Abstract

Self-organization of discrete fates in human gastruloids is mediated by a hierarchy of signaling pathways. How these pathways are integrated in time, and whether cells maintain a memory of their signaling history remains obscure. Here, we dissect the temporal integration of two key pathways, WNT and ACTIVIN, which along with BMP control gastrulation. CRISPR/Cas9-engineered live reporters of SMAD1, 2 and 4 demonstrate that in contrast to the stable signaling by SMAD1, signaling and transcriptional response by SMAD2 is transient, and while necessary for pluripotency, it is insufficient for differentiation. Pre-exposure to WNT, however, endows cells with the competence to respond to graded levels of ACTIVIN, which induces differentiation without changing SMAD2 dynamics. This cellular memory of WNT signaling is necessary for ACTIVIN morphogen activity. A re-evaluation of the evidence gathered over decades in model systems, re-enforces our conclusions and points to an evolutionarily conserved mechanism.

Data availability

Sequencing data have been deposited in GEO under accession code GSE111717.

The following data sets were generated

Article and author information

Author details

  1. Anna Yoney

    Laboratory of Stem Cell biology and Molecular Embryology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4988-9237
  2. Fred Etoc

    Laboratory of Stem Cell biology and Molecular Embryology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Albert Ruzo

    Laboratory of Stem Cell biology and Molecular Embryology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thomas Carroll

    Bioinformatics Resouce Center, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jakob J Metzger

    Laboratory of Stem Cell biology and Molecular Embryology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Iain Martyn

    Laboratory of Stem Cell biology and Molecular Embryology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Shu Li

    Laboratory of Stem Cell biology and Molecular Embryology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Christoph Kirst

    Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4867-5288
  9. Eric D Siggia

    Center for Studies in Physics and Biology, The Rockefeller University, New York, United States
    For correspondence
    siggiae@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7482-1854
  10. Ali H Brivanlou

    Laboratory of Stem Cell biology and Molecular Embryology, The Rockefeller University, New York, United States
    For correspondence
    brvnlou@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1761-280X

Funding

National Science Foundation (Graduate Research Fellowship DGE132526)

  • Anna Yoney

National Institute of General Medical Sciences (Research Project R01GM101653)

  • Eric D Siggia
  • Ali H Brivanlou

Eunice Kennedy Shriver National Institute of Child Health and Human Development (Research Project R01HD080699)

  • Eric D Siggia
  • Ali H Brivanlou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Yoney et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,562
    views
  • 1,006
    downloads
  • 65
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anna Yoney
  2. Fred Etoc
  3. Albert Ruzo
  4. Thomas Carroll
  5. Jakob J Metzger
  6. Iain Martyn
  7. Shu Li
  8. Christoph Kirst
  9. Eric D Siggia
  10. Ali H Brivanlou
(2018)
WNT signaling memory is required for ACTIVIN to function as a morphogen in human gastruloids
eLife 7:e38279.
https://doi.org/10.7554/eLife.38279

Share this article

https://doi.org/10.7554/eLife.38279

Further reading

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.