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Abstract The domestication of transposable elements has repeatedly occurred during evolution

and domesticated transposases have often been implicated in programmed genome

rearrangements, as remarkably illustrated in ciliates. In Paramecium, PiggyMac (Pgm), a

domesticated PiggyBac transposase, carries out developmentally programmed DNA elimination,

including the precise excision of tens of thousands of gene-interrupting germline Internal

Eliminated Sequences (IESs). Here, we report the discovery of five groups of distant Pgm-like

proteins (PgmLs), all able to interact with Pgm and essential for its nuclear localization and IES

excision genome-wide. Unlike Pgm, PgmLs lack a conserved catalytic site, suggesting that they

rather have an architectural function within a multi-component excision complex embedding Pgm.

PgmL depletion can increase erroneous targeting of residual Pgm-mediated DNA cleavage,

indicating that PgmLs contribute to accurately position the complex on IES ends. DNA

rearrangements in Paramecium constitute a rare example of a biological process jointly managed

by six distinct domesticated transposases.

DOI: https://doi.org/10.7554/eLife.37927.001

Introduction
The mobility of DNA transposons is ensured by their self-encoded transposase (reviewed in

Hickman and Dyda, 2015). The most commonly studied transposases harbor an RNase H-related

catalytic domain including three conserved acidic residues DD(D/E) and have been grouped into dis-

tinct superfamilies (Curcio and Derbyshire, 2003; Wicker et al., 2007; Hickman et al., 2010). Dur-

ing evolution, exaptation of transposon-borne genes has sometimes given rise to novel cellular

functions through a process called domestication (Volff, 2006; Jangam et al., 2017). Several instan-

ces of domesticated DD(D/E) transposases have been reported, some of which still exhibit at least

partial catalytic activity. The Transib-originating Rag1 protein catalyzes V(D)J recombination of verte-

brate immunoglobulin genes (Kapitonov and Jurka, 2005; Huang et al., 2016); SETMAR, a partially

active domesticated mariner transposase, is involved in DNA double-strand break repair in primates

(Liu et al., 2007; Kim et al., 2014); a3, domesticated from a hAT transposon, and Kat1, domesti-

cated from a Mutator-like element, carry out mating type switching in the yeast Kluyveromyces lactis

(Barsoum et al., 2010; Rajaei et al., 2014). CENP-B, related to mariner elements, serves as a cen-

tromere-binding factor, but its ancestral catalytic domain is no longer required for its function

(Mateo and González, 2014).
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Transposases from the piggyBac family have repeatedly been domesticated in eukaryotes

(Bouallègue et al., 2017). In mammals, five PGBD (piggyBac-derived) genes have been identified,

but their cellular function has so far remained elusive (Sarkar et al., 2003). The most ancient,

PGBD5 (Pavelitz et al., 2013), encodes a protein with a highly divergent catalytic domain that is

active for DNA cleavage and transposition (Henssen et al., 2015) and promotes DNA rearrange-

ments in human cancers (Henssen et al., 2017). PGBD1 and 2 are conserved in mammals, but their

encoded proteins have lost the DDD catalytic triad characteristic of active PiggyBac (PB) transpo-

sases and their cellular function is unknown. PGBD3 and 4 are restricted to primates. Pgbd3,

expressed as a fusion with the Cockayne Syndrome CSB transcription factor, does not carry an intact

catalytic site, but has retained specific DNA binding activity to piggyBac-related genomic sequences,

which may expand the gene network that is transcriptionally regulated by CSB-Pgbd3 (Gray et al.,

2012; Weiner and Gray, 2013). In contrast, Pgbd4 harbors a conserved DDD triad, but its cellular

function is unknown. Remarkably, catalytically active domesticated PB transposases play an essential

role during developmentally programmed genome rearrangements in the ciliates Paramecium and

Tetrahymena (Baudry et al., 2009; Cheng et al., 2010; Vogt and Mochizuki, 2013; Cheng et al.,

2016; Dubois et al., 2017).

Ciliates are unicellular eukaryotes characterized by their nuclear dimorphism, with two types of

nuclei coexisting in the same cytoplasm (Prescott, 1994). The diploid germline micronucleus (MIC),

transcriptionally inactive during vegetative growth, undergoes meiosis and transmits the parental

genetic information to the zygotic nucleus during sexual reproduction. The highly polyploid somatic

macronucleus (MAC), streamlined for gene expression and essential for cell growth, is fragmented

and destroyed at each sexual cycle and a new MAC develops from a mitotic copy of the zygotic

nucleus. During MAC development, massive genome amplification takes place and, following a few

endoduplication rounds,~30% of germline sequences are removed from the somatic genome in P.

tetraurelia (Arnaiz et al., 2012) and T. thermophila (Hamilton et al., 2016). In both species, DNA

elimination requires the introduction of programmed DNA double-strand breaks (DSB) at the bound-

aries of eliminated sequences (Saveliev and Cox, 1996; Gratias and Bétermier, 2003). Two modes

of sexual reproduction have been described in Paramecium: conjugation and autogamy, a self-fertili-

zation process (reviewed in Betermier and Duharcourt, 2014). In both processes, programmed

DNA elimination targets two types of germline sequences. Repeated sequences, for example trans-

posable elements (TEs) or minisatellites, are removed in association with chromosome fragmenta-

tion. In addition, the precise excision of 45,000 single-copy non-coding Internal Eliminated

Sequences (IESs), which interrupt 47% of all genes in the germline genome, allows proper assembly

of functional open reading frames in the somatic genome, essential for the survival of sexual prog-

eny. Paramecium IESs are short (93% shorter than 150 bp), non-coding sequences, whose size fol-

lows a sinusoid-shaped distribution with a periodicity equal to the helical pitch of double-stranded B

DNA (Arnaiz et al., 2012). IESs are flanked with a conserved TA dinucleotide at each end; a single

TA remains at the excision site. IES ends define a loosely conserved 8 bp consensus sequence (5’-

TAYAGYNR-3’), of unclear mechanistic significance. Indeed, how the excision machinery accurately

targets IES ends remains an open question.

IES excision is a precise ‘cut-and-close’ mechanism that starts with the introduction of DNA DSBs

centered on the flanking TAs (Gratias and Bétermier, 2003). PiggyMac (Pgm), a domesticated PB

transposase with an intact DDD catalytic motif, is responsible for DNA cleavage (Baudry et al.,

2009; Dubois et al., 2017) and the resulting DSBs are repaired through the classical non-homolo-

gous end joining pathway (C-NHEJ) (Kapusta et al., 2011; Allen et al., 2017). Tight coupling of

DSB introduction and repair is thought to be ensured by the assembly of a Pgm/Ku complex

required for DNA cleavage (Marmignon et al., 2014). Here, we report the discovery of five groups

of paralogous Paramecium domesticated PB transposases, designated as Pgm-like(s) (PgmL), that

appear to be novel essential components of the Pgm-associated complex. Using a combination of

RNAi-mediated knockdowns (KDs), immunofluorescence microscopy and whole genome sequencing,

we show that each PgmL group is essential for Pgm nuclear localization during the sexual cycle and

efficient genome-wide IES excision. In some KDs, residual Pgm complexes lacking one PgmL partner

are still detected in the developing MAC and retain partial activity. However, they tend to incorrectly

target IES excision boundaries, resulting in excision errors. Our data, as a whole, indicate that six

groups of domesticated PB transposases, including one catalytically active subunit (Pgm) and five

additional partners (PgmL), act together to carry out IES excision. We discuss a model, in which
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PgmLs associate with Pgm, favor and stabilize its nuclear localization and ensure the precise posi-

tioning of DNA cleavage.

Results

Novel domesticated PB transposase genes in the P. tetraurelia genome
Two structural domains can be predicted in Pgm using the Pfam protein family database (Finn et al.,

2016) (http://pfam.xfam.org/, Figure 1A). The first domain (PF13843 or DDE_Tnp1_7) encompasses

the RNase H fold-related catalytic domain found in DD(D/E) transposases. The second domain

(DDE_Tnp_1-like zinc-ribbon) corresponds to a cysteine-rich domain (CRD), essential for Pgm activity

(Dubois et al., 2017). Using a Hidden Markov Model (HMM) search, we discovered that nine puta-

tive Pgm-related proteins, hereafter designated as PiggyMac-like (PgmL) proteins, are encoded by

the P. tetraurelia somatic genome (Supplementary file 2). A Pfam domain search predicted that the

DDE_Tnp1_7 transposase domain is conserved in all PgmLs (Figure 1A). The DDE_Tnp_1-like zinc-

ribbon domain was not systematically found using this approach, but alignment of protein sequences

confirmed that all PgmLs carry a CRD (Figure 1A, Figure 1—figure supplement 1 and

Supplementary file 3).

PgmL-encoding genes form five groups of paralogs. PGML1 and PGML2 each are single genes,

whereas PGML3 is composed of three genes: PGML3a and b are duplicates from the most recent

whole genome duplication (WGD) that took place during evolution of the P. aurelia group of species

(Aury et al., 2006), PGML3c arose from an earlier ‘intermediate’ WGD. Similarly, PGML4a and b on

the one hand and PGML5a and b on the other are paralogs from the most recent WGD. Genes from

distinct PGML groups do not share nucleotide sequence homology with each other and their

encoded proteins are very divergent in sequence and domain organization (Figure 1A and Fig-

ure 1—figure supplement 2). Within each group, however, WGD paralogs encode highly similar

proteins. Analysis of published genome assemblies confirmed the conservation of at least one repre-

sentative of each PGML group in other P. aurelia species (McGrath et al., 2014b)

(Supplementary file 2, Figure 1—figure supplement 2). Evidence was also obtained that all PGML

groups are present in a more distant species, P. caudatum (McGrath et al., 2014a)

(Supplementary file 2).

The predicted PgmL proteins have different lengths, ranging from 578 to 1085 residues

(Figure 1A). The domain organization of PgmL1 and PgmL2 is close to that of canonical PB transpo-

sases, whereas other PgmLs carry additional domains: PgmL3, PgmL4 and PgmL5 have a carboxy-

terminal extension predicted to be rich in coiled-coil; an amino-terminal extension with no homology

to any known structure is found in PgmL4 and PgmL5. While the presence and position of a ‘DDD’

motif of three aspartic acids in the conserved RNase H domain is essential for the catalytic activity of

PB transposases (Mitra et al., 2008), we did not find a complete DDD triad in any PgmL using a

combination of sequence alignment and secondary structure prediction (Figure 1B,

Supplementary file 1 and 4). PgmL1, PgmL2, PgmL3 and PgmL5 do not carry any conserved D resi-

due, while only two out of three are found in PgmL4 at the expected first and third positions of the

triad (D619/617 and D785/783). Given that a single mutation in the catalytic triad is sufficient to

completely abolish in vitro activity of the PB transposase from Trichoplusia ni (Mitra et al., 2008), it

is unlikely that PgmLs are still catalytically active.

PGMLs are expressed during autogamy and localize in the new
developing MAC
We analyzed previously published high-throughput sequencing data obtained from polyadenylated

RNAs extracted during three standard autogamy time-courses of P. tetraurelia (Arnaiz et al., 2017),

and found that PGMLs are all specifically induced and co-expressed with PGM during new MAC

development, when programmed genome rearrangements take place (Figure 2A). We observe max-

imal expression levels of all genes around 5 to 11 hr (T5 to T11) following the T0 time-point that cor-

responds to the stage when 50% of cells in the population have fragmented their old MAC.

The development-specific expression of PGMLs suggests that their encoded proteins may be

implicated in DNA rearrangements during MAC development. To confirm protein production and

follow the cellular localization of PgmLs during autogamy, we raised specific antibodies against
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PgmL1 and PgmL5a carboxy-terminal peptides (Figure 2—figure supplement 1). For PgmL2,

PgmL3a and PgmL4a, transgenes expressing carboxy-terminal 3X Flag-tagged fusions under the

control of their respective endogenous transcription signals were microinjected into the MAC of veg-

etative cells. Non-injected cells and transformants were grown then starved to induce autogamy.

Figure 1. Novel domesticated PiggyBac transposases in Paramecium. (A) Domain organization of the PiggyBac

transposase (PB) from T. ni and of Paramecium PiggyBac-related proteins (Pgm and PgmLs). The Pfam domain

DDE_Tnp_1_7 is shown as a bipartite orange domain, with the RNase H fold corresponding to its right part

(conserved catalytic D residues are indicated by vertical bars). The DDE_Tnp_1-like zinc ribbon is in grey. Id: % of

amino acid identity; sim: % of similarity. (B) Protein sequence alignment of the residues surrounding the three

catalytic aspartic acids (DDD). Following secondary structure prediction, sequence alignments were adjusted

manually, using the expected position of the three catalytic D residues in the first and fourth b strands and

immediately downstream of the fourth a helix of the RNase H fold domain, respectively (Hickman et al., 2010). ‘?’

indicates that the expected a4 helix could not be predicted using the PSIPRED secondary structure prediction

software.

DOI: https://doi.org/10.7554/eLife.37927.002

The following figure supplements are available for figure 1:

Figure supplement 1. MUSCLE alignment of the cysteine-rich domains of ciliate domesticated PB transposases

and other PB transposases.

DOI: https://doi.org/10.7554/eLife.37927.003

Figure supplement 2. Maximum Likelihood tree of ciliate domesticated PB transposases and other PB

transposases.

DOI: https://doi.org/10.7554/eLife.37927.004
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Figure 2. Expression and nuclear localization of PgmLs during autogamy. (A) Normalized RNA-seq data were

extracted from (Arnaiz et al., 2017) and used to calculate mean expression levels for each time-point. V:

vegetative cells (V1.2); S: starved cells with meiotic micronuclei (S1.1 and S1.2); T0: T0.1 and T0.2; T5: T5.1 and

T5.2; T11: T11.1 and T11.2; T20: T20.1 and T20.2. All time-points are in hours. (B) Immunofluorescence staining of

PgmL proteins in autogamous cells. White arrowheads point to developing new MACs. Scale bar: 10 mm.

DOI: https://doi.org/10.7554/eLife.37927.005

Figure 2 continued on next page
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Immunofluorescence microscopy allowed the detection of a specific signal in the developing MAC

for all PgmLs 5 to 10 hr after the start of autogamy (Figure 2B). This stage corresponds to the time

when Pgm appears in the new MACs (Dubois et al., 2017) and DNA cleavage takes place at IES

ends (Gratias and Bétermier, 2003; Gratias et al., 2008; Baudry et al., 2009). Specific localization

in the developing new MAC was confirmed using N-terminal GFP fusions for PgmL1, PgmL2 and

PgmL5b, and a C-terminal RFP fusion for PgmL4a (Figure 2—figure supplement 2).

Each PGML group is required for successful completion of autogamy
Functional analysis of PGML genes was performed by knocking down their expression using feeding-

induced RNA interference (Galvani and Sperling, 2002). PGML1- or PGML2-knocked down cells

were unable to produce viable post-autogamous progeny with a functional new MAC (Figure 3A,

Supplementary file 6). For PGML3 genes, specific silencing of PGML3a yielded only 30% viable sex-

ual progeny, whereas no significant phenotype was observed following individual PGML3b or

PGML3c silencing. In contrast, no sexual progeny were recovered in a double PGML3a and b KD,

suggesting that the two paralogs have a redundant function. The contribution of PGML3c - the least

expressed gene in the group - is unclear since knocking down this gene alone or together with

PGML3a or PGML3b did not give a post-autogamous phenotype. Thus, even though PGML3c has

been conserved in all P. aurelia species (Supplementary file 2), we cannot confirm that it carries out

any important function. Similar results were obtained for PGML4 and PGML5 groups: knocking

down both paralogs gave a stronger phenotype than individual silencing of each gene. We conclude

that each PGML group as a whole is essential for the completion of autogamy and paralogs from the

most recent WGD play redundant roles in the process.

PgmLs can form complexes with Pgm
The T. ni PB transposase forms a dimer in solution and probably works as a higher-order oligomer

during assembly of the transposition complex (Jin et al., 2017). Previous work in Paramecium estab-

lished that Pgm multimerizes in cell extracts and several Pgm subunits are required to complete IES

excision in vivo (Dubois et al., 2017). Like Pgm, PgmLs are essential for MAC development, even

though they lack a complete DDD catalytic triad. We therefore considered the possibility that PgmLs

interact with Pgm.

N-terminal HA-tagged versions of PgmL1, PgmL2, PgmL3a, PgmL4a and PgmL5a were expressed

in insect cells using synthetic genes cloned into baculovirus vectors (Supplementary file 5). Soluble

protein extracts were prepared from cells co-expressing each individual HA-fused PgmL with MBP-

Pgm or MBP alone, and the ability of each PgmL to interact with Pgm was tested in MBP pull-down

assays. Because recombinant MBP-Pgm binds DNA at low salt concentration (Figure 3—figure sup-

plement 2), all assays were performed under high-salt conditions (500 mM NaCl) to avoid potential

DNA-mediated interactions between proteins. We found that each HA-tagged PgmL co-precipitates

with MPB-Pgm, whereas little or no co-precipitation is observed with MBP alone (Figure 3B). We

confirmed the interaction between Pgm and each PgmL by showing that Pgm co-immunoprecipi-

tates with HA-PgmLs using a-HA antibodies (Figure 3—figure supplement 2). These experiments

demonstrate that PgmLs can form complexes with Pgm.

PGML KDs compromise the correct nuclear localization of Pgm
The ability of each PgmL to interact with Pgm prompted us to check the fate of Pgm in PgmL-

depleted cells. We knocked down each PGML group as a whole and the efficiency of each RNAi was

attested by the absence of progeny with a functional new MAC (Supplementary file 7). For each

Figure 2 continued

The following figure supplements are available for figure 2:

Figure supplement 1. Validation of the specificity of antibodies directed against Pgm, PgmL1, PgmL5a, and the

Flag peptide by immunofluorescence labelling of fixed cells.

DOI: https://doi.org/10.7554/eLife.37927.006

Figure supplement 2. Localization of GFP and RFP fusions in developing new MACs.

DOI: https://doi.org/10.7554/eLife.37927.007
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Figure 3. PgmLs are essential during autogamy and interact with Pgm in cell extracts. (A) Effect of PGML KDs on

the recovery of post-autogamous progeny with functional new MACs. For PGML1, PGML2 and PGML3c, only the

results obtained using IF1 RNAi constructs (Figure 3—figure supplement 1) are shown. For groups of duplicated

paralogs, individual gene KDs were performed using gene-specific IF2 constructs (Figure 3—figure supplement

1), while double KDs were performed using either IF2 or cross-hybridizing IF1 (*) constructs. Error bars represent

standard deviations (n = 2 to 14, see Supplementary file 6) (B) Pull down of HA-PgmL fusions with MBP-Pgm

using recombinant proteins expressed in insect cells. In each panel, the HA-tagged protein that was co-expressed

with MBP or MBP-Pgm is indicated on the left and the band revealed on western blots (WB) using anti-HA

antibodies is indicated on the right. The full-size blot with molecular weight marker is shown in Figure 3—figure

supplement 2.

Figure 3 continued on next page
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KD, autogamous cells were collected and fixed between T5 and T10, which corresponds to the time-

window when the total cellular amount of Pgm is maximal in control cells (Dubois et al., 2017).

Endogenous Pgm was monitored using immunofluorescence (Figure 4A) and immunoblotting

(Figure 4B). We confirmed on western blots that Pgm is undetectable in Pgm-depleted cells

(Figure 4B). No change in total cellular Pgm amounts was observed in PgmL-depleted cells relative

to controls, indicating that neither Pgm expression nor stability are affected in PGML KDs.

Immunofluorescence staining, however, revealed that the endogenous nuclear Pgm signal is sys-

tematically lower in PGML KDs relative to control (Figure 4A). Quantification of the Pgm signal in

new MACs revealed a 35% decrease in a PGML1 KD and a ~ 75% decrease in every other PGML KD

(Figure 4C), almost reaching the 85% decrease observed in a PGM KD (Figure 4D). Of note, the

immunofluorescence protocol used here was set up for optimal detection of nuclear Pgm

(Dubois et al., 2017) and includes a Triton-mediated permeabilization step prior to cell fixation (see

Materials and methods). Because this pre-extraction procedure may affect the apparent localization

of proteins that are not tightly held in the nucleus (Martini et al., 1998), we also performed Pgm

immunostaining in PGML KDs omitting this step. Under these conditions, the quality of the control

Pgm immunostaining was reduced and a higher background was observed, but we could still quan-

tify the Pgm nuclear signal in the different KDs (Figure 4—figure supplement 2). We still observed

a »35% decrease in PGML1 KD relative to the control, and a 50% to 60% decrease in every other

PGML KD. These data therefore indicate that bona fide Pgm nuclear localization is significantly

affected by the depletion of PgmL2, PgmL3, PgmL4 or PgmL5 and, to a lesser extent, by the deple-

tion of PgmL1. The significant exacerbation of the localization defect observed in PgmL2, PgmL3,

PgmL4 or PgmL-5-depleted cells subjected to a pre-extraction procedure further indicates that

depletion of these particular PgmL reduces the strength of Pgm association with the nucleus (Fig-

ure 4—figure supplement 2).

PGML KDs have a genome-wide impact on IES elimination
To gain genome-wide insight into the effect of PGML KDs on IES excision, large-scale cultures were

subjected to RNAi against PGML1, PGML2, PGML3a and b, PGML4a and b or PGML5a and b, and

genomic DNA was extracted from isolated nuclei at late autogamy stages for high-throughput

sequencing (Supplementary file 8). IES retention scores (IRS) were computed for each sample, using

IES+ sequencing reads matching IES boundaries and IES- reads matching precise IES excision junc-

tions (Denby Wilkes et al., 2016, see Materials and methods). The efficiency of PGML KDs was

checked using northern blot hybridization of total RNA from autogamous cells (Figure 5—figure

supplement 1) and confirmed by the absence of viable post-autogamous progeny

(Supplementary file 7).

The distributions of IRS show that every PGML KD strongly inhibits IES excision genome-wide

(Figure 5A). Differences, however, are observed between the five PGML groups. PGML2, PGML4a

and b or PGML5a and b KDs result in significant retention of all IESs in the new MAC. PGML1 and

PGML3a and b KDs still allow efficient excision of a fraction of IESs, referred to as non-significantly

retained (i.e. excised) following statistical analysis of IRS (Denby Wilkes et al., 2016): this represents

7479 and 3511 IESs, respectively. Strikingly, 89% of excised IESs in a PGML3 KD are also excised in

a PGML1 KD (Figure 5B). Of note, excised IESs in PGML1 or PGML3a and b KDs tend to be signifi-

cantly longer (median size = 62 or 67 bp, respectively) than an equivalent number of strongly

retained IESs in the same KDs (median size = 48 or 55 bp, respectively) (Figure 5C). Analysis of the

size distributions reveals that the size bias can mainly be attributed to over-representation of IESs

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.37927.008

The following figure supplements are available for figure 3:

Figure supplement 1. Map and coordinates of PGML feeding inserts.

DOI: https://doi.org/10.7554/eLife.37927.009

Figure supplement 2. Co-precipitation of MBP-Pgm with HA-PgmL fusions.

DOI: https://doi.org/10.7554/eLife.37927.010
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from the 75 to 77 bp peak (and larger sizes) (Figure 5D). Under-representation of 55 to 57 bp IESs

can also be noted.

To investigate whether the size biases described above are a specificity of PGML1 and PGML3a

and b KDs or simply attributable to incomplete RNAi, we partially released PGML2 KD by diluting

PGML2 RNAi-inducing medium in RNAi medium targeting a non-essential gene (see Dubois et al.,

2017). Consistent with higher survival in the progeny (Supplementary file 7), partial PGML2 KD (1:4
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Figure 4. Expression and localization of Pgm in PGML KDs. (A) Immunostaining of Pgm in early autogamous cells subjected to control (L4440) or PGML

RNAi. Developing MACs are indicated by white arrowheads. Scale bar is 10 mm. (B) Western blot analysis of Pgm expression in early autogamous cells

subjected to control (L4440: two independent controls A and B are shown), PGML or PGM RNAi. (C) Boxplot representation of the distribution of Pgm

fluorescence intensities quantified in 30–55 mm2 developing MACs subjected to the different RNAi shown in (A). This size window corresponds to the

maximal Pgm signal in the control (Figure 4—figure supplement 1) and was chosen to quantify nuclear Pgm immunofluorescence for all KDs, since no

significant size difference was noticed for developing MACs relative to the control. For each condition, 19 to 35 developing MACs were analyzed. (D)

Independent set of experiments showing the quantification of Pgm fluorescence intensity in 30–55 mm2 developing MACs following control (ND7) or

PGM RNAi. 11 and 12 MACs were analyzed, respectively. In (C) and (D): *** for p<0.001 in a Mann-Whitney-Wilcoxon statistical test (see

Materials and methods for details).

DOI: https://doi.org/10.7554/eLife.37927.011

The following figure supplements are available for figure 4:

Figure supplement 1. Plot of Pgm mean immunofluorescence intensity vs developing MAC size in cells subjected to control or PGML RNAi.

DOI: https://doi.org/10.7554/eLife.37927.012

Figure supplement 2. Immunolocalization of Pgm without Triton extraction in PGML knockdowns.

DOI: https://doi.org/10.7554/eLife.37927.013
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Figure 5. Analysis of IES retention in PGML KDs. (A) Distribution of IES retention scores (IRS) in PGML KDs. Grey bars represent the distribution of all

IESs over IRS ranging from 0 to 1 (by bins of 0.025). The distribution obtained in a previously published PGM KD (Arnaiz et al., 2012) is shown as a

control. Absolute values of IRS should not be compared from one KD to the other, due to variable contamination by old MAC fragments. For PGML1

and PGML3a and b KDs, the distribution of statistically non-significantly retained IESs (i.e. excised IESs) is superimposed in magenta. (B) Venn diagram

representing the overlap between the sets of excised IESs in PGML1 or PGML3a and b KDs (C) Violin plots of IES length distributions for the population

of non-significantly retained IESs (magenta; n = 7479 in PGML1 KD and n = 3511 in PGML3a and b KD), the same number of IESs with the highest

retention scores (blue) and all IESs (grey). The black dash shows the median of each distribution. Plots were drawn using the ggplot2 R-package

(Wickham, 2009). Size distributions were compared using a Mann-Whitney-Wilcoxon statistical test and p values are indicated for each comparison

(***: p<2.2 10�16; **: 2.2 10�16<p<10�10; *: 10�10<p<5 10�2; NS: p>5.5 10�2) (D) Comparative analysis of the relative fraction of IESs in each size peak

among the populations of excised (magenta) and strongly retained (blue) IESs in PGML1 and PGML3a and b KDs, and the whole IES population (grey).

Only IESs between 40 and 130 bp are represented.

DOI: https://doi.org/10.7554/eLife.37927.014

The following figure supplements are available for figure 5:

Figure supplement 1. Northern blot analysis of PGML mRNA during autogamy in PGML knockdowns.

DOI: https://doi.org/10.7554/eLife.37927.015

Figure supplement 2. Analysis of IES retention scores in partial PGML2 KDs.

DOI: https://doi.org/10.7554/eLife.37927.016

Figure supplement 3. Correlation between IES retention scores in PGM, PGML and partial PGML2 knockdowns.

DOI: https://doi.org/10.7554/eLife.37927.017
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dilution) shifts the distribution of IRS toward zero and allows efficient excision of a fraction of 10,297

IESs (Figure 5—figure supplement 2). The distributions of IRS in partial PGML2 KD correlate with

those obtained in PGML1 or PGML3 KDs (Spearman’s rank correlation coefficients = 0.7 and 0.77,

respectively; Figure 5—figure supplements 2 and 3), indicating that a similar gradient is overall

established from excised to strongly retained IESs in these KDs. However, comparison of the size

distributions of excised versus strongly retained IESs in the three conditions confirms that over-

representation of large IESs (75 to 77 bp in length and larger) is specific to excised IESs in PGML1

and PGML3 KDs (Figure 5D, Figure 5—figure supplement 2).

PgmL1- or PgmL3a and b-depleted cells are prone to IES excision errors
Previous whole-genome DNA sequencing of wild-type reference strains revealed that IES excision

generates sequence heterogeneity in the somatic genome (Duret et al., 2008; Swart et al., 2014),

most likely due to erroneous excision events taking place between two TA dinucleotides, one of

which at least is localized at an alternative position relative to reference IES boundaries. To evaluate

the background of IES excision errors in the absence of any KD, we first sequenced total DNA

extracted from parental vegetative cells before they were subjected to PGML RNAi. We analyzed

sequencing reads mapping to the MAC + IES reference and counted the number of erroneous exci-

sion reads present in each sample. Consistent with published data, we found a low number of erro-

neous junctions (2.4% to 3% of all excision reads) in vegetative MACs (V) formed under no-KD

conditions (Supplementary file 9).

We then sequenced genomic DNA of nuclei-enriched preparations from autogamous cells origi-

nating from the parental cultures described above and subjected to PGML RNAi. As in wildtype veg-

etative MACs, a fraction of excision reads (2.9% to 3.7%), representing the contribution of both the

new MAC and old MAC fragments, correspond to erroneous junctions. For each PGML KD, we cal-

culated a normalized number of de novo excision errors that are specific to the new MAC (Materials

and methods). Fewer de novo errors (26 to 38 per million mapped reads) are observed in PGML2,

PGML4 or PGML5 KDs than in no-KD controls (Figure 6A), consistent with our observation that no

significant excision activity is detected in these PGML KDs. In contrast, PGML1 and PGML3 KDs yield

similar de novo excision counts (122 and 98, respectively) relative to control (Figure 6A), in spite of

strongly reduced IES excision activity (Figure 5A), suggesting that residual excision in these KDs

tends to be error-prone. The observation that the fraction of IESs, for which at least one error is

detected in PGML1 or PGML3a and b KDs, is higher among excised IESs provides support to this

idea: specifically for these two KDs, the fraction of fully excised IES (IRS < 0.025) with errors

reaches ~45%, versus ~10% under other conditions (Figure 6—figure supplement 1).

Erroneous junctions can be grouped in different classes according to the location of the TAs used

as alternative excision boundaries (Figure 6B). We found that PGML1 or PGML3 KDs modify the rel-

ative proportions of de novo error classes compared to a no-KD control or to PGML2, PGML4 or

PGML5 KDs (Figure 6C and Supplementary file 9). The most conspicuous change is a specific

increase in the proportion of partial internal excision errors, reaching more than 50% of all de novo

errors in PgmL1- or PgmL3-depleted cells. Over-representation of this particular class of errors is not

observed in partial PGML2 KDs (Figure 6—figure supplement 2), indicating that erroneous target-

ing of alternative internal boundaries is not a general consequence of limiting availability of the exci-

sion machinery, but is a specificity of PGML1 and PGML3 KDs. In the latter two KDs, most erroneous

internal boundaries are shifted by 10 to 11 bp from the canonical TA, resulting in excision of DNA

fragments shortened by one helical turn (Figure 6D). The position of alternative boundaries cannot

be explained simply by a biased distribution of TA dinucleotides in IESs, since internal TAs can be

found 5 to 6 bp away from reference IES boundaries (Figure 6—figure supplement 3), but they are

not used in partial internal excision errors. Except for the TA, erroneous alternative boundaries do

not match the general consensus sequence for IES ends (5’-TAYAGYNR-3’), nor do they define a

novel sequence motif (Figure 6—figure supplement 3). Moreover, ‘unused’ canonical ends exhibit

no particular sequence motif - different from the general consensus - that would suggest a prefer-

ence of PgmL1 or PgmL3 for a specific sequence. Finally, we noticed that error-prone IESs, for which

an internal TA (mostly shifted by 10 to 11 bp) is used in erroneous excision events, follow a different

size distribution from the global IES population (Figure 6E and Figure 6—figure supplement 4):

IESs of 66 bp and above are over-represented, whereas 47 bp and shorter IESs are largely under-
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Figure 6 continued on next page
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represented. This size bias is similar to the distribution of excised IESs in PGML1 or PGML3 KDs,

indicating again that errors are linked to excision activity.

Discussion

IES excision in Paramecium is carried out by multiple partners including
Pgm and five novel domesticated PB transposases
The present discovery of novel essential Pgm partners, encoded by five groups of paralogous genes

and collectively referred to as PgmL1 to PgmL5, brings new insight into the mechanism of IES exci-

sion and deeper understanding of the molecular machinery involved. PgmLs are domesticated PB

transposases distantly related to Pgm. Consistent with their essential function, Pgm and PgmLs are

conserved within the P. aurelia group as well as in the more distant P. caudatum, indicative of an

ancient origin of the IES excision machinery in Paramecium. More work is clearly needed to unravel

the nature and organization of the IES excision machinery, but our data are in favor of a unique pro-

tein complex embedding at least two Pgm subunits and one PgmL subunit from each group (Fig-

ure 7). Indeed, depletion of each single PgmL group is sufficient to strongly compromise the nuclear

localization of Pgm. As a consequence, each PGML KD inhibits excision of a large majority of IESs

(83% to 100%) genome-wide. The remaining ~17% IESs that are still excised in PGML1 or PGML3

KDs are prone to excision errors, suggesting that PgmLs are stricty required for efficient and accu-

rate excision.

We show here that PgmLs can each interact directly with Pgm and we previously reported that

Pgm also has homo-oligomerization properties (Dubois et al., 2017). Future studies will address

whether these interactions are mutually exclusive, whether PgmLs interact with each other and,

more importantly, which among these interactions participate in the assembly of the full excision

complex. The Paramecium system shares interesting features with the higher-order complexes

(transpososomes) that interact with transposon ends during bona fide transposition. Biochemical

and structural studies of DD(D/E) transposases and retroviral integrases bound to their cognate

DNA substrates have revealed that assembly of a productive transpososome often involves more

transposase subunits than those actually engaged in catalysis, the supernumerary subunits playing

an architectural role within the transposition complex (Montaño et al., 2012; Hickman et al., 2014);

reviewed in Hickman and Dyda, 2015). In particular, recent studies have shown that the T. ni PB

transposase dimerizes in solution (Jin et al., 2017) and higher-order complexes were proposed to

assemble during piggyBac transposition (Morellet et al., 2018). Within a transpososome, all trans-

posase subunits are generally identical because they are encoded by a single gene carried by the

mobile element itself. In Paramecium, multiple domesticated transposase genes encode the

Figure 6 continued

the other outside of reference IESs. (C) Distribution of the different classes of de novo excision errors in PGML KDs. As a control, the distribution of pre-

existing errors found in the old MAC is shown for a vegetative culture (see Supplementary file 9). (D) Position of alternative excision boundaries used

in partial internal excision errors, relative to the canonical boundary of the reference IES. WT: vegetative MAC; for PGML KDs, only de novo errors were

considered. (E) Size distribution of IESs exhibiting partial internal errors in a PGML1 KD. Upper panel: size distribution of all IESs with partial internal

errors. Lower panel: the black curve shows the fraction of IESs of each size relative to the total number of IESs in the genome; the red curve shows the

fraction of IESs of each size among the population of IESs showing at least one partial internal error in a PGML1 KD. In both panels, only IESs with an

alternative boundary at >2 bp from the canonical one were counted. In the bottom panel, IESs shorter than 35 bp were not considered (see Figure 6—

figure supplement 4).

DOI: https://doi.org/10.7554/eLife.37927.018

The following figure supplements are available for figure 6:

Figure supplement 1. The number of excision errors increases for IESs with the lowest retention scores in PGML1 or PGML3a and b knockdowns.

DOI: https://doi.org/10.7554/eLife.37927.019

Figure supplement 2. Raw counts of IES excision errors in PGML1, PGML3a and b and partial PGML2 knockdowns.

DOI: https://doi.org/10.7554/eLife.37927.020

Figure supplement 3. Alternative excision boundaries used in partial internal IES excision errors.

DOI: https://doi.org/10.7554/eLife.37927.021

Figure supplement 4. Size distribution of IESs with partial internal excision errors in PGML1 or PGML3a and b KDs.

DOI: https://doi.org/10.7554/eLife.37927.022
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different subunits that together carry out IES elimination. Selection pressure to maintain a fully con-

served catalytic triad has been exerted on only one of these genes (PGM) and previous work estab-

lished that at least two Pgm subunits are present in the complex (Dubois et al., 2017), consistent

with a model in which their catalytic sites are positioned on each TA boundary (Figure 7). The cata-

lytic domain of PgmL proteins has evolved more rapidly, suggesting that PgmLs rather have an archi-

tectural function within the complex. Moreover, PgmL proteins differ in their domain organization

and PgmL depletions have different effects on IES excision efficiency and accuracy, which suggests

that all PgmLs may not play exactly the same role. Of note, the conservation of two Ds in PgmL4,

which is the most closely related to Pgm, indicates that its RNase H domain, although probably inac-

tive, has evolved under selection pressure, suggesting that it may play a particular role in the cataly-

sis of DNA cleavage. RNAi-mediated depletion of PgmL2, PgmL4 or PgmL5 completely abolishes

Pgm cleavage activity and its stable nuclear localization, perhaps by impairing correct assembly of

the excision complex (Figure 7) and/or loosening its interaction with chromatin, preventing us at this

stage from proposing a specific function for these three proteins. In contrast, PgmL1- or PgmL3-

depleted complexes exhibit residual activity associated with an increased bias for partial internal

excision errors involving the use of alternative 10 bp shifted TA boundaries. Because such a bias is

not observed in partial PGML2 KDs, our data cannot simply be attributed to partial depletion and
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Figure 7. Model for IES excision mediated by a multicomponent Pgm/PgmLs complex. This figure summarizes the

observed effects of PGML KDs on Pgm-mediated IES excision. In line with previously published data

(Dubois et al., 2017) and known properties of the T. ni PiggyBac transposase (Jin et al., 2017), the catalytically

active form of Pgm is assumed to be a dimer. In the absence of information about the stoichiometry of the

complex, one Pgm homodimer (active catalytic site drawn as a star) is represented at each IES boundary, with a

large bridging structure formed by all PgmLs. In a fully assembled complex, PgmL subunits are proposed to drive

the correct positioning of the Pgm catalytic site onto both TA cleavage sites (indicated by arrows). Following

PGML KDs, we propose two distinct situations. In PGML1 or PGML3 KDs, the depleted complexes can exist but

are misassembled. As a consequence, Pgm nuclear stability is reduced (the phenotype is more pronounced in a

PGML3 KD than in a PGML1 KD) and Pgm activity is altered, because incorrect positioning of catalytic subunits

generates specific partial internal excision errors at low frequency (a dotted arrow points to the erroneously

targeted alternative TA). In the other three KDs, IES excision complexes depleted for PgmL2, PgmL4 or PgmL5 are

totally inactive. This might result either from strong misassembly of the complex or its dissociation (or non-

assembly).

DOI: https://doi.org/10.7554/eLife.37927.023
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rather point to a specific function of PgmL1 and PgmL3. We propose that incomplete machineries

devoid of PgmL1 or PgmL3 can still interact with IESs (Figure 7), even though much less efficiently

and with lower accuracy than fully assembled complexes. The size biases observed in the population

of excised IESs in PGML1 or PGML3 KDs might reveal that one function of these two PgmL subunits

is to provide the architectural versatility required to adjust to the variable features of eliminated

sequences.

Size biases of partial internal excision errors recapitulate evolution-
driven IES size distribution
Paramecium IESs exhibit a characteristic size distribution, with a minimum size of 26 bp and a ~ 10

bp periodicity proposed to result from mechanistic constraints on IES excision (Arnaiz et al., 2012).

The present study of partially active PgmL1- or PgmL3-depleted complexes is consistent with this

hypothesis.

The overlapping subsets of IESs that still excise efficiently in PGML1 and PGML3a and b KDs tend

to be larger in size than an equivalent pool of strongly retained IESs, with an under-representation

of 46 to 47 bp IESs and over-representation of 75 to 77 bp (and larger) IESs. No specific sequence

other than the usual consensus was found at the ends of excised or strongly retained IESs in these

KDs, indicating that no particular motif defines the subsets of PgmL1- (or PgmL3)-dependent or

independent IESs. We propose, instead, that PgmL1 and PgmL3 contribute to the positioning of

Pgm-dependent DNA cleavages at correct TA boundaries, thus fine-tuning the size of the excised

sequences (Figure 7). Indeed, residual activity of PgmL1- or PgmL3-depleted machineries reveals an

over-representation of partial internal excision errors, leading to excision of IES-derived fragments

one turn of a DNA helix shorter than reference IESs, a distance that corresponds to the periodicity

of the IES size distribution. Remarkably, erroneous excision of 46 to 47 bp IESs that would have led

to excision of 36 to 37 bp fragments is not observed (Figure 6E). Furthermore, 36 to 37 bp IESs are

prone to partial internal errors resulting in excision of 26 to 28 bp fragments. These observations

indicate that sequences of 36–37 bp may be mechanistically difficult to excise, as proposed previ-

ously based on the existence of a ‘forbidden’ peak corresponding to this size range in the distribu-

tion of genomic reference IESs (Arnaiz et al., 2012). Likewise, IESs from the 26 to 28 bp peak do

not yield erroneously excised 10 bp shorter TA-indels, supporting the notion that 26 bp is the mini-

mum size for excision by the Pgm-associated machinery. Taken together, our data provide strong

experimental support to the hypothesis that mechanistic limitations have imposed strong constraints

on Paramecium IES size during evolution.

Domesticated PB transposases in ciliates and other species
The distantly related ciliate Tetrahymena thermophila, which separated from Paramecium at

least ~500 M years ago (Parfrey et al., 2011), harbors a clear Pgm ortholog, Tpb2p (Figure 1—fig-

ure supplement 2) that carries out imprecise excision of intergenic IESs, which constitute the vast

majority of IESs in this ciliate (Cheng et al., 2010; Vogt and Mochizuki, 2013; Hamilton et al.,

2016). Additional Tetrahymena domesticated PB transposases (Tpb7p and Lia5p), also lacking a con-

served DDD triad, may somehow be related to Paramecium PgmLs, although the evolutionary rela-

tionships between Tetrahymena and Paramecium proteins are difficult to assess (Figure 1—figure

supplement 2). While the role of Tpb7p is unknown (Cheng et al., 2016), Lia5p is essential for

Tpb2p-dependent DNA elimination, localizes on IESs before excision and is involved in the delimita-

tion of their excision boundaries (Shieh and Chalker, 2013; Suhren et al., 2017). Lia5p and Tpb7p

may represent functional homologs of PgmLs for IES excision, but whether they interact with Tpb2p

and how they contribute to DNA elimination at the molecular level remain to be established. In addi-

tion to the Tpb2p/Lia5p system, Tetrahymena encodes two other domesticated PB transposases,

Tpb1p and Tpb6p, that precisely excise a distinct subset of 12 intragenic piggyBac-related IESs, in a

Tpb2p-independent manner (Cheng et al., 2016; Feng et al., 2017). Thus, in contrast to Parame-

cium, Tetrahymena possesses two distinct IES excision machineries, each responsible for elimination

of a particular subset of IESs. In spite of their differences, the two ciliate species provide remarkable

examples of the participation of multiple-component protein complexes composed of catalytic and

non-catalytic subunits, all domesticated from the same transposase family, in a transposition-related

reaction. In humans, the Pgbd1 to Pgbd5 PB domesticated transposases do not all carry a fully
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conserved catalytic triad. Based on our Paramecium work, future investigations should take into con-

sideration the possibility that Pgbd proteins may be involved together in the same cellular function

(s).

Materials and methods

In silico protein sequence analysis
Paramecium genes and protein sequences were uploaded from the ParameciumDB database

(Arnaiz and Sperling, 2011) (https://paramecium.i2bc.paris-saclay.fr/) and accession numbers are

displayed in Supplementary file 2. HMMer version 3.1b (http://eddylab.org/software/hmmer3/3.

1b2/Userguide.pdf, default parameters) was used to search for Pgm-related proteins using the

DDE_Tnp1_7 domain (PF13843) as the query and the predicted Paramecium proteins from Parame-

ciumDB (v1.77) as the database. Multiple protein sequence alignments were performed using MUS-

CLE (http://www.ebi.ac.uk/Tools/msa/muscle/) (Edgar, 2004). Secondary structures were predicted

using PSIPRED (V3.3) at the UCL website (http://bioinf.cs.ucl.ac.uk/psipred/) (Jones, 1999).

Paramecium strains and standard culture conditions
P. tetraurelia wild-type 51 new (Gratias and Bétermier, 2003) or its mutant derivative 51 nd7-1

(Dubois et al., 2017) were grown in a standard medium made of a wheat grass infusion inoculated

with Klebsiella pneumoniae and supplemented with b-sitosterol (0.8 mg/mL) (Beisson et al., 2010).

Autogamy was carried out as described (Dubois et al., 2017).

Gene knockdown experiments
RNAi during autogamy was achieved using the feeding procedure, as described (Dubois et al.,

2017). Briefly, Paramecium cells grown for 10 to 15 vegetative fissions in plasmid-free Escherichia

coli HT115 bacteria (Timmons et al., 2001) were transferred to medium containing non-induced

HT115 harboring each RNAi plasmid and grown for ~4 divisions. Cells were then diluted into plas-

mid-containing HT115 induced for dsRNA production and allowed to grow for ~8 additional vegeta-

tive divisions before the start of autogamy. Final volumes were 3 to 4 mL for small-scale

experiments, 50 to 75 mL for middle-scale experiments, 4 L for large-scale experiments. The pres-

ence of a functional new MAC in the progeny was tested after four days of starvation, as described

(Dubois et al., 2017).

Control experiments were performed using the L4440 vector (Kamath et al., 2001) or plasmid

p0ND7c, which targets RNAi against the non-essential ND7 gene (Garnier et al., 2004). For PGML

KDs, PCR fragments from each PGML gene (Figure 3—figure supplement 1) were inserted into the

multiple cloning site of L4440. Two different RNAi-inducing constructs targeting distinct non-over-

lapping regions (IF1 and IF2) were used for each gene: within multi-gene PGML families, IF1 shared

strong nucleotide sequence homology between paralogs, while IF2 regions were gene-specific.

RNA and DNA extraction
During autogamy, total RNA was Trizol-extracted from ~2 to 5 � 105 cells for each time-point and

quantified using a NanoDrop spectrophotometer. Gel electrophoresis and northern blot hybridiza-

tion with 32P-radiolabelled DNA probes were performed as described (Baudry et al., 2009). For

PCR analysis, total genomic DNA was extracted from ~1 to 3 � 103 cells for each time-point using

the NucleoSpin Tissue extraction kit (Macherey Nagel). For high throughput DNA sequencing, geno-

mic DNA was extracted from whole cells (Gratias and Bétermier, 2003; Arnaiz et al., 2012) or iso-

lated nuclei (Gratias and Bétermier, 2003; Arnaiz et al., 2012).

Microinjection of transgenes expressing tagged PgmL proteins
Plasmids expressing PgmL2-3X Flag, PgmL3a-3X Flag and PgmL4a-3X Flag are pUC18 derivatives,

in which the P. tetraurelia PGML2, PGML3a and PGML4a genes, respectively, were fused at their 3’

end to a synthetic DNA sequence (Integrated DNA Technologies) encoding the 3X Flag tag

(YKDHDGDYKDHDIDYKDDDDKT). All sequences are available upon request. Each transgene-bear-

ing plasmid was linearized with BsaI and microinjected with an ND7-complementing plasmid into the

MAC of vegetative 51 nd7-1 cells, as described (Dubois et al., 2017).
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Immunofluorescence and western blot analysis
Polyclonal a-Pgm 2659-GP guinea pig antibodies were described in (Dubois et al., 2017). Peptides

DKGKSVQYAKQVEIE and FSQVRKQAYKKQTQP from the C-terminus of PgmL1 and PgmL5a,

respectively, were used for rabbit immunization to yield a-PgmL1 and a-PgmL5a antibodies (Euro-

gentec). Polyclonal antibodies were purified by antigen affinity purification. A commercial a-Flag

monoclonal antibody (monoclonal anti-Flag M2 antibody, Sigma Aldrich) was used for the detection

of 3X Flag fusion proteins. The specificity of a-PgmL1 and a-PgmL5a antibodies was validated by

immunofluorescence using PGML1 and PGML5a and b-silenced cells respectively, whereas the speci-

ficity of the a-Flag antibody was validated using non-injected control cells (Figure 3—figure supple-

ment 1).

Immunofluorescence and western blot analysis were performed as described (Dubois et al.,

2017), with these modifications. Autogamous cells from middle-scale cultures were washed with

Dryl’s buffer (2 mM sodium citrate, 1 mM NaH2PO4, 1 mM Na2HPO4, 1 mM CaCl2), extracted with

ice-cold PHEM (60 mM PIPES, 25 mM Hepes, 10 mM EGTA, 2 mM MgCl2 pH 6.9)+1% Triton during

4 min, fixed for 15 min in PHEM +2% formaldehyde. Cells were further washed three times in TBST

(10 mM Tris pH 7.4, 0.15 M NaCl, 0.1% Tween20)+3% BSA. The Triton-mediated pre-extraction step

was found to increase the detection signal and lower the background level for all the antibodies we

used. Antibody incubation was done in TBST +3% BSA for 2 hr at room temperature using either a-

Pgm 2659-GP (1:500), a-PgmL1 (1:800), a-PgmL5a (1:800) or a-Flag (1:500) antibodies. Primary anti-

bodies were detected with (Alexafluor 488)-conjugated goat anti-guinea pig, anti-rabbit or anti-

mouse IgG (1:500, ThermoFisher Scientific) and DNA was counterstained with 0.5 mg/ml DAPI

(Sigma). Epifluorescence microscopy was performed as described (Dubois et al., 2017). The size of

developing MACs (in mm2) was measured at the maximal area section and quantification of the Pgm

signal was performed using the ImageJ software (https://imagej.nih.gov/). The mean Pgm fluores-

cence intensity corresponds to the mean fluorescence intensity (per surface unit) in a developing

MAC minus the mean extracellular background fluorescence intensity on the slide for each RNAi

condition. For each experiment, normalization was performed using the mean value obtained for the

corresponding control dataset. Boxplots were drawn using BoxPlotR (http://boxplot.bio.ed.ac.uk/).

Mann-Whitney-Wilcoxon statistical tests (Marx et al., 2016) (https://ccb-compute2.cs.uni-saarland.

de/wtest/) were performed to compare the datasets obtained under different conditions.

For the protein extraction from Paramecium cells and western blot analysis, 3 to 6 � 105 autoga-

mous cells were collected by centrifugation at T5-T10 and washed with Dryl’s buffer before transfer

to liquid nitrogen. Frozen concentrated cells were directly lysed following addition of an equal vol-

ume of boiling 10% SDS containing 1x Protease Inhibitor Cocktail Set 1 (Merck Chemicals) and incu-

bated at 100˚C for 3 min. SDS-PAGE and western blotting with a-Pgm 2659-GP (1:500) and a-alpha

Tubulin TEU435 (1:1000) were performed as described (Dubois et al., 2017). The signal was visual-

ized with the ChemiDoc Touch Imaging System (Bio-rad) and densitometric analyses were performed

using Image Lab software (Bio-rad).

Protein expression in insect cells and co-precipitation assays
For MBP-Pgm or MBP expression, plasmids pVL1392-MBP-PGM and pVL1392-MBP

(Marmignon et al., 2014) were transfected individually into High Five cells together with the BD

BaculoGold Linearized Baculovirus DNA (BD Biosciences) to produce recombinant baculoviruses

(Dubois et al., 2017).

Synthetic PGML genes adapted to the universal genetic code (Eurofins Genomics,

Supplementary file 5) were cloned into the pFastBAC vector (ThermoFisher Scientific) and fused at

their 5’ end to a nucleotide sequence encoding the HA tag. Production of recombinant baculovi-

ruses and expression of HA-PgmL fusions were performed using the BAC-to-BAC baculovirus

expression system (ThermoFisher Scientific).

To co-express each HA-PgmL fusion with MBP-Pgm (or the MBP control), High Five cells were co-

infected with the appropriate recombinant baculoviruses. Cell lysis, preparation of soluble protein

extracts, co-precipitation on amylose beads and detection of HA-tagged PgmLs on western blots

using HA-7 monoclonal a-HA antibodies (Sigma Aldrich) were performed as described

(Dubois et al., 2017). Independent experiments showed that the HA epitope does not interact non-

specifically with MBP-PGM.
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High throughput sequencing and analysis of IES retention
For each PGML KD, total genomic DNA was extracted from vegetative parental cells or nuclear

preparations enriched in developing MACs from the same cultures at late autogamy stages (follow-

ing 4 days of starvation). DNA was sequenced at a 76 to 160X coverage by a paired-end strategy

using Illumina HiSeq (paired-end read length:~2�100 nt) or NextSeq (paired-end read

length:~2�150 nt) sequencers. Sequencing reads were mapped against the MAC or MAC + IES ref-

erence genomes of P. tetraurelia 51 (Arnaiz et al., 2012). IRS correspond to the mean of the two

boundary scores of a given IES calculated using the MIRET module of the ParTIES package

(Denby Wilkes et al., 2016). Because variable amounts of DNA from old MAC fragments are pres-

ent in the samples, the retention scores calculated in each experiment cannot be considered as

absolute measurements of IES retention in the new MAC. For each IES, boundary scores were indi-

vidually compared to those obtained in a control autogamy experiment performed in standard K.

pneumoniae medium, as described in (Gruchota et al., 2017) and a statistical test for the signifi-

cance of each boundary score was performed using the ParTIES package. This allowed us to define

two groups of IESs: a set of significantly retained IESs and a set of ‘non-retained’ IESs (i.e. excised)

that did not pass the statistical test.

Excision errors were analyzed using the MILORD module of ParTIES, with the mapping performed

on the MAC + IES reference. Each error was counted as 1, independently of the number of corre-

sponding reads. An estimate number of de novo excision errors in the new MAC was calculated by

removing the errors already found in the MAC of parental vegetative cells from those that were

detected in total genomic DNA from autogamous cells (Supplementary file 9). De novo error

counts were normalized relative to the total number of sequence reads for each sample.

Data availability
All DNA-seq datasets (Supplementary file 8) generated in this study were deposited in the Euro-

pean Nucleotide Archive under the Project Accession PRJEB24171. Reference genomes and IESs are

available through ParameciumDB (https://paramecium.i2bc.paris-saclay.fr).
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S, Puiggròs M, Blackford AN, Mason CE, de Stanchina E, Gönen M, Emde AK, Shah M, Arora K, Reeves C,
Socci ND, et al. 2017. PGBD5 promotes site-specific oncogenic mutations in human tumors. Nature Genetics
49:1005–1014. DOI: https://doi.org/10.1038/ng.3866, PMID: 28504702

Hickman AB, Chandler M, Dyda F. 2010. Integrating prokaryotes and eukaryotes: DNA transposases in light of
structure. Critical Reviews in Biochemistry and Molecular Biology 45:50–69. DOI: https://doi.org/10.3109/
10409230903505596, PMID: 20067338

Hickman AB, Ewis HE, Li X, Knapp JA, Laver T, Doss AL, Tolun G, Steven AC, Grishaev A, Bax A, Atkinson PW,
Craig NL, Dyda F. 2014. Structural basis of hAT transposon end recognition by Hermes, an octameric DNA
transposase from Musca domestica. Cell 158:353–367. DOI: https://doi.org/10.1016/j.cell.2014.05.037,
PMID: 25036632

Hickman AB, Dyda F. 2015. Mechanisms of DNA Transposition. Microbiology Spectrum 3:MDNA3-0034-2014.
DOI: https://doi.org/10.1128/microbiolspec.MDNA3-0034-2014, PMID: 26104718

Huang S, Tao X, Yuan S, Zhang Y, Li P, Beilinson HA, Zhang Y, Yu W, Pontarotti P, Escriva H, Le Petillon Y, Liu X,
Chen S, Schatz DG, Xu A. 2016. Discovery of an Active RAG Transposon Illuminates the Origins of V(D)J
Recombination. Cell 166:102–114. DOI: https://doi.org/10.1016/j.cell.2016.05.032, PMID: 27293192

Ignarski M, Singh A, Swart EC, Arambasic M, Sandoval PY, Nowacki M. 2014. Paramecium tetraurelia chromatin
assembly factor-1-like protein PtCAF-1 is involved in RNA-mediated control of DNA elimination. Nucleic Acids
Research 42:11952–11964. DOI: https://doi.org/10.1093/nar/gku874, PMID: 25270876

Jangam D, Feschotte C, Betrán E. 2017. Transposable Element Domestication As an Adaptation to Evolutionary
Conflicts. Trends in Genetics 33:817–831. DOI: https://doi.org/10.1016/j.tig.2017.07.011, PMID: 28844698

Jin Y, Chen Y, Zhao S, Guan KL, Zhuang Y, Zhou W, Wu X, Xu T. 2017. DNA-PK facilitates piggyBac transposition
by promoting paired-end complex formation. PNAS 114:7408–7413. DOI: https://doi.org/10.1073/pnas.
1612980114, PMID: 28645898

Jones DT, Taylor WR, Thornton JM. 1992. The rapid generation of mutation data matrices from protein
sequences. Bioinformatics 8:275–282. DOI: https://doi.org/10.1093/bioinformatics/8.3.275, PMID: 1633570

Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices. Journal of
Molecular Biology 292:195–202. DOI: https://doi.org/10.1006/jmbi.1999.3091, PMID: 10493868

Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J. 2001. Effectiveness of specific RNA-
mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biology 2:
research0002.1. DOI: https://doi.org/10.1186/gb-2000-2-1-research0002

Kapitonov VV, Jurka J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib
transposons. PLoS Biology 3:e181. DOI: https://doi.org/10.1371/journal.pbio.0030181, PMID: 15898832

Kapusta A, Matsuda A, Marmignon A, Ku M, Silve A, Meyer E, Forney JD, Malinsky S, Bétermier M. 2011. Highly
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