plasmid #96945

Peptide,
recombinant protein

IFN-a Abcam ab48750

Continued on next page
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Continued

Reagent type
(species)or resource Designation Source or reference Identifiers Additional

Chemically
competent E. coli cells

GT115 strain Invivogen ChemiComp GT115

Electrically
competent E. coli cells

GT115 strain Intact Genomics Custom order to grow
Invivogen’s ChemiComp
GT115 strain and
prepare cells for
electroporation

pmSTARRseq1 design
We constructed a self-transcribing CpG-free vector that was built from Invivogen’s pCpGfree-pro-

moter-Lucia plasmid, which contains an R6Kg origin of replication and a Zeocin resistance gene. Spe-

cifically, we replaced the region between the NsiI and NheI digest sites of the pCpGfree-promoter-

Lucia plasmid with the following sequence:

ATGCATAGGGAGAAGAGCATGCTTGAGGGCTGAGTGCCCCTCAGTGGGCAGAGAGCACA

TGGCCCACAGTCCCTGAGAAGTTGGGGGGAGGGGTGGGCAATTGAACTGGTGCCTAGAGAAGG

TGGGGCTTGGGTAAACTGGGAAAGTGATGTGGTGTACTGGCTCCACCTTTTTCCCCAGGG

TGGGGGAGAACCATATATAAGTGCAGTAGTCTCTGTGAACATTCAGGGCCTGAATTAATTCACTG

TCTGCCAGGGCCAGCTGTTGGGGTGAGTACTCCCTCTCAAAAGCTGGCATGACTTCTGCAC

TAAGATTGTCAGTTTCCAAAAATGAGGAGGATTTGATATTCAACTGGCCCTCAGTGATGCC

TTTGAGGGTGGCTGGGTCCATCTGGTCAGAAAAGACAATCTTTTTGTTGTCAAGCTTGAGGTG

TGGCAGGCTTGAGGTCTGGCCATACACTTGAGTGACAATGACATCCACTTTGCCTTTCTCTCCA-

CAGGTGTCCACTCCCAGGTCCAACTGCAGGTCACCTGCAGGCTTAAGCTCATGGTTTCTAAGG-

GAGAAGAACTCTTTACTGGTGTTGTCCCAATTCTGGTTGAGCTGGATGGTGATGTGAATGGCCA-

CAAATTCTCTGTGTCTGGTGAAGGTGAAGGAGATGCAACTTATGGAAAGCTGACTCTGAAGTTCA

TTTGTACAACAGGAAAGCTGCCAGTGCCTTGGCCAACTCTGGTGACCACCCTGACTTATGGTG

TTCAATGTTTCAGCAGGTACCCTGACCACATGAAGCAGCATGACTTCTTTAAATCTGCAATGCCA-

GAAGGTTATGTTCAGGAGAGGACAATCTTCTTTAAGGATGATGGAAATTATAAGACAAGGGCA-

GAAGTGAAGTTTGAAGGTGATACACTGGTTAACAGAATTGAGCTGAAAGGCATTGATTTTAAG-

GAAGATGGAAACATTCTGGGTCACAAGCTGGAGTACAACTATAATTCTCACAATGTTTACATTA

TGGCAGATAAGCAGAGGAATGGAATTAAGGCTAATTTCAAGATTAGACACAACATTGAGGA

TGGGTCTGTCCAACTGGCAGACCATTACCAGCAGAACACCCCTATTGGTGATGGCCCAGTTCTCC

TCCCAGATAATCACTATCTCAGCACTCAATCTGCTCTGTCCAAAGACCCTAATGAGAAAAGAGAC-

CACATGGTCCTCCTGGAGTTTGTGACAGCAGCAGGAATTACTCTGGGAATGGATGAGCTG

TACAAGGCCAAGTTGACCAGTGCTGTCCCAGTGCTCACAGCCAGGGATGTGGCTGGAGCTG

TTGAGTTCTGGACTGACAGGTTGGGGTTCTCCAGAGATTTTGTGGAGGATGACTTTGCAGGTG

TGGTCAGAGATGATGTCACCCTGTTCATCTCAGCAGTCCAGGACCAGGTGGTGCCTGACAA-

CACCCTGGCTTGGGTGTGGGTGAGAGGACTGGATGAGCTGTATGCTGAGTGGAGTGAGGTGGTC

TCCACCAACTTCAGGGATGCCAGTGGCCCTGCCATGACAGAGATTGGAGAGCAGCCC

TGGGGGAGAGAGTTTGCCCTGAGAGACCCAGCAGGCAACTGTGTGCACTTTGTGGCAGAGGAG-

CAGGACTAAAGTCTAGAGCTTGTACTAGTGGTGATTCCCCTGACGCGTGCACGTCTGCTGACGCG

TAAAGTCTCCCGTGAACTTTACCCACGCGTGCATATCGGGGATGAAAGACGCGTCATGATGAC-

CACCGATATGGCCAGTGTACGCGTCTCGGGGAATATAAATACACAGCCAGTCTGCAGGACA

TCCCATGGGAATTCAGCCAGCCACTTCAACTGCTAGC

This introduced sequence contains the following elements: a CpG-free EF1 promoter (Invivogen),

a CpG-free version of a synthetic intron (pIRESpuro3, Clontech), an ORF (the CpG-free CFP::Sh gene

from Invivogen), and a cluster of MluI digest sites for screening. The MluI cluster is flanked by restric-

tion enzyme digest sites for SpeI and NcoI to enable high-throughput replacement of this sequence

with candidate regulatory elements. To avoid any potential for bacterial methylation, we designed

the plasmid to be devoid of Dam methyltransferase targets (GATC), and we only replicated plasmids

in a Dcm methyltransferase-deficient bacterial strain (GT115, Invivogen).
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Generation of plasmid libraries for mSTARR-seq
As input for our experiments with pmSTARRseq1, we isolated genomic DNA from the GM12878 cell

line (QIAGEN, Blood and Cell Culture DNA Mini Kit) and fragmented the genomic DNA via sonica-

tion (Bioruptor Standard, Diagenode) or MspI digest. We size-selected both the sheared and MspI-

digested DNA to a size range of ~300–700 bp, and used the NEBNext DNA Library Prep Master Mix

Set for Illumina kit to create libraries from 1 to 2 ug of either sheared or MspI-digested DNA (com-

pleting 3–4 replicate library preps for input type). We followed the manufacturer’s instructions

except for the final PCR amplification step, during which we used the following primers to facilitate

directional high-throughput cloning (F: actaaagtctagagcttgtaACACTCTTTCCCTACACG, R:

gaagtggctggctgaattccGTGACTGGAGTTCAGACG).

We cloned each library (3–4 replicates per input type) into the pmSTARRseq1 backbone using

Gibson assembly. Specifically, we linearized the mSTARR-seq vector by digesting with SpeI and NcoI

and isolating the backbone fragment (3.875 kb). We then assembled the pmSTARRseq1 vector (1

ug) to an aliquot of MspI-digested or sheared library (284 ng) using 50 ul of NEBuilder HiFi DNA

Assembly Master Mix in 100 ul reaction volumes. We completed 4 and 3 large-scale assemblies

using MspI-digested and sheared DNA libraries, respectively. We incubated each of the 7 reactions

for 60 min at 50˚C, and purified the resulting reaction using a 1X Agencourt AMPure XP bead (Beck-

man Coulter) cleanup and an elution volume of 7.5 ul.

Each 7.5 ul aliquot of purified, assembled product (n = 7 large scale assemblies) was transformed

into 300 ul of electrocompetent GT115 E. coli cells. GT115 cells were initially purchased from Invivo-

gen, and a custom electrocompetent version of the strain was prepared by Intact Genomics (stan-

dard E. coli strains cannot be used in this protocol due to the R6Kg origin of replication). We used

the BioRad Gene Pulser Xcell system for electroporation and the E. coli 2 mm gap three kv program.

Following electroporation, each of the 7 pools of 300 ul of cells was allowed to recover in 10 mL of

SOC for 1 hr at 37˚C. Each pool was then transferred to a flask containing 300 ml LB with Zeocin

(100 ug/mL) and grown overnight for 12 hr. Plasmids were then extracted with the QIAGEN Plasmid

Plus Maxi Kit. We pooled plasmid DNA derived from MspI-digested library transformations (n = 4)

and sheared library transformations (n = 3), and mixed these two pools in a 1:2 ratio.

This 1:2 mixture (a total of 720 ug of plasmid DNA) was used to perform 6 ‘methylated condition’

methyltransferase reactions (37˚C overnight incubation of 60 ug of plasmid DNA with 50 ul of NEB

buffer 2, 5 ul of 32 uM SAM, 9 ul of 20 U/ul M.SssI [New England Biolabs] in a 500 ul volume) and 6

‘unmethylated condition’ reactions in which the M.SssI enzyme was replaced with water. Following

incubation, each replicate was purified using a 0.8X Agencourt AMPure XP bead cleanup. These 12

purified reactions were used as transfection input (see below) for the primary data set described in

the main text.

For the additional set of experiments in which K562 cells were challenged or mock treated with

IFNA, we used the same pool of post-transformation, extracted plasmid DNA (consisting of a mix-

ture of Msp1-digested and sheared genomic DNA fragment inserts) described above. Using this

pool, we performed an additional set of 2 ‘unmethylated condition’ and 6 ‘methylated condition’

methyltransferase reactions using the incubation and purification conditions described above.

Cell culture, plasmid transfection, and cell harvesting
K562 cells were cultured in RPMI 1640 media (Gibco) supplemented with 10% FBS (Sigma Aldrich)

and 1% Penicillin/Streptomycin solution (Sigma Aldrich) and maintained at 37˚C in a 5% CO2 incuba-

tor. All transfections were performed with Lipofectamine 3000 (ThermoFisher Scientific) following

the manufacturer’s instructions, with reagent quantities scaled as follows per replicate: 20 million

cells, 40 ug of DNA, 110 ul of Lipofectamine 3000, and 100 ul of P3000. We transfected six unmethy-

lated condition and six methylated condition replicates for the primary data set on mapping MD reg-

ulatory activity. For the additional experiments focusing on the IFNA response, we transfected an

additional 2 and 6 replicates with unmethylated and methylated DNA, respectively, and added 2000

U/mL IFNA (ThermoFisher Scientific) to 3 of the methylated replicates 38 hr post-transfection. At the

same time, we added an equivalent volume of water as a negative control to the remaining methyl-

ated and unmethylated replicates (total number of replicates: n = 3 methylated, IFNA+, n = 3 meth-

ylated, IFNA-, n = 2 unmethylated, IFNA-).

Lea et al. eLife 2018;7:e37513. DOI: https://doi.org/10.7554/eLife.37513 14 of 27

Tools and resources Genetics and Genomics

https://doi.org/10.7554/eLife.37513


Total RNA and plasmid DNA was isolated from each K562 replicate cell population 48 hr post-

transfection. Prior to cell lysis, each replicate was collected via centrifugation. Pelleted cells were

washed with 1X PBS and then incubated at 37˚C for 5–10 min in 3 mL RPMI 1640 containing 1 mL of

Turbo DNase (Ambion) per 36 mL. Cells were then pelleted and washed with 1X PBS, and an aliquot

of ~10% unlysed cells per replicate was set aside for later plasmid extraction. The remaining cells

were pelleted and lysed in 2 mL of Buffer RLT (QIAGEN).

Isolation and preparation of plasmid-derived mRNA and plasmid DNA
libraries
Total RNA was extracted from each replicate (n = 12 from the main experiment, n = 8 from the

IFNA experiment) using the QIAGEN RNeasy Midi kit, and the polyA +RNA fraction was isolated

from up to 75 ug of total RNA using Dynabeads Oligo dT25 (Invitrogen) and eluted in 25 ul of 10

mM Tris-HCl. Each isolated mRNA sample was then DNase-treated by adding 1 ul of Turbo DNase,

3 ul of Turbo DNase buffer, and 1 ul of water, followed by a 30-min incubation at 37˚C and purifica-

tion using the RNeasy MiniElute Cleanup Kit (QIAGEN). Purified mRNA was eluted in 25 ul of RNase

free water, after which reverse transcription was performed using Super Script III Reverse Transcrip-

tase (Invitrogen) following the manufacturer’s recommended protocol for higher yield. First strand

cDNA synthesis was performed with a primer specific to the mSTARR-seq reporter plasmid (CAAAC

TCATCAATGTATCTTATCATG), including the optional RNase H step. cDNA from each replicate was

purified and concentrated using a 2X Agencourt AMPure XP bead cleanup. Each sample was eluted

in 20 ul of nuclease free water.

We amplified the cDNA obtained from reverse transcription for Illumina sequencing using a two

step, nested PCR strategy. In the first PCR, we amplified each cDNA pool (n = 12 from the main

experiment, n = 8 from the IFNA experiment) using two primers specific to the mSTARR-seq

reporter plasmid (forward: GGGCCAGCTGTTGGGGTG*T*C*C*A*C (3’ end is protected by pho-

phorothioate bonds), reverse: CAAACTCATCAATGTATCTTATCATG). The forward primer spans the

splice junction of the synthetic intron and specifically amplifies the reporter cDNA without amplifying

any residual, unspliced plasmid DNA left in the reaction mixture. Each PCR reaction contained 2.5 ul

of the forward and reverse primers at 10 uM, 25 ul of NEBNext High-Fidelity 2X PCR Master Mix,

and 20 ul of cDNA. Cycling conditions were as follows: 98˚C for 2 min; followed by 15 cycles of 98˚C
for 20 s, 65˚C for 30 s, 72˚C for 120 s; followed by a final 5 min extension at 72˚C for 5 min. PCR

products were purified using a 2X Agencourt AMPure XP bead cleanup and eluted in 20 ul of EB

buffer (QIAGEN).

The entire purified PCR product (20 ul) from each reaction (n = 12 from the main experiment,

n = 8 from the IFNA experiment) served as the template for the second PCR, which contained 25 ul

of NEBNext High-Fidelity 2X PCR Master Mix, 2.5 ul of universal primer, and 2.5 ul of an indexed

primer (NEBNext Multiplex Oligos for Illumina). Cycling conditions were as described above (but

using 10 cycles instead of 15). PCR products were purified using a 1.2X Agencourt AMPure XP bead

cleanup.

To measure the relative abundance of each DNA fragment in the input plasmid libraries, we cre-

ated DNA-seq libraries from plasmid DNA extracted from each replicate 48 hr post transfection. 10

ng of plasmid DNA was used as the input for 50 ul PCRs each containing 25 ul of NEBNext High-

Fidelity 2X PCR Master Mix, 2.5 ul of universal primer, and 2.5 ul of an indexed primer (NEBNext

Multiplex Oligos for Illumina). Cycling conditions were as described above (using 10 cycles) and PCR

products were purified using a 1X Agencourt AMPure XP bead cleanup. All final DNA-seq and

mRNA-seq libraries were quantified on an Agilent DNA High Sensitivity Chip and sequenced on the

Illumina 4000 platform using 100 bp PE reads (see Supplementary file 1 for sample-specific read

depths).

Generation and low-level processing of bisulfite sequencing libraries
To confirm the DNA methylation status of plasmids in the main experiment (testing for MD activity

across six unmethylated and six methylated condition replicates), we used 200 ng of plasmid DNA

extracted from each K562 replicate cell population as the input for multiplexed bisulfite sequencing

(Meissner et al., 2008; Gu et al., 2011; Boyle et al., 2012). To do so, we first fragmented plasmid

DNA by overnight incubation (at 37˚C) with 1 ul BfaI, 1 ul HindIII, 1 ul HpaI, and 3 ul Cutsmart buffer
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(New England BioLabs) in a total reaction volume of 30 ul. Approximately 1 ng of unmethylated

phage DNA (Sigma Aldrich) was spiked in with each sample for downstream assessment of the bisul-

fite conversion efficiency. We performed end repair, A-tailing, and adapter ligation following previ-

ously published protocols (Boyle et al., 2012). After adapter ligation, all samples (n = 12) were

pooled together and subjected to two rounds of sodium bisulfite conversion using the EpiTect Bisul-

fite Conversion kit (QIAGEN). Libraries were then PCR amplified and purified as in Boyle et al.

(2012), quantified on a Agilent DNA High Sensitivity Chip (Agilent Bioanalyzer 2100), and

sequenced on the Illumina MiSeq platform (see Supplementary file 1 for sample-specific read

depths).

We processed each bisulfite sequencing library as follows. First, we removed adapter contamina-

tion, low-quality bases, and bases artificially introduced during library construction using the pro-

gram cutadapt. We then isolated CpG sites introduced through Gibson assembly (the Illumina-style

adapters used for cloning and sequencing contain CpG sites) and estimated CpG methylation levels

directly from these introduced sequences. In addition, we used BSMAP (Xi and Li, 2009) to map

reads to the lambda phage genome. Following mapping, we extracted the methylated read count

and total read count for each plasmid library and CpG site using a Python script packaged with

BSMAP (Xi and Li, 2009). We then estimated the conversion efficiency of each bisulfite sequencing

library (Becker et al., 2011; Banovich et al., 2014; Lea et al., 2016); all conversion efficiency esti-

mates exceeded 99.7% (Supplementary file 1).

For plasmid DNA extracted from the IFNA experimental replicates (n = 3 methylated, IFNA+,

n = 3 methylated, IFNA-, n = 2 unmethylated, IFNA-), we aimed to generate higher coverage bisul-

fite-sequencing libraries to facilitate locus-specific analysis. To do so, we digested the plasmid DNA

extracted from each replicate with BfaI using the conditions described above. We ran the digestion

products on a 2% agarose gel and extracted the 250–650 bp region containing human DNA inserts

as well as digested plasmid backbone (QIAquick Gel Extraction Kit, QIAGEN). Two of the eight repli-

cates (n = 1 methylated, IFNA +replicate and one methylated, IFNA- replicate) did not yield detect-

able amounts of gel-extracted, size-selected DNA and were dropped from further library

preparation. The remaining samples (ranging from 25 to 46 ng total), were each spiked with a small

amount of unmethylated phage DNA, and this mixture was used as input for bisulfite-sequencing

library preparation. To accommodate the low input, we used the NEXTflex Bisulfite-Seq Kit (Bioo Sci-

entific) according to the manufacturer’s instructions. Sequencing output (from a HiSeq 4000 instead

of a MiSeq, due to the need for increased coverage) from these six libraries were processed as

described above with the following exceptions: (i) we only analyzed reads that showed evidence of

proper BfaI digestion and that started with the plasmid sequence we expected to precede the clon-

ing site for human insert fragments; (ii) we trimmed the plasmid sequence from the human insert

fragments prior to mapping; and (iii) we mapped to a combined reference that included the human

genome (hg38), the pmSTARRseq1 plasmid sequence, and the unmethylated phage genome.

Low-level data processing of mRNA-seq and DNA-seq libraries
Following sequencing, we removed adapter contamination and low-quality bases from each library

using cutadapt. We mapped the trimmed reads to the human reference genome (hg38) using BWA

(Li and Durbin, 2009), and retained only uniquely mapped reads. We estimated the number of

unique fragments assayed in our experiments by counting the number of RNA fragments with

unique start and end positions within each replicate (Supplementary file 1; note that we excluded

mRNA and DNA-seq data for one replicate from all analyses because of low sequencing depth).

For all analyses, we focused on counts of the number of mapped reads in each library that over-

lapped 200 bp non-overlapping genomic intervals created with the BEDtools function ‘makewind-

ows’ (Quinlan and Hall, 2010). Pileups were determined with the ‘coverage’ function. For the main

experiment (i.e. excluding IFNA experiment samples; n = 11 DNA-seq and 11 mRNA-seq libraries),

we removed 200 bp regions that had zero mRNA counts in three or more replicates per condition,

as well as regions that had low stability and repeatability of DNA counts. Specifically, to identify high

variability regions, we first normalized the filtered DNA library count matrix using the function

‘voomWithQualityWeights’ from the R package ‘limma’ (Law et al., 2014). We then computed the

distribution of pairwise differences in abundance between all pairs of DNA replicates. Next, we

removed regions from our analysis if >25% of pairs fell outside the central 90th percentile of this dis-

tribution. This filtering approach resulted in 262,829 200 bp regions.
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Identification of enhancers and methylation dependent (MD) enhancers
Using the set of 262,829 200 bp analyzable regions from our main dataset, we first identified regions

that exhibited self-transcribing regulatory activity (more mRNA relative to DNA input). Specifically,

for each 200 bp region, we ran a nested model on the normalized values that estimated differences

between mRNA and input DNA abundance within each condition:

yi ¼ �þ tib1 � I ci ¼ 0ð Þþ tib2 � I ci ¼ 1ð Þþ "i (1)

where yi is the normalized count value for sample i, ti is the sample type (input DNA or mRNA), and

I is an indicator variable for condition (where ci ¼ 0 or ci ¼ 1 indicates a sample from the unmethy-

lated or methylated condition, respectively). b1 and b2 are thus estimates of the strength of the dif-

ferences between mRNA and input DNA abundance in the unmethylated and methylated

conditions, respectively, where beta values > 0 indicate that mRNA abundance is greater than input

DNA abundance. � is the model intercept and "i denotes model error. We extracted the p-values

associated with b1 and b2 from each model, and corrected for multiple hypothesis testing using the

R function ‘qvalue’ (Dabney and Storey, 2015). We considered a region to have enhancer activity

if b1, b2, or both were greater than 0 and had an FDR-corrected p-value less than 0.1

(Supplementary file 3).

Using these criteria, we identified 19,703 (7.5%) regions with enhancer activity. We next tested

for methylation dependent (MD) activity within this set of enhancers by adding an interaction term

between condition (unmethylated or methylated) and sample type (input DNA or mRNA):

yi ¼ �þ tibt þ cibc þ ti x cið Þbtxc þ "i (2)

where yi, ti, ci and "i are defined as in equation 1. bt is the effect of sample type (input DNA or

mRNA), bc is the effect of condition (unmethylated or methylated), and btxc is the estimate of the

interaction between the two variables ti x cið Þ. We extracted the p-value associated with btxc from

each model, and corrected for multiple hypothesis testing using the R function ‘qvalue’

(Dabney and Storey, 2015). We considered a region to have methylation-dependent enhancer

activity if the estimate for btxc passed an FDR threshold of 10% (Supplementary file 4; see also Q-Q

plot in Figure 3—figure supplement 1).

Testing for type I interferon response
Recent work (Muerdter et al., 2018) has shown that reporter assays that rely on plasmid transfec-

tion into human cells may be affected by two technical sources of error: (i) the bacterial plasmid ori-

gin-of-replication (ORI) can serve as a conflicting promoter that competes with the plasmid’s

eukaryotic promoter and (ii) transfection of plasmid DNA into the cell may activate its type I inter-

feron (IFN-I) response. Problem (i) is unlikely to be an issue for mSTARR-seq because the pmSTARR-

seq1 plasmid contains the R6Kg origin of replication, unlike typical plasmids used for high-

throughput reporter assays (e.g. STARR-seq (Arnold et al., 2013) and MPRAs (Melnikov et al.,

2012)), which are built from the popular pGL3/4 family of plasmids. Importantly, when we applied a

computational algorithm for prediction of eukaryotic PolII promoters (Knudsen, 1999) to pGL3 and

pmSTARRseq1, a transcription start site was predicted within the pGL3 origin of replication but not

within the pmSTARRseq1 origin of replication.

Problem (ii) is also unlikely to affect our mSTARR-seq experiments because K562s have inactive

cGAS/STING pathways (the major avenue through which cells sense cytoplasmic DNA and induce an

IFN-I response (Muerdter et al., 2018)). To test this hypothesis, we performed qPCR for 6 IFN-I

response genes and two control genes on total RNA extracted from K562s that either (i) had not

been transfected with plasmid, or (ii) had been transfected with an unmethylated or methylated

pmSTARRseq1 pool. We performed qPCR on RNA from three replicate cell populations and RNA

extractions for each condition (untransfected, transfected with methylated DNA, or transfected with

unmethylated DNA), using the primer sequences and methods from Muerdter et al. (2018).

In agreement with previous work, we found little evidence that plasmid transfection induced an

IFN-I response in the K562 cell line (two-sided Wilcoxon signed-rank test comparing RNA abundance

in untransfected versus transfected cells: p>0.05 for all genes tested except OAS3, where p=0.047;

Figure 1—figure supplement 4). In addition, we used Gene Ontology (GO) annotations and the
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program PANTHER (Mi et al., 2016) to ask whether regions with significant mSTARR-seq activity in

the unmethylated condition were more likely to fall near (within 100 kb of the transcription start or

end site) genes involved in the IFN-I response or other immune-related pathways, compared to the

background set of all genes near a region analyzed in our K562 data set. We also asked whether the

strongest unmethylated condition enhancers (top decile) were more likely to fall near genes involved

in particular GO categories compared to the background set of all genes near significant mSTARR-

seq enhancers. No GO categories associated with the IFN-I response or immune processes were

observed.

Luciferase reporter assays
We chose 18 candidate regions that spanned a range of mSTARR-seq activity patterns

(Supplementary file 5A). For each region, we synthesized the human hg38 DNA sequence flanked

by 15 base pairs complementary to the 5’ and 3’ ends of the pCpGL backbone (following lineariza-

tion of the pCpGL plasmid with PstI [New England BioLabs] and purification using a 1.5X Agencourt

AMPure XP bead cleanup [Beckman Coulter]). We ligated each synthesized fragment to the linear-

ized pCpGL backbone using Gibson assembly (Gibson Assembly Master Mix, New England BioLabs).

Each ligation reaction was purified using a 1.5X Agencourt AMPure XP bead cleanup (Beckman

Coulter), and the resulting reactions were chemically transformed into competent E. coli GT115 cells

(InvivoGen), selected and grown on LB agar plates in the presence of Zeocin, and purified using the

QIAprep Spin Miniprep Kit (QIAGEN).

We subjected the purified plasmid DNA (containing the pCpGL backbone and a human sequence

insert) to two treatments: (i) in vitro methylation by M.SssI methyltransferase in the presence of the

methyl donor S-adenosylmethionine (SAM), which results in methylation of all CpGs; or (ii) a mock

treatment using only SAM and no methyltransferase. We confirmed that the human sequence insert

was methylated as expected by digesting each treated plasmid with MspI, a methylation insensitive

enzyme that targets the sequence motif CCGG, and HpaII, an isoschizomer of MspI whose activity is

blocked by DNA methylation.

We transfected each methylated or unmethylated plasmid construct into the K562 line. Specifi-

cally, when cells were approximately 70% confluent, we washed and seeded them in pools of 25,000

cells. Transient transfection was performed by adding 20 uL of OPTIMEM Reduced Serum Media

(Gibco) containing the following reagents: (i) 100 ng of methylated or unmethylated vector (eight

replicates for each condition); (ii) 10 ng of Renilla control vector; (iii) 0.5 uL of Lipofectamine; and (iv)

0.1 uL of the PLUS reagent (from the Lipofectamine 2000 system, Life Technologies). Cells were incu-

bated for 72 hr following transfection, and subsequently assayed for transgene luciferase expression

with the Dual Luciferase Assay kit (Promega; full results presented in Supplementary file 5B). We

excluded 1–2 replicates for certain constructs because of obvious liquid evaporation during lucifer-

ase expression measurement (resulting in a final data set with 6–8 replicates per construct).

We quantified enhancer activity by first normalizing firefly luciferase activity against renilla lucifer-

ase activity to control for variation in transfection efficiency or cell number. We then asked whether

human DNA fragments with strong enhancer activity in the unmethylated condition in mSTARR-seq

also displayed strong enhancer activity in our validation experiments (specifically, in the ‘sham’ con-

dition where the sequence was unmethylated). To do so, we used linear mixed effects models to

predict log2 normalized luciferase activity as a function of the synthesized fragment length (because

larger query fragments tend to have stronger activity), the estimate of enhancer strength in the

unmethylated condition from mSTARR-seq (provided in Supplementary file 3), and a random effect

of assay batch. To ask whether fragments with MD enhancer activity in mSTARR-seq also displayed

MD enhancer activity in our validation experiments, we used a similar modeling approach with log2

normalized luciferase activity in the unmethylated condition divided by log2 normalized luciferase

activity in the methylated condition as the outcome variable. In this case, our model included the

synthesized fragment length, the estimate of MD activity from mSTARR-seq (provided in

Supplementary file 4), and a random effect of assay batch.

Annotation of analyzed mSTARR-seq fragments
Each 200 bp region was originally assayed on one or more ~300 bp fragments. Thus, focusing our

annotations on the 200 bp analyzed window alone could miss adjacent genomic features that are
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responsible for observed enhancer or MD enhancer activity. Therefore, for all annotations, we

focused on the window between the start and end position of each assayed DNA fragment that con-

tained a given 200 bp region. In cases where multiple overlapping DNA fragments contained a given

200 bp region, we used the genomic coordinates of the most downstream and most upstream start

and end position, respectively.

Using these start and end coordinates for each 200 bp region covered in our experiments, we cal-

culated the proportion of each of 12 K562-annotated ENCODE (Karolchik et al., 2014) ChromHMM

classes overlapping the fragments we analyzed using the BEDtools (Quinlan and Hall, 2010) func-

tion ‘intersect’. ChromHMM annotations were downloaded from http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/encodeDCC/wgEncodeBroadHmm/. We assigned the fragment window associ-

ated with each 200 bp region to a particular chromatin state if >50% of the window overlapped that

particular state and performed two-sided Fisher’s exact tests for each chromatin state (see Fig-

ure 1—figure supplement 4 for results of these analyses).

To perform our random forests prediction, we gathered the following data for each fragment win-

dow associated with each analyzed 200 bp region:

1. The expression level of the nearest gene for regions that were within 200 kb of a gene TSS or
TES. Expression levels were summarized as FPKM estimates from RNA-seq performed on
K562 cells (NCBI GEO accession GSE86747).

2. The average CpG methylation level of the fragment window in K562s. Estimates were derived
from ENCODE whole genome bisulfite sequencing data, after removing low coverage (<5 x)
CpG sites (NCBI GEO accession GSM958729).

3. The average DNase-seq signal for the fragment window in K562s, using DNase-seq peak
strength (downloaded from http://hgdownload.cse.ucsc.edu/goldenPath/hg38/database/
wgEncodeRegDnaseUwK562Peak.txt.gz).

4. The average evolutionary conservation score of the region, using phastCons scores derived
from a 44-way alignment across placental mammals (http://hgdownload.cse.ucsc.edu/golden-
Path/hg19/database/phastConsElements46wayPlacental.txt.gz).

5. The absolute number of CpG sites and CpG density in the fragment window based on the
human reference genome (hg38) sequence.

6. The presence or absence of a transcription factor binding site as determined by 127 unique
experiments. For these annotations, we relied on publicly available ENCODE ChIP-seq data
generated in K562s (downloaded from http://hgdownload.soe.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeAwgTfbsUniform/). We downloaded all available ChIP-seq experiments
(including replicate experiments for the same TF conducted by different labs), but did not
include ChIP-seq data derived from stimulated/treated cells.

Random forests classification
To determine whether MD activity could be reliably predicted from a set of sequence and functional

genomic feature annotations for each 200 bp region (Supplementary file 6), we conducted random

forest analyses using our main data set on detecting MD regulatory elements. We compared MD

enhancers with greater activity when unmethylated against enhancers with no evidence for methyla-

tion dependence in the K562 cell line (FDR > 50% in the test for MD activity). Because random for-

ests require a complete data set, we removed regions with missing values for any of the predictive

features, resulting in a data set of n = 2317 MD enhancers and n = 2657 non-MD enhancers. We did

not attempt a parallel analysis using MD enhancers with greater activity when methylated because

of the relatively small data set of sequences that exhibited this pattern.

We then used the R package ‘randomForest’ (Liaw and Wiener, 2002) to iteratively construct

training sets comprised of approximately 2/3 of the original data, and test sets comprised of the

remaining enhancers in the data set (the ‘out of bag’ set). We grew 1000 classification trees and

evaluated predictive accuracy using the out of bag test sets (note that although the set of regions

used as the training versus test set differ in each iteration, for any given run, the test set were

completely held out during model training). We then assigned a given region to a given predicted

outcome class if the majority (>50%) of trees ‘voted’ for this class (see Figure 3—figure supplement

2 for true positive/false positive trade-offs using alternative thresholds). To estimate the predictive

value of individual features, we calculated the mean decrease in accuracy and the Gini coefficient,

and estimated the significance of these contributions via comparison to the results of permutation
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analyses (1000 permutations of MD versus non-MD classification) implemented in the R package

‘rfPermute’ (Archer, 2015). We considered a variable to be significant if the mean decrease in accu-

racy and Gini coefficient estimates both passed a 10% empirical FDR (see Figure 3 for significant

variables; see Supplementary file 6 for information on all features). We note that these importance

measures do not account for correlations between features (e.g., CpG number, CpG density, and

methylation level). None of our variables are perfectly collinear, however, and our results in Figure 3

indicate that all significantly predictive features contain some independent information (otherwise

the accuracy of the RF would not drop when one feature was removed).

Transcription factor binding motif enrichment analyses
To ask whether binding sites for certain TFs were consistently associated with windows with MD

enhancer activity, we used the ‘findMotifsGenome.pl’ script in the motif analysis program HOMER

(Heinz et al., 2010) to test for enrichment of 364 known vertebrate binding motifs relative to the

background set of fragment windows associated with all mSTARR-seq enhancers. We performed this

analysis twice, focusing on test sets of fragment windows associated with MD enhancers that were

more active when unmethylated and more active when methylated, respectively. We considered a

TF-binding motif to be significantly enriched in each of the test sets if the motif was found on >10%

of fragments in the background set and the motif passed a 1% FDR threshold (Benjamini and Hoch-

berg, 1995). Results from our motif enrichment analyses are provided in Figure 4 and

Supplementary file 7–8. To test for enrichment of specific TF families among the set of significant

motifs identified in the K562 data set, we used hypergeometric tests to compare the proportion of

significant motifs belonging to a particular TF family (e.g. ETS, GATA) to the proportion of all tested

motifs that belong to that family.

Analysis of locus-specific DNA methylation data
We generated bisulfite sequencing libraries across six replicates from our IFNA experiments (n = 2

unmethylated, IFNA-; n = 2 methylated, IFNA+; n = 2 methylated, IFNA-). Using data from the

IFNA- samples, we estimated mean methylation levels for the plasmid backbone (where we expect

no methylation) and human insert fragments separately. To ask whether the endogenous methylation

level of a given CpG site affects the likelihood of that site gaining or losing DNA methylation marks

post-transfection, we used ENCODE whole genome bisulfite sequencing data for K562s (NCBI GEO

accession GSM958729). Specifically, for IFNA- unmethylated and methylated replicates separately,

we calculated the Spearman correlation between the mean post-transfection methylation level of

each CpG site sequenced at �1 x coverage in at least one mSTARR sample and its endogenous

methylation level in K562s (for CpG sites sequenced at >5 x coverage in the ENCODE dataset;

n = 201,524 and 91,103 sites analyzed for the unmethylated and methylated replicates, respectively).

To understand whether CpGs in certain TFBS were more likely to gain or lose methylation post-

transfection, we estimated the mean methylation level of all CpGs in binding sites identified from

K562 ChIP-seq data, for 127 TFs separately (see item (v) in Annotation of analyzed mSTARR-seq

fragments). We excluded TFs from this analysis if we did not cover at least 100 CpGs in binding sites

for the focal TF, leaving us with 123 and 121 analyzable TFs for unmethylated and methylated sam-

ples, respectively. Finally, we used hypergeometric tests to investigate enrichment of individual TF

families among the top 20 TFs associated with the greatest change in DNA methylation post-trans-

fection (increase in methylation in the unmethylated condition or demethylation in the methylated

condition), using TF family annotations from HOMER (Heinz et al., 2010).

Correlations between DNA methylation and gene expression levels in
primary cells and after IFNA treatment
To understand whether mSTARR-seq data explains heterogeneity in in vivo DNA methylation-gene

expression correlations across individuals, in primary cells, we used a publicly available data set on

1202 monocyte samples (Reynolds et al., 2014). We downloaded paired genome-wide DNA meth-

ylation data (measured on the Illumina HumanMethylation450 BeadChip) and gene expression data

(measured on the Illumina HumanHT-12 v4 Expression BeadChip) for each sample. DNA methylation

data were provided as continuously varying, unbounded M-values (Du et al., 2010) and expression
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data were provided as raw signal intensity values, which we normalized using the voom function in

the limma R package (Law et al., 2014)).

We filtered the DNA methylation data and expression data to remove probes with mean detec-

tion level p-values>0.05. We further filtered the DNA methylation data to remove probes with M-val-

ues corresponding to an average methylation level <0.1 or>0.9, which represent constitutively hypo-

and hypermethylated regions, respectively. This filtering left us with 15,247 probes measuring gene

expression and 425,895 probes measuring DNA methylation. We next identified CpG sites that over-

lapped regions with significant enhancer activity in our mSTARR-seq assay. We associated each of

these CpG sites to its closest gene and removed CpG sites from our analysis that were >100 kb

from any gene. In the remaining set of 2699 unique CpG sites (associated with 1002 unique genes),

we used linear models to test for an association between methylation levels at each filtered CpG site

and gene expression levels. We extracted the p-value and estimated coefficient from each model,

and considered a correlation to be significant if it passed a 10% FDR. Finally, we annotated each

CpG based on whether it overlapped an MD or non-MD enhancer. We used two-sided Fisher’s Exact

Tests to investigate enrichment of CpG methylation-expression correlations in MD versus non-MD

mSTARR-seq enhancers.

Finally, to confirm that DNA methylation-gene expression correlations arise following major envi-

ronmental perturbations to gene expression, we generated mRNA-seq, DNA-seq, and BS-seq data

from K562s transfected with methylated libraries and treated with either IFNA (IFNA+) or water (the

control condition: IFNA-). After confirming there were no systematic differences in plasmid DNA

input between replicates (all R2 >0.98, linear models comparing limma-normalized counts between

all pairs of replicates), we used the mRNA-seq data to estimate IFNA effects on enhancer activity.

Specifically, we calculated the mean difference in limma-normalized counts between IFNA + and

IFNA - samples for each 200 bp region captured in at least one replicate per condition (n = 217,439

regions). To estimate IFNA effects on plasmid DNA methylation levels, we calculated the mean dif-

ference in post-transfection methylation levels between IFNA + and IFNA - samples, for CpGs cov-

ered by at least one replicate per condition and that also overlapped the set of 217,439 analyzable

200 bp regions (n = 7010 CpG sites from 2678 200 bp regions). We then calculated the Spearman

correlation between the effect of the IFNA challenge on enhancer activity and the effect of IFNA on

mean plasmid methylation levels, for all 200 bp regions and for 200 bp regions that showed progres-

sively more strongly induced enhancer activity (Figure 5—figure supplement 1). Finally, we used

logistic regression to test whether IFNA-induced changes in enhancer activity predicted the proba-

bility of demethylation after IFNA treatment, where sites were categorized into those that either

retained (0) or lost (1) their initial, M.SssI-induced methylation status.

Cell lines
All experiments described here used the K562 cell line (ATCC CCL-243). Cells were obtained from

Duke University’s Cell Culture Facility and were tested by the facility for mycoplasm contamination

and cell line identity (through STR profiling).

Data availability
Accession numbers and links for publicly available data sets used for analyses are provided in the

Materials and methods. All sequencing data generated as part of this work are available through

NCBI’s Short Read Archive (SRP120556). The mSTARR-seq protocol is available online at www.tung-

lab.org/protocols-and-software.html. The DNA input library described here is available on request

from the authors, and the pmSTARRseq1 vector is available through AddGene.
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