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Abstract Deep networks provide a potentially rich interconnection between neuroscientific and10

artificial approaches to understanding visual intelligence, but the relationship between artificial and11

neural representations of complex visual form has not been elucidated at the level of single-unit12

selectivity. Taking the approach of an electrophysiologist to characterizing single CNN units, we13

found many units exhibit translation-invariant boundary curvature selectivity approaching that of14

exemplar neurons in the primate mid-level visual area V4. For some V4-like units, particularly in15

middle layers, the natural images that drove them best were qualitatively consistent with selectivity16

for object boundaries. Our results identify a novel image-computable model for V4 boundary17

curvature selectivity and suggest that such a representation may begin to emerge within an18

artificial network trained for image categorization, even though boundary information was not19

provided during training. This raises the possibility that single-unit selectivity in CNNs will become a20

guide for understanding sensory cortex.21

22

Introduction23

Deep convolutional neural networks (CNNs) are currently the highest performing image recognition24

computer algorithms. While their overall design reflects the hierarchical structure of the ventral25

(“form-processing”) visual stream (Hubel and Wiesel, 1962; LeCunn et al., 2015), the visual selectivity26

(i.e., tuning) of single units within the network are not constrained to match neurobiology. Rather,27

single-unit properties are determined by a performance-based learning algorithm that operates28

iteratively across many pre-classified training images, tuning the parameters of the network to29

decrease the error between the network output and the target classification. Nevertheless, first-30

layer units in these CNNs, following training, often show selectivity for orientation and spatial31

frequency (Figure 1; see also Krizhevsky et al., 2012) like neurons in primary visual cortex (V1).32

Attempts to visualize features encoded by single units deeper in such networks (Zeiler and Fergus,33

2013; Mahendran and Vedaldi, 2014) show that selectivity becomes increasingly complex and34

categorical, similar to the progression along the ventral stream. Solidifying this idea, Güçlü and35

van Gerven (2015) found a corresponding hierarchy of visual features between BOLD signals in the36

human ventral stream and layers within a CNN. This raises the tentative but exciting possibility that37

units deeper in the network may approximate tuning observed at mid-level stages of the ventral38

stream, e.g., area V4. This is not unreasonable given that artificial networks that perform better at39

image classification also have population-level representations closer to those in area IT (Yamins et40
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al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Kriegeskorte, 2015). V4 is a primary input to IT41

(Felleman & Van Essen, 1991), yet there has been no systematic examination of whether specific42

form-selective properties found in V4 emerge within a CNN.43

To address this, we tested whether two properties of shape selectivity in V4, tuning for boundary44

curvature (Pasupathy and Connor, 1999, 2001; Cadieu et al., 2007) and translation invariance45

(Gallant et al., 1996; Pasupathy and Connor, 2001; Rust and DiCarlo, 2010; Rust and DiCarlo, 2012;46

Nandy et al., 2013; Sharpee et al., 2013) arise within a CNN. In particular, many V4 neurons are47

selective for boundary curvature, ranging from concave to sharply convex, at particular angular48

positions around the center of an object. This angular position and curvature (APC) tuning may be49

important for supporting entire object representations deeper in the ventral stream (Pasupathy50

and Connor, 2002; Murphy and Finkel, 2007), but it remains uncertain how it arises or is used.51

Finding APC-like tuning in the middle of an artificial network could help to relate mid-level visual52

physiology to pressures on visual representation applied by image statistics at the front end and by53

categorization performance downstream. It could also relate to the recent observation that human54

perception of shape similarity correlates with response similarity in CNNs (Kubilius et al., 2016).55

We take an approach to characterizing single units in an artificial deep network that we refer to56

as “artiphysiology” because it closely mirrors how an electrophysiologist approaches the characteri-57

zation of single neurons in the brain. In particular, we presented the original 362 shape stimuli used58

by Pasupathy and Connor (2001) to AlexNet, a CNN that was the first of its class to make large gains59

on general object recognition (Krizhevsky et al., 2012) and that continues to be well-studied (Zeiler60

and Fergus, 2013; Yosinski et al., 2015; Lenc and Vedaldi, 2014; Donahue et al. 2013; Szegedy et61

al. 2013; Güçlü and van Gerven, 2015; Bau et al. 2017; Tang et al. 2017; Flachot and Gegenfurtner,62

2018). Making direct comparisons between CNN units and V4 neurons using V4 data from two63

previous studies (Pasupathy and Connor, 2001; El-Shamayleh and Pasupathy, 2016), we found that64

many units in AlexNet would be indistinguishable from good examples of boundary-curvature-65

tuned V4 neurons. We applied a CNN visualization technique (Zeiler and Fergus, 2013) to examine66

whether natural image features that best drive such APC-like units are consistent with the notion67

of selectivity for curvature of object boundaries. We identify specific V4-like units so that other68

researchers may utilize them for future studies.69

Results70

AlexNet contains over 1.5million units organized in eightmajor layers (Figure 2), but its convolutional71

architecture means that the vast majority of those units are spatially offset copies of each other.72

For example, in the first convolutional layer, Conv1, there are only 96 distinct kernels (Figure 1), but73

they are repeated everywhere on a 55 x 55 grid (Figure 2E). Thus, for the convolutional layers, Conv174

to Conv5, it suffices to study the selectivity of only those units at the spatial center of each layer.75

These units, plus all units in the subsequent fully-connected layers comprise the 22,096 unique76

units (Figure 2D) that we analyzed.77

Responses of CNN units to simple shapes78

We first establish that the simple visual stimuli used in V4 electrophysiology experiments (Figure79

3A) do in fact drive units within the CNN, which was trained on a substantially different set of80

inputs: natural photographic images from the ImageNet database (Deng et al., 2009). Across the81

convolutional layers and their sublayers, we found that our shape stimuli typically evoked a range of82

responses that was on average similar to, or larger than, the range driven by ImageNet images (e.g.,83

Figure 4, Conv1, compare red to dark blue). The ranges for shapes and images became more similar84

following normalization layers (e.g., Figure 4, Norm1). In contrast, in the subsequent fully-connected85

layers, the natural images drove a larger range of responses (Figure 4, FC6, dark blue) than did86

shapes (red line), and from FC6 onwards the range of responses to shapes was about 1/2 to 1/387

of that for images. The wider dynamic range for images in later layers may reflect the sensitivity88

of deeper units to category-relevant conjunctions of image statistics that are absent in our simple89
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shape stimuli. These results were robust to changes in stimulus intensity and size (see Figure 4,90

legend); therefore, we settled on a standard size of 32 pixels so that stimuli fit within all RFs from91

Conv2 onwards (Figure 2B) with room to spare for translation invariance tests (see Methods).92

Although our shapes drove responses in all CNN layers, many units responded sparsely to93

both the shapes and natural images. Across all layers, 13% of units had zero responses to all94

shape stimuli and 7% had non-zero response to only one stimulus, i.e., one shape at one rotation.95

Because we aim to identify CNN units with V4-like responses to shapes, we excluded from further96

analysis units with response sparseness outside the range observed in V4 (see Methods and Figure97

4 supplement 1).98

Tuning for boundary curvature at RF center99

To assess whether CNN units have V4-like boundary curvature selectivity, we measured responses of100

each unique CNN unit to our shape stimuli (up to 8 rotations for each shape in Figure 3A), centered101

in the RF. We then fit responses with the angular position and curvature (APC) model (Pasupathy102

and Connor, 2001), which captures neuronal selectivity as the product of a Gaussian tuning curve103

for curvature and a Gaussian tuning curve for angular position with respect to the center of the104

shape (Figure 3B, C and Methods). We found that the responses of many units in the CNN were105

fit well by the APC model. For example, the responses of Conv2 unit 113 (i.e., Conv2-113) were106

highly correlated (r = 0.78, n = 362) to those of its best-fit APC model (Figure 5A). The fit parameters107

indicate selectivity for a sharp convexity (�c = 1.0, �c = 0.39) pointing to the upper left (�a = 135°,108

�a = 23°), and indeed the 8 most preferred shapes all include such a feature (Figure 5B, pink),109

whereas the least preferred shapes (cyan) do not. A second example unit, FC7-3591 (Figure 5C) with110

a high APC r-value (0.77) had fit parameters (see legend) reflecting selectivity for concavities roughly111

toward the top of the shape, consistent with most of its preferred shapes (Figure 5D). These results112

were similar to those for well-fit V4 neurons. For example, the V4 unit a1301 (Figure 5E, F) had an113

APC fit (r = 0.76, p < 0.001, n = 362) reflecting a preference for a sharp convexity, like the first CNN114

example unit, except with a different preferred angular position (�a = 180°).115

For each layer of the CNN, we computed the distributions of the APC fit r-values across units116

(Figure 5G). There is a clear but modest trend for the cumulative distribution functions to shift117

rightward for higher layers (orange lines, Figure 5G), indicating that deeper layer units fit better118

on average to the APC model. The first CNN layer, Conv1 (black line) stands apart as having a far119

leftward-shifted r-value distribution, but this occurs simply because most of the stimuli overfill the120

small Conv1 RFs. Compared to V4 neurons studied with the same shape set (red line, Figure 5G), the121

median r-values (corresponding to 0.5 on the vertical axis) for layers Conv2 to FC8 were somewhat122

higher than that for V4, but the V4 and CNN curves matched closely at the upper range, with the123

best V4 unit having a higher APC r-value than any CNN unit.124

One factor that could influence our CNN to V4 comparison is that CNN responses are noise-free,125

whereas V4 responses have substantial trial-to-trial variability. We extended the method of Haefner126

and Cumming (2009) to remove the bias that variability introduces into the correlation coefficient127

(see Methods). The distribution of the corrected estimates of the r-values across the V4 population128

(pink line, Figure 5G) has a higher median than that for any of the CNN layers. This suggests that,129

had it been possible to record many more stimulus repeats to eliminate most of the noise in the V4130

data, then one would find that the V4 population somewhat out-performs even the deep layers in131

AlexNet in fitting the APC model. Overall, regardless of whether we consider the raw or corrected132

V4 r-values, we would still conclude that the CNN contains units that cover the vast majority of the133

range of APC r-values found in V4 when tested with the same stimuli.134

To determine whether the goodness of fit to the APC model was a result of the network135

architecture alone or if training on the object categorization task played a role, we fit the model to136

units in an untrained network in which weights were assigned random initial values (see Methods)137

and found that only ∼14% had APC r-values above 0.5 (Figure 5H, blue trace) and none reached the138

upper range of r-values observed in the trained CNN (Figure 5H, black line, aggregate of all layers)139
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or in V4 (red line). This suggests that training is important for achieving an APC r-value distribution140

consistent with V4.141

To control for over fitting, we re-fit the APC model to all CNN units after shuffling the responses142

of each unit across the 362 shapes. After shuffling, 99% of units had r < 0.07 (Figure 5H, green),143

whereas in the original data (Figure 5H, black) 99% of units had r > 0.07. Thus, the APC model largely144

reflects specific patterns of responses of the units to the shapes, and not an ability of the model to145

fit any random or noisy set of responses (see also Pasupathy and Connor, 2001).146

Translation Invariance147

To have V4-like boundary curvature tuning, a CNN unit must not only fit the APC model well for148

stimuli centered in the RF, but must maintain that selectivity when stimuli are placed elsewhere in149

the RF, i.e., it must show translation invariance like that found in V4 for our stimulus set (Pasupathy150

and Connor, 2001; El-Shamayleh and Pasupathy, 2016). For example, responses of a V4 neuron151

to 56 shapes centered in the RF are highly correlated (r = 0.97, p < 0.0001, n=56) with responses to152

the same shapes presented at a location offset by 1/6 of the RF diameter (Figure 6A), indicating153

that shapes that drive relatively high (or low) responses at one location also tend to do so at the154

other location. This can be visualized across the RF using the position-correlation function (Figure155

6B, red), which plots response correlation as a function of distance from a reference position (e.g.,156

RF center). For this V4 neuron, the RF profile, measured by the mean response across all stimuli at157

each position (Figure 6B, green; see Methods), falls off faster than the position-correlation function,158

consistent with a high degree of translation invariance.159

A similar analysis for the example CNN unit, Conv2-113, reveals a steep drop-off in its position-160

correlation function (Figure 6E, red) compared to its RF profile (green). In particular, when stimuli161

were shown 13 pixels to the left of center (black arrow) the aggregate firing rate (see Methods) was162

87% of maximum, but the correlation was near zero. The largely uncorrelated selectivity at two163

points within the RF indicates low translation invariance. Thus, despite its high APC r-value (Figure164

5A), its low translation invariance diminishes it as a good model for V4 boundary contour tuning.165

This behavior was typical in layer Conv2, as demonstrated by the position-correlation function166

averaged across all units in the layer (Figure 6F). Specifically, the correlation (red) falls off rapidly167

compared to the RF profile (green) even for small displacements of the stimulus set.168

For deeper layers, RFs tend to widen and translation invariance increases. This is exemplified by169

unit 369 in the fourth convolutional layer (Figure 6G) and the Conv4 layer average (Figure 6H): on170

average the correlation (red) more closely follows the RF profile (green) and does not drop to zero171

near the middle of the RF. In the deepest layers, exemplified by the FC7 unit from Figure 5C, the172

RFs become very broad (Figure 6I, green) and there is very little fall-off in correlation (red) even for173

shifts larger than the stimulus size. This is true for the layer average as well (Figure 6J). These plots174

show that shape selectivity becomes more translation invariant relative to RF size, and not just in175

terms of absolute distance, as signals progress to deeper layers.176

To quantify translation invariance for each unit with a single number, we defined a metric, TI,177

based on the normalized average covariance of the response matrix across positions (see Methods).178

The values of this metric, which would be one for perfect (and zero for no) correlation across179

positions, are shown for the example CNN units in Figure 6E, G and I. The trend for increasing TI180

with layer depth seen in Figure 6 (panels F, H and J) is borne out in the cumulative distributions of TI181

broken down by CNN layer (Figure 7A). For comparison, the cumulative distribution of our TImetric182

for 39 V4 neurons from the study of El-Shamayleh and Pasupathy (2016) is plotted (red). Only the183

deepest four layers (Conv5 to FC8) had median TI values that approximated or exceeded that of our184

V4 population. Conv1 is excluded because its RFs are far too small to fully contain our stimuli at185

multiple positions (see Methods). The substantial increase in TI for deeper layers is striking relative186

to the modest progression in APC r-values observed in Figure 5G.187

An intuitive motivation for CNN architecture, chiefly convolution (repetition of linear filtering at188

translated positions) and max pooling, is the desire to achieve a translation invariant representation189
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(Fukushima, 1980; Rumelhart et al., 1986; Riesenhuber and Poggio, 1999; Serre et al., 2005; Cadieu190

et al., 2007). This might lead to the idea that responses of units within these nets are translation191

invariant by design, but the observation that strong translation invariance only arises in later layers192

begins to deflate this notion. Furthermore, we computed TI for the same units and stimuli but in193

the untrained network. We found that the degradation of TI in an untrained network (Figure 7B)194

was even more dramatic than the degradation of APC tuning (Figure 5H). Specifically, it was very195

rare for any FC-layer unit in the untrained network to exceed the median TI values for those layers196

in the trained network.197

To assess the influence of neuronal noise on our comparison of TI between V4 and AlexNet, we198

estimated an upper bound on howmuch TI could have been reduced by V4 response variability (see199

Methods). TI tended to be less influenced by noise for neurons having higher TI, in particular the200

upward correction of the r-value was negatively correlated with the raw TI value (r = −0.6, p < 0.001,201

n = 39). Thus, for cells at the upper range of TI, we do not expect sampling variability to strongly202

influence our measurements. The distribution of V4 TI values corrected for noise is superimposed203

in Figure 7A and B (pink line). The modest rightward shift in the corrected distribution relative to204

the original raw distribution (red line) does not change our conclusion that only the deepest several205

layers in AlexNet have average TI values that match or exceed that of V4.206

Our TImetric above was measured for horizontal stimulus shifts; however, we also measured TI207

for vertical shifts and verified that there was a high correlation between these two (r=0.79) (Figure 7208

supplement 1), particularly for high TI values.209

Identifying and visualizing preferences of candidate APC-like units210

We now plot the joint distribution of our metrics for boundary contour tuning and translation211

invariance described above to identify candidate APC-like CNN units. Figure 8 shows a unit square212

with APC r-value on the vertical axis and translation invariance, TI, on the horizontal axis. An ideal213

unit would be represented by the upper right corner, (1,1). The hypothetical best V4 neurons lie214

within this space at the red X (TI= 0.97, r = 0.80). This best V4 point is a hybrid of the observed215

highest APC r-value from the Pasupathy and Connor (2001) study, and the highest TI value from216

our re-analysis of the El-Shamayleh and Pasupathy (2016) data. In comparison, the most promising217

CNN unit lies at the orange star (TI= 0.91, r = 0.77), very close to the hypothetical best V4 point. To218

demonstrate how the CNN population falls on this map, we plotted 100 randomly chosen units219

from an early layer, Conv2 (dark brown), and a deep layer, FC7 (orange). Although only a few FC7220

units approach the hypothetical best V4 point, many units are better than the average V4 neuron221

(red lines, Figure 8). In contrast, most units from Conv2 are much further from ideal V4 behavior,222

but they span a large range, indicating that even in the second convolutional layer, some units have223

ended up, after training, having high TI and high APC r-values.224

To determine whether units identified as being the most APC-like, i.e., those closest to (1,1) in225

Figure 8, respond to natural images in a manner qualitatively consistent with boundary curvature226

selectivity in an objected-centered coordinate frame, we identified image patches that were most227

facilitatory (drove the greatest positive responses) and most suppressive (drove the greatest nega-228

tive responses) for the 50,000 image test-set from the 2012 ImageNet competition. We then used a229

visualization technique (Zeiler and Fergus, 2013) to project back ("deconvolve") from the unit onto230

each input image through the connections that most strongly contributed to the response, thereby231

revealing the regions and features supporting the response. We examined the ten most APC-like232

units in each of seven layers from Conv2 to FC8. Below we describe major qualitative observations233

as a function of layer depth.234

Visualizing the ten most APC-like units in Conv2 revealed selectivity for orientation, conjunctions235

thereof, or other textures. For example, unit Conv2-113 (from Figure 5A and 8E), was best driven236

by lines at a particular orientation (Figure 9A) and most suppressed by oriented texture running237

roughly orthogonal to the preferred. This explains why this unit responded well only to shapes that238

have long contours extending to a point at the upper left, and poorly to shapes having a broad239
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convexity or concavity to the upper left (Figure 5B). Another Conv2 example (Figure 9B) was driven240

best by the conjunction of a vertical that bends to the upper left and a horizontal near the top of the241

RF that meet at a point in the upper left. Examining the input images reveals that textures and lines242

(e.g., the bedspread and rocking chair cushion) are as good at driving the unit as are boundaries of243

objects. A third unit (Figure 9C) preferred conjunctions of orientations and was suppressed by lines244

running orthogonal to the preferred vertical orientation. The preferred pattern was usually not an245

object boundary, but could surround negative space or be surface texture. These observations,246

taken together with the poor translation invariance of Conv2 relative to deeper layers, suggest that247

units at this early stage are not coding boundary conformation in an object-centered way, but that248

any pattern matching the preferred features of the unit, regardless of its position with respect to an249

object, will drive these units well.250

From Conv3 to Conv5, the visualizations of the most APC-like units were more often consistent251

with an encoding of portions of object boundaries. Unit Conv3-156 was driven best by the broad252

downward border of light objects (Figure 10A), particularly dog paws. The most suppressive features253

for this “downward-dog-paw” unit were dark regions, often negative space, with relatively straight254

edges. The deconvolved features tended to emphasize the lower portion of the object border. A255

similar example, Conv3-020, had a preference for the upper border of bright forms (e.g., flames;256

Figure 10B) and was suppressed by the upper border of dark forms (often dark hair on heads).257

This unit was representative of a tendency for selectivity for bright regions with broad convexities258

(e.g., Conv4-171, not shown). We assume that more dark-preferring units would have been found259

had our stimuli been presented as black-on-white. These trends continued with greater category260

specificity in Conv5. For example, Conv5-161 was driven best by the rounded, convex tops of white261

dog heads (Figure 10C), including some contribution from the eyes, and was most suppressed by262

human faces below the eyebrows. Unit Conv5-144 was best driven by the upward facing points of263

the tops of objects, particularly wolf ears and steeples (Figure 10D). This “wolf-ear-steeple” unit was264

most suppressed by rounded forms, and may be important for distinguishing between the many265

dog categories with and without pointed ears. In addition to units like these, which appeared to be266

selective for portions of boundaries, there were several units that appeared to detect entire circles267

(Figure 11), and thus fit well to an APC model with specificity for curvature but broadly accepting of268

any angular position.269

In the FC layers, the most excitatory images were revealing about unit preferences, but the270

deconvolved features provided less insight because power in the back projection was typically271

widely distributed across the input image. For example, unit FC6-3030 (Figure 12A) responded272

best to hourglasses, but deconvolution did not highlight a particular critical feature. The shape273

stimuli driving the highest and lowest five responses (Figure 12A, bottom row) suggest that a cusp274

(convexity) facing upward is a critical feature, consistent with the APC model fit (Table 1). The most275

suppressive natural images (not shown) were more diverse than those for the Conv layers, and thus276

provided little direct insight. Broadly, many of the top ten APC-like units in the FC layers fell into two277

categories: those preferring images with rounded borders facing approximately upwards (we refer278

to these as the “balls” group) and those associated with a concavity between sharp convexities,279

also facing approximately upwards (the “wolf-ears” group). For example, FC7-3192 (Figure 12B)280

responded best to images of round objects (e.g., golf balls) and to shapes having rounded tops.281

FC7-3591 (Figure 12C), which was the most APC-like unit by our joint TI-APC index (orange star in282

Figure 8), responded best to starfish and rabbit-like ears pointing up. Shapes with a convexity at 112°283

drove the unit most strongly, whereas shapes with rounded tops and overall vertical orientation284

yielded the most negative responses. FC7-3639 (Figure 12D) is an example of a wolf-ears unit, and285

its preferred shapes include those with a convexity pointing upwards flanked by one or two sharp286

points. In FC8, where there is a one-to-one mapping from units onto the 1000 trained categories,287

the top ten APC units were evenly split between the wolf-ears group (categories: kit fox, gray fox,288

impala, red wolf and red fox) and the balls group (categories: ping-pong balls, golf balls, bathing289

caps, car mirrors and rugby balls). For example, unit FC8-271 (Figure 12E) corresponds to the red290
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Layer Unit APC r �c �c �a �a TI

Conv2 108 0.67 0.7 0.72 134 34 0.76

Conv2 113 0.76 0.9 0.39 134 22 0.70

Conv2 126 0.67 0.1 0.72 337 51 0.81

Conv3 20 0.68 0.5 0.01 224 171 0.90

Conv3 156 0.67 0.5 0.01 337 171 0.79

Conv3 334 0.73 0.2 0.12 157 171 0.74

Conv4 203 0.71 0.2 0.16 292 171 0.77

Conv5 144 0.65 0.9 0.29 89 30 0.89

Conv5 161 0.72 0.2 0.16 112 87 0.85

FC6 3030 0.73 -0.1 0.16 89 26 0.89

FC7 3192 0.75 0.2 0.16 112 171 0.91

FC7 3591 0.78 -0.1 0.16 112 44 0.89

FC7 3639 0.76 -0.1 0.16 112 114 0.92

FC8 271 0.73 -0.1 0.16 112 114 0.91

FC8 433 0.70 0.3 0.21 112 130 0.91

FC8 722 0.72 0.2 0.08 112 130 0.93

Table 1. Fit parameters and TImetric for example CNN units. Unit numbers are given starting at zero in each

sublayer. The APC model parameters, �c , �c , �a and �a, correspond to those in Equation 2. The TImetric is given
by Equation 3. For visualization of preferred stimuli for example units, see Figures 9-12.

wolf category and units FC8-433 and FC8-722 correspond to the bathing cap and ping-pong ball291

categories, respectively.292

What is most striking about the deep-layer (FC) units is that, in spite of their tendency to be293

more categorical, i.e., to respond to a wolf in many poses or a ping-pong ball in many contexts, they294

still showed systematic selectivity to our simple shapes. We hypothesized that these FC units were295

driven by a range of image properties that correlated well with the target category, and that shape296

was simply one among others such as texture and color. We examined how much better the units297

were driven by the best natural images compared to our best standard shapes. Figure 13 shows298

for the top-10 APC-like units in each layer, that the best image drove responses on average about299

2 times higher than did the best shape for Conv2-4, about 4-5 times higher for FC6-7 and more300

than 8 times higher for FC8. This is consistent with the hypothesis that shape tuned mechanisms301

contribute to the selectivity of these units, but are not sufficient in the absence of other image302

properties to drive the FC layers strongly. Nevertheless, the selectivity for simple shapes at the final303

layer appears to be qualitatively consistent with the category label. Notably, only two APC-like units304

responded better to a shape than to any natural image, but both were Conv4 units selective for305

bright circular regions (not shown), and the best stimulus was our large circle (Figure 3A, second306

from upper left).307

CNN fit to V4 responses308

Above, we examined the ability of CNN units to approximate the boundary curvature selectivity of V4309

neurons as described by the APC model, but while an APC model provides a good description of the310

responses of many V4 neurons, there are also neurons for which it explains little response variance311

across our shape set. We therefore examined whether the CNN units might directly provide a better312

fit (than the APCmodel) to the responses of the V4 neurons. We used cross-validation (see Methods)313

to put these very different models on equal footing. Figure 14 shows the cross-validated, best fit314

r-values for the APC model plotted against those for the CNN units. Neither model is clearly better315

on average: just over half (56/109) of neurons were better fit by the APC model, while just under half316

(53/109) were better fit by a CNN unit. Only 21 of 109 neurons had significant deviations from the317
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line of equality (Figure 14, red) and these were evenly split: 11 better fit by the APC model and 10 by318

the CNN. The similar performance of the APC model and CNN could be a result of the CNN and319

APC model explaining the same component of variance in the data, or explaining largely separate320

components of the variance. To assess this, for each V4 neuron, we removed from its response321

the component of variance explained by its best-fit APC model. For this APC-orthogonalized V4322

response, the CNN model had a median correlation to V4 of r = 0.29 (SD=0.11), much lower than323

the APC model’s r = 0.47 (SD=0.12) median . For 94/109 neurons, the APC model explained more324

variance than the variance uniquely explained by the CNN. Overall, we conclude that the APC model325

and the CNN explain similar features of V4 responses for most neurons.326

Discussion327

We examined whether the CNN known as AlexNet, designed to perform well on image classification,328

contains units that appear to have boundary curvature selectivity like that of V4 neurons in the329

macaque brain. Although our simple shape stimuli were never presented to the network during330

training, we found that many units in the CNN were V4-like in terms of quantitative criteria for331

translation invariance and goodness of fit to a boundary curvature model. While units throughout332

AlexNet had good fits to the APC model, relatively poor translation invariance in the early layers333

meant that only the middle to deeper layers had substantial numbers of units that came close334

to matching exemplary APC-tuned V4 neurons. Based on our quantitative criteria and on the335

qualitative visualization of preferred features identified in natural images, we believe that APC-like336

units within middle layers of trained CNNs currently provide the best image-computable models for337

V4 boundary curvature selectivity.338

Finding such matches at the single unit level is striking because the deep net and our macaques339

differ dramatically in their inputs, training and architecture. The animals never saw ImageNet340

images and probably never saw even a single instance of the overwhelming majority of the 1000341

output categories of AlexNet. They did not see the forest, ocean, sky nor other important contexts342

for AlexNet categories, nor had AlexNet been trained on the artificial shapes used to characterize V4.343

While the macaque visual system may be shaped by real-time physical contact with a 3D dynamic344

world, AlexNet cannot and was not even given information about the locations nor boundaries of345

the targets to be classified within its images during categorization training. AlexNet lacks a retina346

with a fovea, an LGN, feedback from higher areas, dedicated excitatory and inhibitory neurons, etc.,347

and it does not have to compute with action potentials. Our results suggest that image statistics348

related to object boundaries may generalize across a wide variety of inputs and may support a349

broad variety of tasks, thereby explaining the emergence of similar selectivity in such disparate350

systems.351

Visualization of V4-like CNN units.352

By applying a CNN visualization technique to APC-like units identified by our quantitative criteria,353

we found that some of these CNN units appeared, qualitatively, to respond to shape boundaries354

in natural images whereas many others did not. In early layers, particularly Conv2, the strongest355

responses were not driven specifically by object boundaries but instead by other image features356

including texture, accidental contours and negative space. In contrast, candidate APC units in357

intermediate layers often responded specifically to natural images patches containing object358

boundaries, suggesting that these units are APC-like. In the deeper (FC) layers, units were poorly359

driven by our shape stimuli relative to natural images, and the preferred natural images for a given360

unit appeared similar along many feature dimensions (e.g., texture, background context) beyond361

simply the curvature of object boundaries. We speculate that these units are jointly tuned to many362

features and that object boundaries alone account for only part of their tuning. More work is363

needed to understand the FC-layer units with high APC r-values; however, we believe units in the364

middle layers, Conv3-5, provide good working models for understanding how APC-tuning might365
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arise from earlier representations, how it may depend on image statistics and how it could support366

downstream representation.367

Training and translation invariance368

Training dramatically increased the number of units with V4-like translation invariance, particularly369

in the FC layers (Figure 7A vs. B). Since the trained and untrained nets have the same architecture,370

the increase in TI is not simply a result of architectural features meant to facilitate translation371

invariance, e.g., max-pooling over identical, shifted filters. Thus, while CNN architecture is often372

associated with translation invariance (Fukushima, 1980; Rumelhart et al., 1986; Riesenhuber and373

Poggio, 1999; Serre et al., 2005; Cadieu et al., 2007; Goodfellow et al., 2009; Lenc and Vedaldi, 2014),374

we find that high TI for actual single unit responses is only achieved in tandem with the correct375

weights. We are currently undertaking an in-depth study comparing the trained and untrained376

networks to elucidate statistical properties of weight patterns that support translation invariance.377

Our preliminary analyses show that spatial homogeneity of a unit’s kernel weights across features378

correlates with its TI score, but this correlation is weaker in higher layers. Alternative models of379

translation-invariant tuning in V4 include the spectral receptive field (SRF) model (David et al., 2006)380

and HMax model (Cadieu et al., 2007). The former made use of the Fourier spectral power, which is381

invariant to translation of the input image, but this phase insensitivity prevents the SRF model from382

explaining APC-like shape tuning (Oleskiw et al., 2014). The HMax model of Cadieu et al. (2007) is a383

shallower network with the equivalent of two convolutional layers and does not achieve the strong384

translation invariance found in deeper layers here (Popovkina et al., submitted). Overall, translation385

invariance at the single-unit level is not a trivial result of gross CNN architecture, yet it is crucial for386

modeling V4 form selectivity.387

Other studies of TI in CNNs388

Although other studies have examined translation invariance and related properties (rotation and389

reflection invariance) in artificial networks (Ranzato et al., 2007; Goodfellow et al., 2009; Lenc and390

Vedaldi, 2014; Zeiler and Fergus, 2013; Fawzi and Frossard, 2015; Güçlü and van Gerven (2015),391

Shang et al., 2016; Shen et al., 2016; Tsai and Cox, 2016), we are unaware of any study that has392

quantitatively documented a steady layer-to-layer increase of translation invariant form selectivity,393

measured for single units, across layers throughout a network like AlexNet. For example, using the394

invariance metric of Goodfellow et al. (2009), Shang et al. (2016, their Fig. 4c) averaged over multiple395

types of invariance (e.g., translation, rotation) and over all units within a layer and found a weak, non-396

monotonic increase in invariance across layers in a CNN similar to AlexNet. Using the same metric397

but different stimuli, Shen et al. (2016) found no increase and no systematic trend in invariance398

across layers of their implementation of AlexNet (their Fig. 5). Although Güçlü and van Gerven399

(2015) plot an invariance metric against CNN layer, their metric is the half-width of a response400

profile, and thus it is unlike our TI selectivity metric. In spite of the importance of translation401

invariance in visual processing and deep learning (LeCun et al., 2015), there currently is no standard402

practice for quantifying it. An important direction for future work will be to establish standard403

and robust methods for assessing translation invariance and other transformation invariances to404

facilitate comparisons across artificial networks and the brain.405

Comparison to previous work406

One way our approach to comparing the representation in a CNN to that in the brain differs from407

previous work is that we examined the representation of specific visual features at the single-unit408

level, whereas previous studies took a population level approach. For example, Yamins et al. (2014)409

modeled IT and V4 recordings using weighted sums over populations of CNN units, and Khaligh-410

Razavi & Kriegeskorte (2014) examined whether populations of CNN units represented categorical411

distinctions similar to those represented in IT (e.g., animate vs. inanimate). Also, Kubilius et al.412
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(2016) examined whether forms perceived as similar by humans had similar CNN population repre-413

sentations. Our work is the first to quantitatively compare the single-unit representation in a CNN to414

that in a mid-level visual cortical area. We tested whether an artificial network matched the neural415

representation at a fundamental level—the output of single neurons, which are conveyed onward416

to hundreds or thousands of targets in multiple cortical areas. Unlike previous studies, we focused417

on specific physiological properties (boundary curvature tuning and translation invariance) with a418

goal of finding better models where a robust image-computable model is lacking. Furthermore, we419

use visualization of unit responses to natural images to qualitatively validate whether the represen-420

tation that these response properties are intended to capture (an object-centered representation of421

boundary) does in fact hold across natural images. We believe this level of model validation, which422

includes quantitative and conceptual registration to documented neuronal selectivity, pushes the423

field beyond what has been done before. Our results allow modelers to focus on specific neural424

selectivities and work with concrete, identified circuits that have biologically plausible components.425

Another major difference with prior work is that we fit the CNN to the APC model as opposed426

to directly to neural responses. This might seem like an unnecessary layer of abstraction, but the427

purpose of a model is not just predictive power but also interpretability, and the CNN’s complexity428

runs counter to interpretability. The CNN is necessarily complex in order to encode complex429

features from raw pixel values, whereas the APC model has five interpretable parameters. The APC430

model describes responses to complex features while ignoring the details of how those features431

were computed from an image. By identifying APC-tuned units in the CNN, we gain an image-432

computable model of neural responses to interpretable features; these units can be studied to433

understand how and why such response patterns arise. When we separately tested whether the434

CNN units were able to directly fit the responses of V4 neurons, we found they were no better on435

average than the APC model, thus for a gain in interpretability, we did not suffer an overall loss436

of predictive power. Nevertheless, some V4 neurons were better fit directly to a CNN unit than437

to any APC model, suggesting there may be V4 representations beyond APC tuning that can be438

synergistically studied with CNNs.439

Value of artiphysiology440

Comparing artificial networks to the brain can serve both computer and biological vision science441

(Kriegeskorte, 2015). What can an electrophysiologist learn from this study? First, our results442

demonstrate that there may already exist image-computable models for complex selectivity that443

match single-neuron data better than hand-designed models from neuroscientists. Second, finding444

matches between neuronal selectivity in the brain and artificial networks trained on vast amounts445

of natural data provides one method for electrophysiologists to validate their findings. For example,446

our findings support the hypothesis that an encoding of boundary curvature in single units may447

be generally important for the representation of objects. Third, once a match is found based on448

limited sets of experimentally practical stimuli, units within deep nets can then be tested with vast449

and diverse stimuli to attempt to gain deeper understanding. For example, finding the downward-450

dog-paw and wolf-ear-steeple units raises the question of whether boundary curvature is encoded451

independent of other visual traits in V4 or in the CNN. Specifically, is it possible that V4 neurons452

that appear to encode curvature at a particular angular position are in fact also selective for texture453

or color features associated with a limited set of objects that have relevance to the monkey? Longer454

experimental sessions with richer stimulus sets will be required to test this in V4. Fourth, concrete,455

image-computable models can be used to address outstanding debates that may otherwise remain456

imprecise. For example, by visualizing the preferences of single units for natural stimuli after457

identifying and characterizing those units with artificial stimuli, our results speak to the debate on458

artificial vs. natural stimuli (Rust and Movshon, 2005) by showing that artificial stimuli are often able459

to reveal critical characteristics of the selectivity of units involved in complex mid-level (parts-based)460

to high-level (categorical) visual encoding, even when the visual dimensions of the artificial set461
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explore only a minority of the feature space represented by the units. As another example, our462

results can help to address the debate of whether the visual system explicitly represents object463

boundaries (Adelson and Bergen, 1991; Movshon and Simoncelli, 2014; Ziemba and Freeman, 2015),464

which Movshon and Simoncelli describe as follows: “In brief, the concept is that the visual system465

is more concerned with the representation of the “stuff” that lies between the edges, and less466

concerned with the edges themselves (Adelson and Bergen 1991).” The models we have identified467

can now be used to pilot experimental tests of this rather complex, abstract idea.468

Our approach also provides potentially valuable insight for machine learning. The connection469

between deep nets and actual neural circuits is often downplayed, but we found a close match at the470

level of specific single-unit selectivity. This opens the possibility that future studies could reveal more471

fine-scale similarities, i.e., matches of sub-types of single-unit selectivity, between artificial networks472

and the brain, and that such homology could become a basis for improving network performance.473

Second, translation invariance, seen as critical for robust visual representation, has not been474

systematically quantified for units within artificial networks. Determining why deeper layers in the475

network maintain a wide diversity of TI across units could be important for understanding how476

categorical representations are built. More generally, the art of characterizing units within complex477

systems using simple metrics and systematic stimulus sets, as practiced by electrophysiologists,478

can provide a useful way to interpret the representations learned in deep nets, thereby opening the479

black box to understand how learned representation contributes to performance.480

Further work481

Our findings are consistent with the hypothesis that some CNN units share a representation of482

shape in common with V4 that is captured by the APC model. Examining whether these CNN483

units demonstrate additional V4 properties, beyond those examined here, would further test this484

hypothesis. For example, curvature-tuned V4 cells have been shown to (1) have some degree of485

scale invariance (El-Shamayleh and Pasupathy, 2016), (2) suppress the representation of accidental486

contours, e.g., those resulting from occlusion that are unrelated to object shape (Bushnell et al.,487

2011), (3) be robust against partial occlusions of certain portions of shape (Kosai et al., 2014), and488

(4) maintain selectivity across a spectrum of color (Bushnell and Pasupathy, 2012). Further studies489

like these are needed to more deeply probe whether the intermediate representation of shape and490

objects in the brain is similar to that in artificial networks. In addition to further study of functional491

response properties, it is important to understand how the network achieves these representations.492

For example, translation invariance was a key response property that allowed the trained network493

to achieve a V4-like representation, yet we are just beginning to understand what aspects of kernel494

weights, receptive field overlap, and convergence are critical to matching the physiological data.495

For CNNs to be valuable models of the nervous system, it will be important to understand what496

network properties support their ability to match representations observed in vivo.497

Methods and Materials498

The convolutional neural network499

We used an implementation of the well-known CNN referred to as “AlexNet,” which is available from500

the Caffe deep learning framework (http://caffe.berkeleyvision.org; Jia et al., 2014). Its architecture501

(Figure 2) is purely feed forward: the input to each layer consists solely of the output from the502

previous layer. The network can be broken down into 8 major layers (Figure 2A, left column), the503

first five of which are called convolutional layers (Conv1 through Conv5) because they contain linear504

spatial filters with local support that are repeatedly applied across the image. The last three layers505

are called fully connected (FC6 through FC8) because they receive input from all units in the previous506

layer. We next describe in detail the computations of the first major layer, which serves as a model507

to understand the later layers.508

The first major convolutional layer consists of four sublayers (Figure 2A, orange, and Figure 2C-F,509
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top 4 rows). The first sublayer, Conv1, consists of 96 distinct linear filters (shown in Figure 1) that510

are spatially localized to 11 x 11 pixel regions and that have a depth of three, corresponding to511

the red, green and blue (RGB) components of the input color images. The input images used for512

training and testing are 227 x 227 (spatial) x 3 (RGB) pixels. The output of a Conv1 unit is its linear513

filter output minus a bias value (a constant, not shown). Conv1 has a stride of 4, meaning that514

neighboring units have filters that are offset in space by 4 pixels. The output of each Conv1 unit515

is processed by a rectified linear unit in the second sublayer, Relu1, the output of which is simply516

the half-wave rectified value of Conv1. These values are then pooled by units in the third sublayer,517

Pool1, which compute the maximum over a 3 x 3 pixel region (Figure 2A, gray triangles) with a stride518

of 2. The outputs of the Pool1 units are then normalized (see below) to become the outputs of519

units in the fourth sublayer, Norm1. These normalized outputs are the inputs to the Conv2 units520

in the second major layer, and so on. Figure 2A shows a scale diagram of the spatial convergence521

in the convolutional layers (major layers are color coded) along one spatial dimension. Starting at522

the top, the 11 x 11 pixel kernels (orange triangles) sample the image every 4 pixels, reducing the523

spatial representation to a 55 x 55 element grid (Figure 2A, column 4, lists spatial dimensions). The524

Pool1 layer reduces the representation to 27 x 27 because of its stride of 2. The Conv2 unit linear525

filters are 5 x 5 in space (red triangles) and are 48 deep (not depicted), where the depth refers to526

the number of unique kernels in the previous layer that provide inputs to the unit (see Krizhevsky527

et al., 2012, for details and their Figure 2 for a depiction of the 3D kernel structure).528

These operations continue to process and subsample the representation until, after Pool5, there529

is a 6 x 6 spatial grid that is 256 kernels deep. Given the convergence between layers, the maximum530

possible receptive field (RF) size (i.e., extent along either the horizontal or vertical dimension) for531

units in each convolutional layer ranges from 11 to 163 pixels (Figure 2B) for Conv1 to Conv5,532

respectively. For example, the pyramid of support is shown for the central Conv5 unit (Figure 2A,533

dark blue triangle shows tip of upside-down pyramid), which has access to the region of width534

163 pixels covered by Conv1 kernels (orange triangles). The receptive field sizes of units in the FC535

layers are unrestricted (not shown in Figure 2B). The last major layer, FC8, has a Prob8 sublayer536

that represents the final output in terms of the probability that the visual input contains each of537

1000 different categories of object (e.g., Dalmation, Lampshade, etc.; see Krizhevsky et al., 2012, for538

details).539

Units in the Norm1 and Norm2 sublayers carry out local response normalization by dividing540

their input value by a function (see Krizhevsky et al., 2012, their section 3.3) of the sum of squared541

responses to 5 consecutive kernels (indices from +2 to -2) along the axis of unique kernel indices542

(e.g., in Conv1, the indices go from 0 to 95 for the filters shown in Figure 1, from the upper left543

towards the right and down), thereby creating inhibition among kernels. Figure 2D (bottom row)544

lists the total number of units with unique kernels in each layer, and this defines the number of545

units that we examine here. In the Conv layers, we only test the units that lie at the central spatial546

position because they perform the same computation as their spatially offset counterparts. We547

analyzed a total of 22,096 units. To identify units for reproducibility in future studies, we refer to548

units by their layer name (e.g., Conv1) and a unit number, where the unit number is the index,549

starting at zero, within each sublayer and proceeding in the order defined in Caffe.550

We tested the network in two states: untrained and fully trained. The untrained network has551

all weights (i.e., values within the convolutional kernels and input weights for FC layers) initialized552

to Gaussian random values with mean 0 and SD 0.01, except for FC6 and FC7 where SD=0.005,553

and all bias values initialized to a constant of 0 (Conv1, Conv3, FC8) or 1 (Conv2, Conv4, Conv5,554

FC6, FC7). These initial bias values are relatively low to minimize the number of unresponsive555

units, which in turn guarantees a back propagation gradient for each unit during training. The fully556

trained network (available from Caffe) has been trained with stochastic gradient descent on large557

database of labeled images, ImageNet (Deng et al., 2009), with the target that the final sublayer,558

Prob8, has value 0 for all units except for a value of 1 for the unit corresponding to the category of559

the currently presented training image. To speed up training and mitigate overfitting, an elaborate560
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training procedure was used that included a number of heuristics described in detail in Krizhevsky561

et al. (2012).562

Visual stimuli563

Our stimulus set (Figure 3A) is that used by Pasupathy and Connor (2001) to assess tuning for564

boundary curvature in V4 neurons. The set consists of 51 different simple closed shapes that565

are presented at up to 8 rotations (fewer rotations for shapes with rotational symmetry), giving566

a total of 362 unique stimulus images. We rendered the shapes within a 227 by 227 pixel field567

with RGB values set to the same amplitude, thus creating an achromatic stimulus. The background568

value was 0, and the foreground amplitude was varied up to 255, the maximum luminance. This569

format matched the size and amplitude of the JPEG images on which the CNN was originally trained.570

The center of each shape was taken to be the centroid of all points on the finely sampled shape571

boundary. We fixed the foreground amplitude to 255 after varying it to lower values and finding that572

it made little difference to the response levels through the network because of the normalization573

layers (see Results).574

We set the size of our stimuli to be 32 pixels, meaning that the largest shape, the large circle575

(Figure 3A second shape from upper left), had a diameter of 32 pixels and all stimuli maintained576

the relative scaling shown in Figure 3A. This ensured the stimuli fit within the calculated RF of all577

layers except Conv1 with additional room for translations (see Maximum RF size, Figure 2B) and578

allowed all layers to be compared with respect to the same stimuli. We excluded Conv1 from our579

analysis because fitting the stimuli within the 11 by 11 pixel RFs would corrupt their boundary580

shape, would not allow room for testing translation invariance, and Conv1 is of less interest because581

of its simple function. In the V4 electrophysiological experiments of Pasupathy and Connor, stimuli582

were sized proportionally to each neuronal RF, as it can be difficult to drive a cell with stimuli that583

are much smaller than the RF. We tested sizes larger than 32 pixels (see Results) and found it did584

not substantially change our results.585

Electrophysiological data586

For comparison to the deep network model, we re-analyzed data from two previous single-unit,587

extracellular studies of parafoveal V4 neurons in the awake, fixating rhesus monkey (Macaca588

mulattta). Data from the first study, Pasupathy and Connor (2001), consists of the responses of589

109 V4 neurons to the set of 362 shapes described above. There were typically 3-5 repeats of each590

stimulus, and we used the mean firing rate averaged across repeats and during the 500 ms stimulus591

presentation to constrain a model of tuning for boundary curvature in V4 (Figure 3C). To constrain592

translation invariance, we used data from a second study, El-Shamayleh and Pasupathy (2016),593

because the first study used only two stimuli (one preferred and one antipreferred) to coarsely594

assess translation invariance. The data from the second study consists of responses of 39 neurons595

tested for translation invariance. The stimuli were the same types of shapes as the first study, but596

where the position of the stimuli within the RF was also varied. Each neuron was tested with up to597

56 shapes (some of which are rotations of others) presented at 3-5 positions within the receptive598

field. Each unique combination of stimulus and RF position was presented for 5-16 repeats, and599

spike counts were averaged over the 300 ms stimulus presentation. Experimental protocols for600

both studies are described in detail in the original publications.601

Response sparsity602

While many units in the CNN responded well to our shape set, there were also many units, particu-603

larly in the rectified (Relu) sublayers, that responded to very few or none of our shape stimuli. It604

was important to identify the very sparse responding units because they could bias our comparison605

between the CNN units and V4 neurons. We quantified response sparsity using the fourth moment,606
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kurtosis (Field, 1994),607

K = 1
n

n
∑

i

(xi − x̄)4

�4
, (1)

where xi is the response to the ith stimulus, n is the number of stimuli, and x̄ and � are the mean608

and SD of the response across stimuli. This metric works for both non-negative and signed random609

variables, thus covering the outputs of all layers of the CNN. We excluded CNN units where response610

sparsity was outside the range observed in V4: 2.9 to 42 (Figure 4, supplement 1; see Results). We611

also found that such units gave degenerate fits to the APC model.612

Placing stimuli in the classical receptive field613

In keeping with neurophysiology, we defined the classical receptive field (CRF) of a CNN unit as614

the region of the input from which our stimuli can elicit a response different from baseline, where615

baseline is defined as the response to the background input (all zeros). For example, to determine616

the horizontal extent of the CRF of a unit, we started with our stimulus set centered (in x and y) on617

the spatial location of the unit and determined whether there was a driven response (deviation618

from baseline) to any stimulus. We then moved the stimulus set left and right to cover a 100 pixel619

span in 2 pixel increments to find the longest set of contiguous points from which any response620

was elicited at each point. In other words, stimuli were centered on pixels ranging from 64 to 164 in621

the 227 pixel wide image. To account for the finite width of the stimuli, we subtracted the maximum622

stimulus width from the length of the contiguous response region and added one to arrive at the623

estimated extent of the CRF in pixels along the horizontal axis. Any unit with a CRF wide enough to624

contain three 2-pixel translations of our stimulus set was included in our analyses. Generally, this625

provided a conservative estimate of the receptive field, because most stimuli were narrower than626

the maximal-width stimulus, as observed in Figure 3A.627

All analyses and plots of responses to translated shapes were made with respect to horizontal628

shifts of our vertically centered shape set. To verify that our conclusions did not depend on testing629

only horizontal shifts, we recalculated our metrics for vertical shifts and found them to be strongly630

correlated with those for horizontal shifts (Figure 7, supplement 1).631

The APC model632

Our study focuses on the ability of CNN units to display a particular physiological property of V4633

neurons—tuning for boundary conformation—which has been modeled using the angular position634

and curvature (APC) model introduced by Pasupathy and Connor (2001). Conceptually, APC tuning635

refers to the ability of a neuron to respond selectively to simple shape stimuli that have a boundary636

curvature feature (a convexity or concavity) at a particular angular position with respect to the637

center of the shape. Unlike the CNN, the APC model does not operate on raw image pixel values,638

but instead on the carefully parameterized curvature and angular position of diagnostic elements639

of the boundaries of simple closed shapes (see example shape, Figure 3B). Each boundary element640

along the border of a shape can be mapped to a point in a plane heretofore referred to as the APC641

plane (Figure 3C). The responses, Ri, of a unit to the ith shape is given by:642

Ri = k max
j

[

exp

(

−(ci,j − �c)2

2�2
c

)

exp

(

−(ai,j − �a)2

2�2
a

)]

, (2)

where the expression inside the square brackets is the product of two Gaussian tuning curves, one643

for curvature with mean �c and SD �c , and one for angular position with mean �a and SD �a. The644

curvature axis extends from -1 (sharp concavity) to +1 (sharp convexity), and the angular position is645

defined with respect to the center of the shape. The j th curvature value of the ith shape is encoded646

as ci,j and the angular position of that curvature element is ai,j . The factor k is a scaling constant.647

The max over these boundary elements is taken, thus the response depends only on the most648

preferred feature. In the original study (Pasupathy and Connor, 2001), these parameters were649
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fit using a gradient descent method, the Gauss-Newton algorithm, from a grid of starting points650

across the APC plane. We instead discretely sampled the parameter space taking the Cartesian651

product of 16 values of �c , �c , �a and �a, where the means were linearly spaced, the SDs were652

logarithmically spaced, and the end-points were set to match the range of values observed for the653

V4 cells when fit by the original Gauss-Newton method (�c ∈ [−0.5, 1], �c ∈ [0.01, 0.98], �a ∈ [0◦, 338◦]654

and �a ∈ [23◦, 171◦]). We defined the best-fit model to be that which maximized Pearson’s correlation655

coefficient between observed and predicted responses. We then found k using a least squares fit.656

We found this to be more rapid, and the median correlation of the original V4 neurons to be the657

same to two decimal places as the Gauss-Newton fits (0.48), and had the assurance that the same658

models were tested on all units. We used Pearson’s correlation coefficient two-tailed p-value to test659

for significance.660

Measuring translation invariance661

To visualize translation invariance we created position-correlation functions by plotting the r-value662

of responses between a reference and an offset location as a function of distance (e.g., Figure 6B663

and E-J, red). To compare the fall-off in correlation to the fall-off in the RF profile (e.g., Figure 6E-J,664

green) of the CNN unit, we computed an aggregate firing rate metric—the square root of the sum665

of the squared responses across the stimulus set at each spatial position. For CNN units, this was666

used rather than the mean firing rate because responses could be positive or negative.667

To quantify translation invariance in neuronal and CNN unit responses, we defined a metric, TI,668

that can be thought of as a generalization of the correlation coefficient. The correlation coefficient,669

r =
Cov(p⃗1, p⃗2)

SD(p⃗1) SD(p⃗2)
, (3)

which is bounded between -1 and 1, measures how similar the response pattern is across two670

locations, where p⃗1 and p⃗2 are vectors containing the responses to all stimuli at positions 1 and 2.671

Our TImetric is,672

TI =
∑

i≠j Cov(p⃗i, p⃗j)
∑

i≠j SD(p⃗i) SD(p⃗j)
, (4)

where the sums are taken over all unique pairs of locations, and p⃗i is the mean-subtracted column673

of responses at the ith RF position. The numerator is the sum of the non-diagonal entries in the674

covariance matrix of the responses, and the denominator is the sum of the products of each675

corresponding pair of SDs. Thus, this metric is also bounded to lie between -1 and 1, but it has an676

advantage over the average r-value across all unique pairs of locations because the latter would677

weight the r-value from RF locations with very weak responses just the same as those with very678

strong responses. For a simple model of neuronal translation invariance in which the variations679

of responses are described as the product of a receptive field profile and a shape selectivity680

function, our TImetric would take its maximum possible value, 1. If responses at all positions were681

uncorrelated, it would be 0.682

We also evaluated an alternative metric, the separability index (Mazer et al., 2002; Hinkle and683

Connor, 2002) based on the singular value decomposition of the response matrix, but we found684

that it was biased to report higher translation invariance values for response matrices that reflected685

tuning that was more confined in space (i.e., smaller RF sizes) or more limited to a small range of686

shapes (i.e., higher shape selectivity). According to our simulations, our TImetric has the benefit of687

being unbiased with respect to receptive field size or selectivity of our response matrices, thereby688

facilitating comparisons across layers and diverse response distributions.689

In testing the CNN, we finely sampled horizontal shifts of the stimulus set, as described above690

in “Placing stimuli in the CRF”. The TI metric for any neuron was computed only for the set of691

contiguous locations for which the entire shape set was within the RF of the unit.692
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Comparing CNN and APC model fits to V4 data693

We examined whether the CNN units might directly provide a better fit to the V4 neural responses694

than does the APC model. This required us to compare, for each of the 109 V4 units, the best-fit695

unit in the pool of CNN units to the best fit provided by the APC model. In the case of the CNN,696

there are 22,096 units to consider (Figure 2D). In the case of the APC model, there are 5 parameters697

(see "The APC model" above). We employed cross-validation to ensure that any differences in fit698

quality were not the result of one fitting procedure being more flexible than the other. In particular,699

we performed 50 fits on a random subset of 4/5 of the neural data, then measured the correlation700

of the fit model on the remaining 1/5. We took the mean of these 50 fits for each unit to be the701

estimate of test correlation, and the 95th percentiles of the distribution of fits for identifying cells702

that deviate in their fit quality between two models (e.g., APC model and the CNN). To judge whether703

the variance explained by the CNN was largely distinct from that explained by the APC model we fit704

a V4 neurons best-fit CNN model to the residual of the fit of the APC model to a V4 neuron. If the705

correlation of the CNN unit to the V4 neuron remains high then the APC model and CNN explain706

different features of the response of the V4 neuron.707

Estimating the effect of the stochastic nature of neuronal responses708

AlexNet produces deterministic, noise-free responses, whereas the responses of V4 neurons are709

stochastic. This raises the possibility that our conclusions might have been different if more trials710

of V4 data had been collected to reduce the noise in the estimates of the mean neuronal responses.711

In particular, trial-to-trial variability will tend to lower the correlation coefficient (r-value) between712

model and data.713

To address this, we used the methods of Haefner and Cumming (2009) to remove the downward714

bias that trial-to-trial variability imparts on the r-value for our fits of the APC model to neuronal data.715

The method of Haefner and Cumming assumes that the neural responses have been appropriately716

transformed to have equal variance across stimuli and that the averaged responses for each717

stimulus are normally distributed. For the case where the variance-to-mean relationship is, �2(�) =718

a�, where � is the mean response and a is a constant (i.e., Fano factor is constant across firing rates),719

an often used transformation is the square root of the responses. Empirically, we have found that720

this transformation works well even when neural responses have a quadratic variance-to-mean721

relationship. After taking the square root of the responses, we estimated sample variance for each722

stimulus across trials and then averaged across stimuli to get s̄2. We made a least-squares fit of the723

model to the centered mean responses (grand mean subtracted from the mean for each stimulus).724

We then calculated the corrected estimate of explained variance:725

R̂2
c =

�̂2 − s̄2

n

�̂2 + �̂2 − s̄2

n
(m − 1)

, (5)

where �̂2 is the sum of squares of the model predictions (explained variance), �̂2 is the sum of726

squares of the residuals from the model (unexplained variance), s̄2 is sample variance across trials,727

averaged for all stimuli, m is the number of stimuli, and n is the number of trials.728

We used a different approach to estimate how much our TI metric for V4 neurons might be729

degraded by noise because TI is not a correlation coefficient and does not lend itself to the methods730

described above. In particular, for each V4 neuron tested with stimuli at multiple positions, we built731

an ideal model with perfect TI by taking the responses at the position that produced the greatest732

response and replicating them at the other positions, but scaling them to match the original mean733

at each RF position. We then used this set of sample means, which has TI = 1, to generate Poisson734

responses, simulating the original experiment 100 times and computing the TI value for each case.735

We took the average drop in TI (compared to 1) to be an estimate of the upper bound of how much736

the V4 neuron TI values could have been degraded by noise.737
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Visualization738

To visualize the features that drove a particular unit in the CNN to its highest and lowest response739

levels, we first ranked all images (or image patches) based on the response of the unit to the740

standard test set of 50,000 images for AlexNet. For units in the convolutional layers, we considered741

the responses at all x-y locations for a particular unique kernel. Thus, we found not just the optimal742

image, but also the optimal patch within the image that drove the kernel being examined. We743

then performed a visualization technique on the 10 most excitatory images and on the 10 most744

suppressive images. We followed the methods of Zeiler and Fergus (2013), and used a deconvnet745

to project the response of the unit onto successive layers until we reached the input image. The746

deconvolved features can then be examined, as an RGB image, to provide a qualitative sense of747

what features within the image drove the unit to such a large positive or negative value.748
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Figure 1. The 96 kernels (11 x 11 pixels, by 3 color channels) of the 1st layer, Conv1, of the AlexNet model tested here. Like many V1 receptive

fields, many of these kernels are band-limited in spatial frequency and orientation. Each kernel was independently scaled to maximize its RGB

dynamic range to highlight spatial structure.
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Figure 2. See below for legend.
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Figure 2. Architecture of the Caffe AlexNet CNN. (A) A one-dimensional scale view of the fan-in and spatial resolution of units

for all 21 sublayers, aligned to their names listed in column (C). The color-filled triangles in convolutional (Conv) layers indicate

the fan-in to convolutional units, gray triangles indicate the fan-in to max pooling units, and circles (or ovals) indicate the spatial

positions of units along the horizontal dimension. For the Conv layers and their sublayers, each circle in the diagram represents

the number of unique units listed in column (D). For example, for each orange circle/oval in the four sublayers associated with

Conv1, there are 96 different units in the model (the Conv1 kernels are depicted in Figure 1). The 227 pixel wide input image

(top, yellow), is subsampled at the Conv1 sublayer (orange; “stride 4” indicates that units occur only every 4 pixels) and again at

each pooling sublayer (“stride 2”), until the spatial resolution is reduced to a 6 x 6 grid at the transition from Pool5 to FC6. The

pyramid of support converging to the central unit in Conv5 (dark blue triangle) is indicated by triangles and line segments starting

from Conv1. Each unit in layers FC6, FC7 and FC8 (shades of green; not all units are shown) receives inputs from all units in the

previous layer (there is no spatial dimension in the FC layers, units are depicted in a line only for convenience). Green triangles

indicate the full fan-in to three example units in each FC layer. (B) The maximum width (in pixels) of the RFs for units in the five

convolutional layers (colors match those in (A)) based on fan-in starting from the input image. For the FC layers, the entire image is

available to each unit. (C) Names of the sublayers, aligned to the circuit in (A). Names in bold correspond to the eight major layers,

each of which begins with a linear kernel (colorful triangles in (A)). (D) The number of unique units, i.e., feature dimensions, in

each sublayer (double quotes repeat values from previous row). (E) The width and height of the spatial (convolutional) grid at

each sublayer, or “1” for the FC layers. The total number of units in each sublayer can be computed by multiplying the number of

unique kernels (D) by the number of spatial positions (E). (F) The kernel size corresponds to the number of weights learned for

each unique linear kernel. Pooling layers have 3 x 3 spatial kernels but have no weights—the maximum is taken over the raw

inputs. The Conv2 kernels are only 48 deep because half of the Conv2 units take inputs from the first 48 feature dimensions in

Conv1, whereas the other half take inputs from the last 48 Conv1 features; inputs are similarly grouped in Conv4 and Conv5 (see

Krizhevsky et al.’s Fig. 2). The bottom row provides totals. In addition to the weights associated with each kernel, there is also one

bias value per kernel (not shown), which adds 10,568 free parameters to the ∼60.9 million unique weights.
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Figure 3. The angular position and curvature (APC) model and associated stimuli. (A) The set of 51 simple closed shapes from Pasupathy and

Connor (2001). Shapes are shown to relative scale. Shape size, given in pixels in the text, refers to the diameter of the big circle (top row, 2nd shape

from the left). Each shape was shown at up to eight rotations as dictated by rotational symmetry, e.g., the small and large circles (upper left) were

only shown at one rotation. This yielded a set of 362 unique shape stimuli. Stimuli were presented as white-on-black to the network (not as shown

here). (B) Example shape with points along the boundary (red circles) indicating where angular position and curvature values were included in the

APC model. (C) Points from the example shape in (B) are plotted in the APC plane where x-axis is angular position and y-axis is normalized

curvature. Note the red circle furthest to the left at 0° angular position and negative curvature corresponds to the concavity at 0° on the example

shape in (B). A schematic APC model is shown (ellipse near center of diagram) that is a product of Gaussians along the two axes. This APC model

would describe a neuron with a preference for mild concavities at 135°.
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Figure 4. Response distributions for shapes and natural images in representative CNN layers. In each panel, the frequency distribution of the

response values across all unique units in a designated CNN sublayer is plotted for four stimulus sets: our standard shape set (red; size 32 pixels,

stimulus intensity 255, see Methods), larger shapes (cyan; size 64 pixels, intensity 255), dimmer shapes (green; intensity 100, size 32 pixels) and

natural images (dark blue). Natural images (n = 362, to match the number of shape stimuli) were pulled randomly from the ImageNet 2012

competition validation set. From top to bottom, panels show results for selected sublayers: Conv1, Relu1, Norm1, Conv2, FC6 and Prob8 (Figure 2C

lists sublayer names). The number of points in each distribution is given by the number of stimuli (362) times the number of unique units in the

layer (Figure 2D). The vertical axis is log scaled as most distributions have a very high peak at 0. For Conv1, standard shapes drove a wider overall

dynamic range than did images because of the high intensity edges that aligned with parts of the linear kernels (Figure 1). This was not the case for

larger shapes because they often over-filled the small Conv1 kernels. For Relu1, negative responses are removed by rectification after a bias is

added. At Conv2, there is little difference between the four stimulus sets on the positive side of the distribution. This changes from FC6 forward,

where natural images drive a wider range of responses. For Prob8, natural images (dark blue line) sometimes result in high probabilities among the

1000 categorical units, whereas shapes do not.

Figure 4–Figure supplement 1. Sparsity of CNN and V4 unit responses to shape stimuli (see end of document).
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Figure 5. See below for figure legend.
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Figure 5. Boundary curvature selectivity for CNN units compared to V4 neurons. (A) APC model prediction vs. CNN unit response

for an example CNN unit from an early layer (Conv2-113). (B) The top and bottom eight shapes sorted by response amplitude

(most preferred shape is at upper left, least at lower right) reveal a preference for convexity to the upper left (such a feature is

absent in the non-preferred shapes). This is consistent with the APC fit parameters, �c = 1.0, �c = 0.53, �a = 135°, �a = 23°. (C)
Predicted vs. measured responses for another well-fit example CNN unit (FC7-3591) but in a later layer. (D) Top and bottom eight

shapes for example unit in (C). The APC model fit was �c = −0.1, �c = 0.15, �a = 112°, �a = 44°. (E)Model prediction vs. neuronal
mean firing rate (normalized) for the V4 neuron (a1301) that had the highest APC fit r-value. (F) The top eight shapes (purple) all

have a strong convexity to the left, whereas the bottom eight (cyan) do not. The APC model fit was �c = 1.0, �c = 0.39, �a = 180°,
�a = 23°. (G) The cumulative distributions (across units) of APC r-values are plotted for the first sublayer of each major CNN layer
(boldface names in Figure 2C) from Conv1 (black) to FC8 (lightest orange). The other sublayers (distributions not shown for clarity)

tended to have lower APC r-values but the trend for increasing APC r-value with layer was similar. For comparison, red line shows

cumulative distribution for 109 V4 neurons (Pasupathy and Connor, 2001), and pink line shows V4 distribution corrected for

noise (see Methods). (H) The cumulative distribution of r-values for the APC fits for all CNN units (black), CNN units with shuffled

responses (green), units in an untrained CNN (blue) and V4 (red and pink). The far leftward shift of the green line shows that fit

quality deteriorates substantially when the responses are shuffled across the 362 stimuli within each unit.
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Figure 6. Translation invariance as a function of position across the RF. (A) For an example neuron from the V4 study of El-Shamayleh and

Pasupathy (2016), the responses to stimuli shifted away from the RF center by 1/6 of the estimated RF size are plotted against those placed in the

RF center. The overall response magnitude decreases with shift, but a strong linear relationship is maintained between responses at the two

positions. (B) In green, the RF profile of the same neuron from (A) is plotted (average response at each position). In red, the correlation of the

responses at each position with the responses at RF center. (C) For unit Conv2-113, responses to stimuli shifted 6 pixels to the right are plotted

against responses for centered stimuli. (D) For the same unit in (C), responses for stimuli shifted 14 pixels to the left vs. responses for centered

stimuli. (E) For unit Conv2-113, the position-correlation function is plotted in red. The RF profile, i.e., the normalized response magnitude (square

root of sum of squared responses) across all shapes is plotted in green. The region over which TI is measured, where all stimuli are wholly within

the CRF (see Methods), is within dotted lines bookending horizontal black bar. The unit is less translation invariant because it continues to have a

large response even when correlation drops quickly from center. This is reflected in the lower TI score of 0.7. (F) The averages of the correlation

and RF profiles across all units in the Conv2 layer show that correlation drops offmuch more rapidly than the RF profile. (G) Same as in (E) but for a

unit in the 4th convolutional layer (Conv4-369). There is a broadened correlation profile compared to the Conv2 unit. (H) For Conv4, the average

position-correlation function (red) has a wider peak than that for Conv2, more closely matching the shape of the average RF profile (green). It also

has serrations that occur 8 pixels apart, which corresponds to the pixel stride (discretization) of Conv2 (Figure 2A; see Methods). (I) The

shape-tuned example unit FC7 3591 (Figure 5C) in the final layer is highly translation invariant (TI=0.89). (J) The response profile and correlation

stay high across the center of the input field on average across units in FC7.
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Figure 7. Cumulative distributions of the TImetric for the CNN and V4. (A) The cumulative distributions (across units) of TI are plotted for the first

sublayer of each major CNN layer (boldface names in Figure 2C) from Conv2 (black) to FC8 (lightest orange). There is a clear increase in TImoving

up the hierarchy. The TI distribution for V4 is plotted in red, and an upper bound for noise correction is plotted in pink (see Methods). The other

sublayers (distributions not shown for clarity) tended to have lower TI values but the trend for increasing TI with layer was similar. (B) The

cumulative distribution of TI across layers in the untrained CNN. There is a large shift toward lower TI values in comparison to the trained CNN

(faint grey and red and pink lines reproduce traces from panel A).

Figure 7–Figure supplement 1. Consistency of TI across sampling directions (see end of document).
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Figure 8. Summary of the similarity of CNN units to V4 neurons in terms of translation invariance (TI) and fit to the APC model. For 100 randomly

selected CNN units from Conv2 (brown) and FC7 (orange), APC r-value is plotted against TI. The hypothetical highest scoring V4 unit (red ×) is the
combination of the highest TI score and the highest APC fit from separate V4 data sets (0.97, 0.80). The highest scoring unit in the CNN (FC7-3591,

from Figure 5C, Figure 6I and Figure 12C) is indicated by the orange star (0.91, 0.77) and is close to the hypothetical best V4 unit. The red lines

indicate the mean V4 values along each axis, not including any correction for noise (see Figures 5 and 7 for estimated noise correction, pink lines).
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Figure 9. Visualization of APC-like units in layer Conv2. (A) For unit Conv2-113, the 5 most excitatory image patches are indicated by red squares

superimposed in the raw images (top row, left side, from left to right). The size of the red square corresponds to the maximal extent of the image

available to Conv2 units (see Figure 2B). In corresponding order, the five deconvolved features are shown at the upper right, with a 3x scale

increase for clarity. The blank rectangular region at the right side of the second feature indicates that this part of the unit RF extended beyond the

input image (such regions are padded with zero during response computation). For the same unit, the lower row shows the 5 most suppressive

image patches and their corresponding deconvolved features. We examined the top 10 most excitatory and suppressive images, and for all

examples in this and subsequent figures, they were consistent with the top 5. Below the natural images are the top 5 and bottom 5 shapes (white

on black background) in order of response from highest (at left) to lowest (at right). Shapes are shown at 2x scale relative to images, for visibility.

(B) Same format as (A), but for unit Conv2-108. (C) Same format as (A), but for unit Conv2-126. In all examples, the most suppressive features

(bottom row in each panel) tend to run orthogonal to, and at the same RF position, as the preferred features (top row in each panel) For APC fit

parameters, see Table 1 in Results text. The un-redacted input image thumbnails were accessed via the ImageNet database and the original image

URLs can be found through this site (http://image-net.org/about-overview). These thumbnails may be subject to copyright. They are not available

under CC-BY and are exempt from the CC-BY 4.0 license.
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Figure 10. Visualization of APC-like units in layers Conv3 to Conv5. (A) Visualization for unit Conv3-156, using the same format as Figure 9.

Deconvolved features are scaled by 1.8 for visibility. (B) Same as (A), for unit Conv3-020. (C) Same for unit Conv5-161, but deconvolved features are

scaled by 1.15. (D) Same as (C), but for unit Conv5-144. For APC fit parameters, see Table 1 in main text. The un-redacted input image thumbnails

were accessed via the ImageNet database and the original image URLs can be found through this site (http://image-net.org/about-overview). These

thumbnails may be subject to copyright. They are not available under CC-BY and are exempt from the CC-BY 4.0 license.

32 of 35

Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond


Susanna Richmond




Manuscript submitted to eLife

Figure 11. Visualization of APC-like units: circle detectors. These examples are representative of many units that were selective for circular forms.

(A) Unit Conv3-334 was selective for a wide variety of circular objects near its RF center and was suppressed by circular boundaries entering its RF

from the surround. Deconvolved feature patches are scaled up by 1.8 relative to raw images. (B) Unit Conv4-203 was also selective for circular

shapes near the RF center, but showed category specificity for vehicle wheels. Suppression was not category specific but was, like that in (A), related

to circular forms offset from the RF center. The higher degree of specificity in (B) is consistent with this unit being deeper than the example in (A).

Deconvolved features are scaled by 1.4 relative to raw images. APC fit parameters are given in Table 1. The un-redacted input image thumbnails

were accessed via the ImageNet database and the original image URLs can be found through this site (http://image-net.org/about-overview). These

thumbnails may be subject to copyright. They are not available under CC-BY and are exempt from the CC-BY 4.0 license.
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Figure 12. Visualization of APC-like units in the FC layers. (A) For unit FC6-3030, the top five images from the test set are shown above their

deconvolved feature maps. The maximal RF for all FC units includes the entire image. At bottom, the top five shapes are shown in order from left

to right, followed by the bottom 5 shapes such that the shape associated with the minimum response is the rightmost. For visibility, shapes are

shown here at twice the scale relative to the images. (B) For unit FC7-3192, same format as (A). (C) For unit FC7-3591, same format as (A). (D) For

unit FC7-3639, same format as (A). (E) For unit FC8-271, same format as (A), except the category of this output-layer unit is indicated as "Red wolf."

(F) For unit FC8-433, same format as (E). (G) For unit FC8-722, same format as (E). See Table 1 for APC fit values for all units. The un-redacted input

image thumbnails were accessed via the ImageNet database and the original image URLs can be found through this site

(http://image-net.org/about-overview). These thumbnails may be subject to copyright. They are not available under CC-BY and are exempt from the

CC-BY 4.0 license.
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Figure 13. Comparing the maximum responses driven by images to those driven by shapes for APC-like units. For a given CNN unit, we computed

the ratio of the maximum response across natural images (50,000 image test set) to the maximum response across our set of 362 shapes. The

average of this ratio across the top ten APC-like units in each of seven layers (Conv2 to FC8) is plotted. Error bars show SD. In a few cases, the

maximum response to shapes was a negative value and these cases were excluded: one unit for Conv3 and two for FC6 and FC7.

Figure 14. Comparing the ability of the APC model vs. single CNN units to fit V4 neuronal data. Showing r-values for cross-validated fits from both

classes of model, black points correspond to V4 neurons for which neither model performed significantly better at predicting responses to the

shape set. The APC model provided a better fit for red points above the line of equality, whereas points below the line correspond to neurons for

which at least one unit within the trained CNN provided a better fit than any APC model.
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Figure 4–Figure supplement 1. Sparsity of CNN and V4 unit responses to shape stimuli. (A) The

distribution of K (kurtosis, Eqn. 1) for all 109 V4 neurons from Pasupathy and Connor (2001) was

skewed strongly to the left. Most V4 neurons have values clustered around the mean, 5.9 (SD

6.1), whereas a few outliers have high sparsity. (B) Distribution of K for all CNN units (black), and

separately for units in rectified layers (purple) vs. non-rectified layers (cyan). Note change in x-axis

and log y-axis compared to (A). Rectified layers include all Relu, Pool and Norm sublayers (they have

no negative responses); non-rectified layers include all Conv sublayers (Figure 2C). The substantial

peak at the maximal kurtosis value (K=362) corresponds to units with one non-zero response among

362 stimuli. There were no such extremely sparse-responding units in the non-rectified layers (cyan;

mean 4.1, SD 3.7), which had a K distribution that covered a range closer to that observed in (A) for

V4.
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Figure 7–Figure supplement 1. The consistency of translation invariance across sampling direc-

tions. Our tests of translation invariance are based on the TI metric measured for horizontal

shifts of the stimuli. High values of the TImetric are meant to indicate which units are generally

translation invariant, thus we examined whether a high score for shifts along one direction were

associated with a similar score along the orthogonal direction. (A) TImeasured for vertical shifts is

plotted against TI for horizontal shifts for all CNN units. Points with high TI values are more tightly

clustered near the line of equality than are points with lower TI values, indicating that a high TI

value measured for horizontal shifts tends to imply a high value for vertical shifts (r = 0.79). We
examined this relationship separately for each layer and found that early layers, for example Conv2

(B) contribute most of the highly scattered, low-TI points. As TI improves with deeper layers, the

points tend to cluster more tightly on the line of equality and move toward the upper right, as

shown for layers Conv5 (C), FC7 (D) and FC8 (E). Interestingly, high TI values in earlier layers are less

consistent across axes of translation than in later layers. Such inconsistency is an indication that, in

early layers, the selectivity can vary along one axis much more than it does along the other (e.g.,

a simple cell tuned for horizontal orientation has luminance selectivity that varies more strongly

in the vertical dimension than in the horizontal dimension). The consistency of TI values across

axes in later layers suggests that their selectivity is spatially more homogeneous. Overall, the high

correlation between TI along the x and y axes for units in all but the earliest layers suggests that

measuring TI in the x-direction can often be a useful shortcut for approximating the degree of

translation invariance without adding a second dimension to the stimulus set. Overall, we found

that our conclusions did not vary whether we measure TI in x, in y, or in both dimensions: units in

the early CNN layers had TI values lower on average than those found in V4, whereas units in the

deeper layers had TI values larger on average than those in V4.
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