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Abstract The T cell receptor (TCR) repertoire encodes immune exposure history through the

dynamic formation of immunological memory. Statistical analysis of repertoire sequencing data has

the potential to decode disease associations from large cohorts with measured phenotypes.

However, the repertoire perturbation induced by a given immunological challenge is conditioned

on genetic background via major histocompatibility complex (MHC) polymorphism. We explore

associations between MHC alleles, immune exposures, and shared TCRs in a large human cohort.

Using a previously published repertoire sequencing dataset augmented with high-resolution MHC

genotyping, our analysis reveals rich structure: striking imprints of common pathogens, clusters of

co-occurring TCRs that may represent markers of shared immune exposures, and substantial

variations in TCR-MHC association strength across MHC loci. Guided by atomic contacts in solved

TCR:peptide-MHC structures, we identify sequence covariation between TCR and MHC. These

insights and our analysis framework lay the groundwork for further explorations into TCR diversity.

DOI: https://doi.org/10.7554/eLife.38358.001

Introduction
T cells are the effectors of cell-mediated adaptive immunity in jawed vertebrates. To control a broad

array of pathogens, massive genetic diversity in loci encoding the T cell receptor (TCR) is generated

somatically throughout an individual’s life via a process called V(D)J recombination. All nucleated

cells regularly process and present internal peptide antigens on cell surface molecules called major

histocompatibility complex (MHC). Through the interface of TCR and MHC, a T cell with a TCR hav-

ing affinity for a peptide antigen complexed with MHC (pMHC) is stimulated to initiate an immune

response to an infected (or cancerous) cell. The responding T cell proliferates clonally, and its prog-

eny inherit the same antigen-specific TCR, constituting long-term immunological memory of the anti-

gen. The diverse population of TCR clones in an individual (the TCR repertoire) thus dynamically

encodes a history of immunological challenges.

Advances in high-throughput TCR sequencing have shown the potential of the TCR repertoire as

a personalized diagnostic of pathogen exposure history, cancer, and autoimmunity (Thomas et al.,

2014; Kirsch et al., 2015; Friedensohn et al., 2017; Ostmeyer et al., 2017). Public TCRs—defined

as TCR sequences seen in multiple individuals and perhaps associated with a shared disease pheno-

type—have been found in a range of infectious and autoimmune diseases and cancers including

influenza, Epstein-Barr virus, and cytomegalovirus infections, type I diabetes, rheumatoid arthritis,
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and melanoma (Venturi et al., 2008; Li et al., 2012; Madi et al., 2017; Pogorelyy et al., 2017;

Dash et al., 2017; Glanville et al., 2017; Chu et al., 2018; Pogorelyy et al., 2018). By correlating

occurrence patterns of public TCRb chains with cytomegalovirus (CMV) serostatus across a large

cohort of healthy individuals, Emerson et al. identified a set of CMV-associated TCR chains whose

aggregate occurrence was highly predictive of CMV seropositivity (Emerson et al., 2017). Staining

with multimerized pMHC followed by flow cytometry has been used to isolate and characterize large

populations of T cells that bind to defined pMHC epitopes (Dash et al., 2017; Glanville et al.,

2017), providing valuable data on the mapping between TCR sequence and epitope specificity. We

and others have leveraged these data to develop learning-based models of TCR:pMHC interactions,

using TCR distance measures (Dash et al., 2017), CDR3 sequence motifs (Glanville et al., 2017) and

k-mer frequencies (Cinelli et al., 2017), and other techniques.

MHC proteins in humans are encoded by the human leukocyte antigen (HLA) loci and are among

the most polymorphic in the human genome (Robinson et al., 2015). Within an individual, six major

antigen-presenting proteins are each encoded by polymorphic alleles. The set of these alleles com-

prise the individual’s HLA type, which is unlikely to be shared with an unrelated individual and which

determines the subset of peptide epitopes presented to T cells for immune surveillance. Specificity

of a given TCR for a given antigen is biophysically modulated by MHC structure: MHC binding speci-

ficity determines the specific antigenic peptide that is presented, and the TCR binds to a hybrid

molecular surface composed of peptide- and MHC-derived residues. Thus, population-level studies

of TCR-disease association are severely complicated by a dependence on individual HLA type.

eLife digest The immune system has two major ways of clearing up an infection. A rapid, first

line of defense buys time while the second ‘adaptive’ response disposes of the threat with precision.

The adaptive response takes longer to develop but once it has dealt with a disease, it remembers:

the next time the body encounters the same threat, the immune system can respond much faster.

When cells are infected by a disease-causing microbe, like a bacterium or a virus, they start

carrying fragments of that microbe on their surface. Immune cells known as T cells then recognize

these fragments using proteins called T cell receptors. Each T cell has a different receptor, which is

specific to a precise fragment of a particular microbe. After successfully clearing an infection, some

of the T cells that were mobilized remain in the blood. These memory T cells, and their specific

receptors, are a lasting trace of the infections a person has encountered in the past.

The exact portion of the microbial fragments that the T cells receptors can ‘see’ depends on

another set of proteins, called MHC. These hold the fragments at the surface of the infected cells.

The genes that code for MHCs are incredibly diverse, to the point that the exact combination of

MHCs carried by a cell can be specific to an individual. However, different MHCs present different

microbial fragments, and this changes which receptor can recognize the infection. At the level of a

population, this mechanism makes it difficult to use T cell receptors to know exactly which diseases

people had to face.

Here, DeWitt et al. look at the T cell receptor sequences of 666 healthy participants, as well as

their MHC variants, to try to reconstruct their disease history. This revealed that many people have

clusters of similar T cells receptors sequences that occur together; these could be linked to

exposure to common viruses such as parvovirus, influenza, cytomegalovirus and Epstein-Barr virus.

Furthermore, examining 3D structures of T cell receptors binding to fragments carried by MHCs

helps to identify how changes in the sequence of the MHC can influence which receptor will be able

to attach to the complex.

These results show that, despite the diversity and complexity of T cell receptors and MHCs, it is

possible to spot patterns across people, and to start understanding how those patterns emerge. In

addition to fighting body invaders, T cells can also use their receptors to recognize certain protein

fragments carried by tumor cells. Improving our knowledge of T cell receptors and MHCs could give

new insights to fight cancer.

DOI: https://doi.org/10.7554/eLife.38358.002
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Here we report an analysis of the occurrence patterns of public TCRs in a cohort of 666 healthy

volunteer donors, in which information on only TCR sequence and HLA association guide us to infer-

ences concerning disease history. To complement deep TCRb repertoire sequencing available from

a previous study (Emerson et al., 2017), we have assembled high-resolution HLA typing data at the

major class I and class II HLA loci on the same cohort, as well as information on age, sex, ethnicity,

and CMV serostatus. We focus on statistical association of TCR occurrence with HLA type, and show

that many of the most highly HLA-associated TCRs are likely responsive to common pathogens: for

example, eight of the ten TCRb chains most highly associated with the HLA-A*02:01 allele are likely

responsive to one of two viral epitopes (influenza M158 and Epstein-Barr virus BMLF1280). We intro-

duce new approaches to cluster TCRs by primary sequence and by the pattern of occurrences

among individuals in the cohort, and we identify highly significant TCR clusters that may indicate

markers of immunological memory. Four of the top five most significant clusters appear linked with

common pathogens (parvovirus B19, influenza virus, CMV, and Epstein-Barr virus), again highlighting

the impact of viral pathogens on the public repertoire. We also find HLA-unrestricted TCR clusters,

some likely to be mucosal-associated invariant T (MAIT) cells, which recognize bacterial metabolites

presented by non-polymorphic MR1 proteins, rather than pMHC (Kjer-Nielsen et al., 2012). Our

global analysis of TCR-HLA association identifies striking variation in association strength across HLA

loci and highlights trends in V(D)J generation probability and degree of clonal expansion that illumi-

nate selection processes in cellular immunity. Guided by structural analysis, we used our large data-

set of HLA-associated TCRb chains to identify statistically significant sequence covaration between

the TCR CDR3 loop and the DRB1 allele sequence that preserves charge complementarity at the

TCR:pMHC interface. These analyses help elucidate the complex dependence of TCR sharing on

HLA type and immune exposure, and will inform the growing number of studies seeking to identify

TCR-based disease diagnostics.

Results

The matrix of public TCRs
Of the 80 million unique TCRb chains (defined by V-gene family and CDR3 sequence) in the 666

cohort repertoires, about 11 million chains are found in at least two individuals and referred to here

as public chains (for a more nuanced examination of TCR chain sharing see [Elhanati et al., 2018]).

The occurrence patterns of these public TCRbs—the subset of subjects in which each distinct chain

occurs—can be thought of as forming a very large binary matrix M with about 11 million rows and

666 columns. Entry Mi;j contains a one or a zero indicating presence or absence, respectively, of TCR

i in the repertoire of subject j (ignoring for the moment the abundance of TCR i in repertoire j; Fig-

ure 1 depicts two illustrative sub-matrices of M). (Emerson et al., 2017) demonstrated that this

binary occurrence matrix M encodes information on subject genotype and immune history: they

were able to successfully predict HLA-A and HLA-B allele type and CMV serostatus by learning sets

of public TCRb chains with occurrence patterns that were predictive of these features. Specifically,

each feature—such as the presence of a given HLA allele (e.g. HLA-A*02:01) or CMV seropositivity—

defines a subset of the cohort members positive for that feature, and can be encoded as a vector of

666 binary digits. This phenotype occurrence pattern of zeros and ones can be compared to the

occurrence patterns of all the public TCRb chains to identify similar patterns, as quantified by a p-

value for significance of co-occurrence across the 666 subjects; thresholding on this p-value produ-

ces a subset of significantly associated TCRb chains whose collective occurrence in a repertoire was

found by Emerson et al. to be predictive of the feature of interest (in cross-validation and, for CMV,

on an independent cohort). Generalizing from these results, it is reasonable to expect that other

common immune exposures may be encoded in the occurrence matrix M, and that these encodings

could be discovered if we had additional phenotypic data to correlate with TCR occurrence patterns.

In this study, we set out to discover these encoded exposures de novo, without additional pheno-

typic correlates, by learning directly from the structure of the occurrence matrix M and using as well

the sequences of the TCRb chains (both their similarities to one another and to TCR sequences char-

acterized in the literature). We hypothesized that patterns of TCR co-occurrence (correlations

between rows in the matrix M) might indicate shared responses to unknown immune exposures, that

co-occurrence between TCR chains and HLA alleles (correlations between rows in M and rows in the
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HLA allele occurrence matrix) could be used to help identify functional TCR chains, and that cluster-

ing TCRb chains by co-occurrence and sequence could highlight functional associations (Figure 1).

To support this effort we assembled additional HLA typing data for the subjects, now at 4-digit reso-

lution (e.g., A*02:01 rather than A*02) and including MHC class II alleles, and we compiled a dataset

of annotated TCRb chains by combining online TCR sequence databases, structurally characterized

TCRs, and published studies (see Materials and methods; [Shugay et al., 2018; Tickotsky et al.,

2017; Berman et al., 2000; Dash et al., 2017; Glanville et al., 2017; Song et al., 2017;

Kasprowicz et al., 2006]). Here we describe the outcome of this discovery process, and we report a

number of intriguing general observations about the role of HLA in shaping the T cell repertoire.

The results of our analysis are organized in the remaining five sections as follows. We begin with

an examination of TCR co-occurrence patterns across the full cohort (first section, Figures 2–3). In

the next section we examine patterns of TCR-HLA association (Table 1 and Figures 4–5). In the third

section we analyze TCR co-occurrence within subsets of the cohort positive for specific HLA alleles,

and we identify TCR clusters that may be reflective of shared immune exposures (Figures 6–8). In the

fourth section we use our dataset of HLA-associated TCRb chains to identify covariation between

HLA and the TCRb CDR3 sequence (Table 2 and Figure 9). In the final section we focus on CMV-

responsive TCRb chains, examining their degree of HLA-restriction and the extent to which they may

be responding to other antigens (Figure 10). Figure 1 provides a graphical overview of the co-occur-

rence analysis.

Globally co-occurring TCR pairs form clusters defined by shared
associations
We hypothesized that we could identify unknown immune exposures encoded in the public reper-

toire by comparing the occurrence patterns of individual TCRb chains to one another. A subset of

TCRb chains that strongly co-occur across the 666 cohort subjects might correspond to an unmea-

sured immune exposure that is common to a subset of subjects. Since shared HLA restriction could

represent an alternative explanation for significant TCR co-occurrence, we also compared the TCR

occurrence patterns to the occurrence patterns for class I and class II HLA alleles. We began by ana-

lyzing TCR occurrence patterns over the full set of cohort members. For each pair of public TCRb

chains t1 and t2 we computed a co-occurrence p-value PCO t1; t2ð Þ that reflects the probability of see-

ing an equal or greater overlap of shared subjects (i.e., subjects in whose repertoires both t1 and t2

are found) if the occurrence patterns of the two TCRs had been chosen randomly (for details, see

Materials and methods and Figure 12). In a similar manner we computed, for each HLA allele a and

TCR t, an association p-value PHLA a; tð Þ that measures the degree to which TCR t tends to occur in

subjects positive for allele a. Finally, for each pair of strongly co-occurring (PCO<1� 10
�8) TCRb

chains t1 and t2, we looked for a mutual HLA association that might explain their co-occurrence, by

finding the allele having the strongest association with both t1 and t2, and noting its association p-

value:

PHLA t1; t2ð Þ ¼
a2A
min

t2 t1;t2f g
max PHLA a; tð Þ;

where A denotes the set of all HLA alleles. In words, we take the p-value of the strongest HLA allele

association with the TCR pair, where the association of an HLA allele with a TCR pair is defined by

the weakest association of the allele among the individual TCRs.

Based on this analysis, we identified two broad classes of strongly co-occurring TCR pairs (Fig-

ure 2): those with a highly significant shared HLA association, where the co-occurrence of the two

TCRs can be explained by a shared HLA allele association (i.e. a common HLA restriction), and those

with only modest shared HLA-association p-value, for which another explanation of co-occurrence

must be sought. Points above the dashed y ¼ x line correspond to pairs of TCRs for which there

exists an HLA allele whose co-occurrence with each of the TCRs is stronger than their mutual co-

occurrence, while for points below the line no such HLA allele was present in the dataset.

We used a neighbor-based clustering algorithm, DBSCAN (Ester et al., 1996), to link strongly

co-occurring TCR pairs together to form larger correlated clusters (see Materials and methods), and

then investigated phenotype associations with these clusters. At an approximate family-wise error

rate of 0:05 (see Materials and methods), we identified 28 clusters of co-occurring TCRs, with sizes

ranging from 7 to 386 TCRs (Figure 3). Given one of these clusters of co-occurring TCRs, we can
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Figure 1. Clustering of TCR occurrence patterns across the full cohort (top) and within a cohort subset defined by a shared HLA allele (bottom). As

described in detail in the following sections, we used covariation analysis to identify clusters of co-occurring TCRb chains. Here we provide a graphical

introduction to these results by depicting occurrence patterns of clustered TCRs over the full cohort and over a cohort subset defined by a single HLA

allele (HLA-A*01:01). TCR clusters over the full cohort are largely driven by the occurrence patterns of specific HLA alleles (compare the occurrence

patterns of the top five global clusters to those of the top 5 HLA alleles, respectively), whereas HLA-restricted clusters may reflect shared immune

exposures, as illustrated here by a CMV-associated TCR cluster (the pink cluster in the bottom panels). In the top left panels, occurrence patterns of

HLA alleles and TCRb chains (rows) are indicated for each of the cohort subjects (columns) by filled (black) matrix elements. The TCRb chains chosen for

depiction in the occurrence matrix are the members of the 28 global co-occurrence clusters identified in section ’Globally co-occurring TCR pairs form

clusters defined by shared associations’. The TCRs (rows) are ordered by cluster membership as indicated by colored bands to the left of the matrix.

The selected HLA alleles correspond to the strongest associations for the top 10 clusters (two of which are not HLA-associated). The cohort subjects are

ordered by column similarity so as to emphasize block structure present in the matrix. The bottom left panels similarly show occurrence patterns for

HLA-A*01:01-associated TCRb chain clusters over the subset of subjects carrying this allele, alongside an indicator of cytomegalovirus seropositivity for

each subject (red). In-depth analysis of these (and other) HLA-associated TCRb clusters is presented in section ’HLA-restricted TCR clusters’. For

visualization purposes, two-dimensional embeddings of the TCRb chains based on their occurrence patterns (binary strings representing presence/

absence in the subjects) are depicted in the right panels, with the TCR chains colored by cluster assignment and annotated by known associations.

DOI: https://doi.org/10.7554/eLife.38358.003
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count the number of cluster member TCRs found in each subject’s repertoire. The aggregate occur-

rence pattern of the cluster can be visualized as a rank plot of this cluster TCR count over the sub-

jects (the black curves in Figure 3C–D). This ranking can also be compared with other phenotypic or

genotypic features of the same subjects. In particular, by comparing this aggregate occurrence pat-

tern to a control pattern generated by repeatedly choosing equal numbers of subjects indepen-

dently at random (dotted green lines in Figure 3C–D), we can identify a subset of the cohort with an

apparent enrichment of cluster member TCRs and look for overlap between this subset and other

defined cohort features. Performing this comparison against the occurrence patterns of class I and

class II HLA alleles revealed that the majority of the TCR clusters were strongly associated with at

least one HLA allele (as depicted for a DRB1*15:01-associated cluster in Figure 3C and summarized

in Figure 3B).

In addition, there were two large clusters of TCRs which were not strongly associated with any of

the typed HLA alleles (clusters 6 and 7 in Figure 3). Visual inspection of the CDR3 regions of TCRs in

one of these clusters revealed a distinctive ‘YV’ C-terminal motif that is characteristic of the TRBJ2-

7*02 allele (Figure 3—figure supplement 1), and indeed the 41 subjects whose repertoires indi-

cated the presence of this genetic variant were exactly the 41 subjects enriched for members of this

TCR cluster (Figure 3D). This demonstrated that population diversity in germline allele sets

Figure 2. Strongly co-occurring TCR pairs form two broad classes distinguished by HLA-association strength. The co-occurrence p-value PCO for each

pair of public TCRs is plotted (x-axis) against the HLA-association p-value PHLA for the HLA allele with the strongest mutual association with that TCR

pair (y-axis). There are 6092 TCR-pairs above the diagonal (y ¼ x) and 4713 pairs below the diagonal.

DOI: https://doi.org/10.7554/eLife.38358.004

The following source data is available for figure 2:

Source data 1. TCR pairs and corresponding PCO and PHLA values.

DOI: https://doi.org/10.7554/eLife.38358.005
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Figure 3. Clustering public TCRb chains by co-occurrence over the full cohort identifies associations with HLA and TRBJ alleles as well as an invariant T

cell subset. (A) Graphical representations of the TCRb chain occurrence matrix (lower left) and the HLA-allele occurrence matrix (upper left), restricted

to members of the 28 global co-occurrence TCR clusters and the associated HLA alleles for the top 10 clusters, respectively. TCRb chains (rows) are

ordered by cluster membership and subjects (columns) are ordered by column similarity (Jaccard distance of TCR sets) to emphasize block structure

present in the matrix. (B) Cluster size (x-axis) versus the p-value of the most significant HLA allele association (y-axis), with markers colored according to

the locus of the associated allele. Dashed line indicates random expectation based on the total number of alleles, assuming independence. (C) Count

of cluster member TCRs found in each subject for the cluster labeled ‘2’ in panel (B) (top right). The dotted line represents an averaged curve based on

randomly and independently selecting subject sets for each member TCR. Red and blue dots indicate the occurrence of the DRB1*15:01 allele in the

cohort. (D) Count of cluster member TCRs found in each subject for the cluster labeled ‘7’ in panel (B) (center bottom). The dotted line again represents

a control pattern, and the red and blue dots indicate the occurrence of the TRBJ2-7*02 allele.

DOI: https://doi.org/10.7554/eLife.38358.006

The following source data and figure supplements are available for figure 3:

Source data 1. Cluster sizes and HLA-allele association p-values.

DOI: https://doi.org/10.7554/eLife.38358.010

Figure supplement 1. TCRdist tree of the members of the TRBJ2-7*02-associated cluster.

DOI: https://doi.org/10.7554/eLife.38358.007

Figure supplement 2. TCRdist tree of the members of the putative MAIT cell cluster.

DOI: https://doi.org/10.7554/eLife.38358.008

Figure supplement 3. More details on the MAIT cell cluster: subject age and N-nucleotide insertion distributions; TCRa chains paired with cluster

member TCRb chains in the pairSEQ dataset of (Howie et al., 2015).

DOI: https://doi.org/10.7554/eLife.38358.009
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manifests as occurrence pattern clustering. The other large, non-HLA associated TCR cluster had a

number of distinctive features as well: strong preference for the TRBV06 family, followed by TRBV20

and TRBV04 (Figure 3—figure supplement 2); low numbers of inserted ‘N’ nucleotides; and a

skewed age distribution biased toward younger subjects (Figure 3—figure supplement 3). These

features, together with the lack of apparent HLA restriction, suggested that this cluster represented

an invariant T cell subset, specifically MAIT (mucosal-associated invariant T) cells (Kjer-Nielsen et al.,

2012; Venturi et al., 2013; Pogorelyy et al., 2017). Since MAIT cells are defined primarily by their

alpha chain sequences, we searched in a recently published paired dataset (Howie et al., 2015) for

partner chains of the clustered TCRb chain sequences, and found a striking number that matched

the MAIT consensus (TRAV1-2 paired with TRAJ20/TRAJ33 and a 12 residue CDR3, Figure 3—fig-

ure supplement 3D). We also looked for these clustered TCRs in a recently published MAIT cell

sequence dataset (Howson et al., 2018) and found that 93 of the 138 cluster member TCRs

occurred among the 31,654 unique TCRs from this dataset; of these 93 TCRb chains, 27 were found

among the 78 most commonly occurring TCRs in the dataset (the TCRs occurring in at least 7 of the

24 sequenced repertoires), a highly significant overlap (P<2� 10
�52 in a one-sided hypergeometric

test). These concordances indicate that our untargeted approach has detected a well-studied T cell

subset de novo through analysis of occurrence patterns.

HLA-associated TCRs
These analyses suggested to us that TCR co-occurrence patterns across the full cohort of subjects

are strongly influenced by the distribution of the HLA alleles, in accordance with the expectation

that the majority of ab TCRs are HLA-restricted. Covariation between TCRs responding to the same

HLA-restricted epitopes would only be expected in subjects positive for the restricting alleles, with

TCR presence and absence outside these subjects likely introducing noise into the co-occurrence

analysis. We therefore decided to analyze patterns of TCR co-occurrence within subsets of the

cohort positive for specific HLA alleles, and to restrict our co-occurrence analysis to TCRs having a

statistically significant association with the specific allele defining the cohort subset. To begin, we

performed a comprehensive analysis of TCR-HLA association.

At a false discovery rate of 0.05 (estimated from shuffling experiments; see Materials and meth-

ods), we were able to assign 16,951 TCRb sequences to an HLA allele (or alleles: DQ and DP alleles

were analyzed as ab pairs, and there were 5 DR/DQ haplotypes whose component alleles were so

highly correlated across our cohort that we could not assign TCR associations to individual DR or

DQ components; see Materials and methods). Table 1 lists the top 50 HLA-associated TCR sequen-

ces by association p-value and top 10 associated TCRs for the well-studied A*02:01 allele.

We find that 8 of the top 10 A*02:01-associated TCRs have been previously reported and anno-

tated as being responsive to viral epitopes, specifically influenza M158 and Epstein-Barr virus (EBV)

BMLF1280 (Shugay et al., 2018; Tickotsky et al., 2017). Moreover, each of these 8 TCRb chains is

present in a recent experimental dataset (Dash et al., 2017) that included tetramer-sorted TCRs

positive for these two epitopes; each TCR has a clear similarity to one of the consensus epitope-spe-

cific repertoire clusters identified in that work, with the EBV TRBV20, TRBV29, and TRBV14 TCRs,

respectively, matching the three largest branches of the BMLF1280 TCR tree, and the three influenza

M158 TCRs all matching the dominant TRBV19 ‘RS’ motif consensus (Figure 4—figure supplement

2). TCRs with annotation matches are sparser in the top 50 across all other alleles, which is likely due

in part to a paucity of experimentally characterized non-A*02 TCRs, however we again see EBV-epi-

tope responsive TCRs (with B*08:01 and B*35:01 restriction).

A global comparison of TCR feature distributions for HLA-associated versus non-HLA-associated

TCRs provides further evidence of functional selection. As shown in Figure 4A, HLA-associated

TCRs are on average more clonally expanded than a set of background, non-HLA associated TCRs

with matching frequencies in the cohort. They also have lower generation probabilities—are harder

to make under a simple random model of the VDJ rearrangement process—which suggests that

their observed cohort frequencies may be elevated by selection (Figure 4B, see Materials and meth-

ods for further details on the calculation of clonal expansion indices and generation probabilities;

also see (Pogorelyy et al., 2018)). Examination of two-dimensional feature distributions suggests

that these shifts are correlated, with HLA-associated TCRs showing an excess of lower-probability,

clonally expanded TCRs (Figure 4C); this trend appears stronger for class-I associated TCRs than for

class II-associated TCRs (Figure 4—figure supplement 1).
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Table 1. The top 50 most significant HLA-associated public TCRb chains and the top 10 for A*02:01 (indicated in bold).

Association p-
value Overlap* TCR Subjects † HLA subjects‡ Total subjects§

V-
family CDR3 HLA allele# Epitope annotation

3.7e-90 231 267 268 629 TRBV19 CASSIRSSYEQYF A*02:01 Influenza virus

2.4e-72 179 191 268 629 TRBV29 CSVGTGGTNEKLFF A*02:01 Epstein-Barr virus

3.8e-66 107 124 134 522 TRBV20 CSARNRDYGYTF DRB1*03:01-
DQ

1.9e-65 92 95 151 630 TRBV05 CASSLVVSPYEQYF DRB1*07:01

6.7e-64 91 94 134 522 TRBV30 CAWSRDSGSGNTIYF DRB1*15:01-
DQ

7.5e-59 51 53 66 630 TRBV15 CATSREEGDGYTF B*35:01

3.6e-57 89 96 134 522 TRBV11 CASSPGQGPGNTIYF DRB1*15:01-
DQ

7.4e-56 57 57 95 630 TRBV02 CASSENQGSQPQHF DRB1*04:01

1.5e-52 86 87 184 629 TRBV06 CASSYDSGTGELFF C*07:01

3.3e-52 136 143 268 629 TRBV19 CASSIRSAYEQYF A*02:01 Influenza virus

1.2e-51 71 96 94 630 TRBV27 CASSLGGQNYGYTF B*44:02

1.8e-50 52 52 94 630 TRBV28 CASSSSPLNYGYTF DRB1*01:01

3.8e-49 69 71 142 630 TRBV04 CASSPGQGEGYEQYF B*08:01 Epstein-Barr virus

6.3e-49 92 98 189 629 TRBV11 CASSFGQMNTEAFF A*01:01

1.3e-48 73 75 156 630 TRBV18 CASSPPTESYGYTF B*07:02

3.2e-48 79 87 151 630 TRBV14 CASSQAGMNTEAFF DRB1*07:01

8.7e-47 49 49 95 630 TRBV11 CASSLDQGGSSSYNEQFF DRB1*04:01

3.2e-46 50 51 95 630 TRBV20 CSAQREYNEQFF DRB1*04:01

3.3e-46 68 69 134 522 TRBV05 CASSFWGRDTQYF DRB1*03:01-
DQ

3.3e-46 54 59 94 630 TRBV05 CASSWTGGGGANVLTF DRB1*01:01

3.1e-45 54 60 94 630 TRBV02 CASSEARGAGQPQHF DRB1*01:01

1.4e-44 41 42 69 630 TRBV14 CASSPLGPGNTIYF DRB1*11:01

2.4e-43 92 121 134 522 TRBV07 CASSPTGLQETQYF DRB1*03:01-
DQ

4.1e-43 43 52 61 630 TRBV19 CASSPTGGIYEQYF B*44:03 Multiple sclerosis

4.5e-43 39 40 66 629 TRBV10 CASSESPGNSNQPQHF C*12:03

6.7e-43 76 86 134 522 TRBV28 CASRGRPEAFF DRB1*15:01-
DQ

7.5e-43 50 54 94 630 TRBV19 CASSPTQNTEAFF DRB1*01:01

1.7e-42 84 110 142 630 TRBV07 CASSSGPNYEQYF B*08:01

1.7e-42 61 81 95 630 TRBV05 CASSFPGEDTQYF DRB1*04:01

1.3e-41 47 49 95 630 TRBV18 CASSPPAGAAYEQYF DRB1*04:01

1.5e-41 75 87 151 630 TRBV28 CASSLTSGGQETQYF DRB1*07:01

2.3e-41 64 67 151 630 TRBV07 CASSLGQGFYNSPLHF DRB1*07:01

8.2e-40 77 92 134 522 TRBV19 CASSISVYGYTF DRB1*15:01-
DQ

2.4e-39 43 54 66 630 TRBV10 CAISTGDSNQPQHF B*35:01 Epstein-Barr virus

3.4e-39 115 193 156 630 TRBV09 CASSGNEQFF B*07:02

9.5e-39 151 260 189 629 TRBV19 CASSIRDSNQPQHF A*01:01

1.2e-38 100 103 268 629 TRBV20 CSARDGTGNGYTF A*02:01 Epstein-Barr virus

1.3e-38 56 60 130 629 TRBV25 CASSEYSLTDTQYF C*04:01

2.1e-38 109 116 268 629 TRBV20 CSARDRTGNGYTF A*02:01 Epstein-Barr virus

Table 1 continued on next page
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To give a global picture of TCR-HLA association, we counted the number of significant TCR asso-

ciations found for each HLA allele in the dataset, and plotted this number against the number of

subjects in the cohort with that allele (Figure 5). As expected, the more common HLA alleles have

on average greater numbers of associated TCRs (since greater numbers of subjects permit the iden-

tification of more public TCRs, and the statistical significance assigned to an observed association of

fixed strength grows as the number of subjects increases). What was somewhat more surprising is

that the slope of the correlation between cohort frequency and number of associated TCRs varied

dramatically among the HLA loci, with HLA-DRB1 alleles having the largest number of associated

TCRs for a given allele frequency and HLA-C alleles having the smallest. The best-fit slope for the

five DR/DQ haplotypes (12.2) was roughly the sum of the DR (7.99) and DQ (3.39) slopes, suggesting

as expected that these haplotypes were capturing TCRs associated with both the DR and DQ com-

ponent alleles. The smaller rate of TCR association observed at the HLA-C locus could be explained

by a relatively lower level of cell surface expression of HLA-C alleles as well as their greater tendency

to interact with killer cell immunoglobulin-like receptors (KIR) on natural killer (NK) cells (Kaur et al.,

2017).

We assessed the accuracy of our TCR:HLA associations in two ways. First, we compared our HLA

allele assignments to those given in the VDJdb database (which provides the peptide:MHC target

and hence a putative HLA restriction for all entries; [Shugay et al., 2018]) and found that 90% of the

VDJdb assignments for TCRb chains present in both sets matched our associations. This agreement

increases to 96% after filtering for the highest level of supporting evidence (VDJdb score of 3). Inter-

estingly, two of the mismatches with VDJdb score three were from the protein structural database:

the allo-complex between the B*08-restricted LC13 TCR and HLA-B*44:05 (Macdonald et al.,

2009), and the structure of the A*02-restricted JM22 TCR bridged to a class II allele by a

Table 1 continued

Association p-
value Overlap* TCR Subjects † HLA subjects‡ Total subjects§

V-
family CDR3 HLA allele# Epitope annotation

2.3e-38 102 106 268 629 TRBV19 CASSVRSSYEQYF A*02:01 Influenza virus

6.4e-38 54 54 151 630 TRBV10 CAISESQDLNTEAFF DRB1*07:01

1.1e-37 43 45 94 630 TRBV07 CASSLAGPPNSPLHF DRB1*01:01

1.2e-37 44 60 66 630 TRBV09 CASSARTGELFF B*35:01 Epstein-Barr virus

3.3e-37 79 88 189 629 TRBV19 CASSIDGEETQYF A*01:01

5.4e-37 64 70 134 522 TRBV05 CASSLESPNYGYTF DRB1*03:01-
DQ

2.0e-36 38 43 69 630 TRBV06 CASGAGHTDTQYF DRB1*11:01

2.9e-36 54 55 151 630 TRBV05 CASSLVVQPYEQYF DRB1*07:01

3.3e-36 57 81 95 630 TRBV11 CASSPGQDYGYTF DRB1*04:01

2.4e-35 50 53 109 522 TRBV27 CASNRQGPNTEAFF DQB1*03:01-
DQA1*05:05

5.7e-35 75 95 134 522 TRBV18 CASSGQANTEAFF DRB1*03:01-
DQ

2.2e-33 86 88 268 629 TRBV14 CASSQSPGGTQYF A*02:01 Epstein-Barr virus

1.8e-32 84 86 268 629 TRBV10 CASSEDGMNTEAFF A*02:01

4.3e-32 86 89 268 629 TRBV05 CASSLEGQASSYEQYF A*02:01 Melanoma

4.3e-32 86 89 268 629 TRBV29 CSVGSGGTNEKLFF A*02:01 Epstein-Barr virus

*Number of subjects positive for both the TCRb chain and the indicated HLA allele.

†Number of subjects positive for the TCRb chain with available HLA typing at the corresponding locus.

‡Number of subjects positive for the indicated HLA allele.

§Total number of subjects with available HLA typing at the corresponding locus.

#The following DR-DQ haplotype abbreviations are used: DRB1*03:01-DQ (DRB1*03:01-DQA1*05:01-DQB1*02:01) and DRB1*15:01-DQ (DRB1*15:01-

DQA1*01:02-DQB1*06:02).

DOI: https://doi.org/10.7554/eLife.38358.011
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A B
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Figure 4. HLA-associated TCRs are more clonally expanded and have lower generation probabilities than equally common, non-HLA associated TCRs.

(A) Comparison of clonal expansion index distributions for the set of HLA-associated TCRs (blue) and a cohort-frequency matched set of non HLA-

associated TCRs (green). (B) Comparison of VDJ-rearrangement TCR generation probability (Pgen) distributions for the set of HLA-associated TCRs (blue)

and a cohort-frequency matched set of non HLA-associated TCRs (green). (C) Two-dimensional probability density function (PDF) for the distribution of

Pgen versus clonal expansion index for HLA-associated TCRs. Contours indicate level sets of the PDF. (D) Two-dimensional probability density function

(PDF) for the distribution of Pgen versus clonal expansion index for background (non HLA-associated) TCRs whose cohort frequencies match the TCRs in

(C).

DOI: https://doi.org/10.7554/eLife.38358.012

The following source data and figure supplements are available for figure 4:

Source data 1. Generation probabilities, clonal expansion indices, and allele associations for the TCRs analyzed here.

DOI: https://doi.org/10.7554/eLife.38358.015

Figure supplement 1. Two-dimensional feature distributions for HLA-associated TCR subsets defined by HLA locus.

DOI: https://doi.org/10.7554/eLife.38358.013

Figure supplement 2. TCRdist trees of experimentally determined pathogen-responsive TCRb chains for two immunodominant epitopes, EBV

BMLF1280 and influenza M158, for comparison with TCRb chains listed in Table 1.

DOI: https://doi.org/10.7554/eLife.38358.014
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staphylococcal superantigen (Saline et al., 2010). In both of these cases, our data predict the canon-

ical association: B*08 for the LC13 TCRb chain and A*02 for the JM22 TCRb chain. Second, we

looked for HLA-associated public TCRb chains in sequenced repertoires from T cell populations that

were sorted for the presence of CD4/CD8 surface markers. One would expect that TCRb chains

associated with class I MHC molecules should be preferentially found in CD8+ populations, while

class II-associated TCRs should be found in CD4+ populations. We selected four repertoire datasets

(Emerson et al., 2013; Rubelt et al., 2016; Li et al., 2016; Oakes et al., 2017) with matched CD4

+ and CD8+ repertoires from a total of 63 individuals, and we analyzed the occurrence patterns of

our HLA-associated TCRb chains in these sequence datasets, producing for each TCRb counts of the

number of CD4+ and CD8+ repertoires it was observed in. Figure 5—figure supplement 1 shows

that if we assign each TCRb to the class (CD4+ or CD8+) with the higher count, these assignments

are largely concordant with the MHC class of its associated HLA allele, and moreover this agreement

increases as we increase either the stringency of HLA association or the stringency of the CD4/CD8

Figure 5. Rates of TCR association vary substantially across HLA loci. The number of HLA-associated TCRs (y-axis) is plotted as a function of allele

frequency in the cohort (x-axis). Best fit lines are shown for each locus and also for the set of five DR/DQ haplotypes (‘DRDQ’) which could not be

separated into component alleles in this cohort. The following DR-DQ haplotype abbreviations are used: DRB1*03:01-DQ (DRB1*03:01-DQA1*05:01-

DQB1*02:01), DRB1*15:01-DQ (DRB1*15:01-DQA1*01:02-DQB1*06:02), and DRB1*13:01-DQ (DRB1*13:01-DQA1*01:03-DQB1*06:03).

DOI: https://doi.org/10.7554/eLife.38358.016

The following source data and figure supplement are available for figure 5:

Source data 1. Allele frequencies and numbers of associated TCRs.

DOI: https://doi.org/10.7554/eLife.38358.018

Figure supplement 1. HLA class associations are concordant with CD4/CD8 assignments based on independent repertoire data.

DOI: https://doi.org/10.7554/eLife.38358.017
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assignment (i.e., the minimum absolute difference between the CD4 and CD8 repertoire counts; see

Materials and methods).

HLA-restricted TCR clusters
Having identified a set of HLA-associated TCRb chains, we next sought to identify TCR clusters that

might represent HLA-restricted responses to shared immune exposures. We performed this analysis

for each HLA allele individually, restricting our clustering to the set of TCR chains significantly-associ-

ated with that allele and comparing occurrence patterns only over the subset of subjects positive for

that allele. To reduce spurious co-occurrence signals driven by the presence/absence of other HLA

alleles, we excluded TCR chains that were more strongly associated with a different HLA allele (i.e.,

not the one defining the cohort subset). The smaller size of many of these allele-positive cohort sub-

sets reduces our statistical power to detect significant clusters using co-occurrence information. To

counter this effect, we used the TCRdist similarity measure (Dash et al., 2017) to leverage the TCR

sequence similarity which is often present within epitope-specific responses (Dash et al., 2017;

Glanville et al., 2017) (see for example the A*02:01 TCRs in Table 1 and Figure 4—figure supple-

ment 2). We augmented the probabilistic similarity measure used to define neighbors for DBSCAN

clustering to incorporate information about TCR sequence similarity (as measured by TCRdist), in

addition to cohort co-occurrence (see Materials and methods). We independently clustered each

allele’s associated TCRs and merged the clustering results from all alleles; using the Holm multiple

testing criterion (Holm, 1979) to limit the approximate family-wise error rate to 0.05, we found a

total of 78 significant TCR clusters.

We analyzed the sequences and occurrence patterns of the TCRs belonging to these 78 clusters

in order to assess their potential biological significance and prioritize them for further study (Table 3).

Each cluster was assigned two scores (Figure 6): a size score (Ssize, x-axis), reflecting the significance

of seeing a cluster of that size given the total number of TCRs clustered for its associated allele, and

a co-occurrence score (ZCO, y-axis), reflecting the degree to which the TCRs in that cluster co-occur

within its allele-positive cohort subset (see Materials and methods). In computing the co-occurrence

score, we defined a subset of individuals with an apparent enrichment for the member TCRs in each

cluster; the size of this enriched subset of subjects is given in the ‘Subjects’ column in Table 3. We

rank ordered the 78 clusters based on the sum of their size and co-occurrence scores (weighted to

equalize dynamic range); the top five clusters are presented in greater detail in Figure 7 and Fig-

ure 8. HLA associations, member TCR and enriched subject counts, cluster center TCR sequences,

scores, and annotations for all 78 clusters are given in Table 3.

We found that a surprising number of the most significant HLA-restricted clusters had links to

common viral pathogens. For example, the top cluster by both size and co-occurrence (Figure 7,

upper panels) is an A*24:02-associated group of highly similar TCRb chains, five of which can be

found in a set of 12 TCRb sequences reported to respond to the parvovirus B19 epitope FYT-

PLADQF as part of a highly focused CD8+ response to acute B19 infection (Kasprowicz et al.,

2006). The subject TCR-counts curve for this cluster (Figure 7, top right panel) shows a strong

enrichment of member TCRs in roughly 30% of the A*24:02 repertoires, which is on the low end of

prevalence estimates for this pathogen (Heegaard and Brown, 2002) and may suggest that, if clus-

ter enrichment does correlate with B19 exposure, there are likely to be other genetic or epidemio-

logic factors that determine which B19-exposed individuals show enrichment. The second most

significant cluster by both measures is an A*02:01-associated group of TRBV19 TCRs with a high fre-

quency of matches to the influenza M158 response (41/43 TCRs, labeled ‘INF-pGIL’ for the first three

letters of the GILGFVFTL epitope). Notably, the cluster member sequences recapitulate many of the

core features of the tree of experimentally identified M158 TCRs (Figure 4—figure supplement 2): a

dominant group of length 13 CDR3 sequences with an ‘RS’ sequence motif together with a smaller

group of length 12 CDR3s with the consensus CASSIG.YGYTF.

Rounding out the top five, the third and fifth most significant clusters also appear to be patho-

gen-associated. Cluster #3 brings together a diverse set of DRB1*07:01-associated TCRb chains (Fig-

ure 8, top dendrogram), none of which matched our annotation database. However, it was strongly

associated with CMV serostatus: As is evident in the subject TCR-counts panel for this cluster (Fig-

ure 8, top right), there is a highly significant (P<3� 10
�19) association between CMV seropositivity

(blue dots at the bottom of the panel) and cluster enrichment (here defined as a subject TCR count

� 3). Finally, the B*08:01-associated cluster #5 (bottom panels in Figure 8) appears to be EBV-
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associated: four of the TCRb chains in this cluster match TCRs annotated as binding to EBV epitopes

(two matches for the B*08:01-restricted FLRGRAYGL epitope and two for the B*08:01-restricted

RAKFKQLL epitope). The fact that this cluster brings together sequence-dissimilar TCRs that recog-

nize different epitopes from the same pathogen supports the hypothesis that at least some of the

observed co-occurrence may be driven by a shared exposure.

As a preliminary validation of the clusters identified here, we examined the occurrence patterns

of cluster member TCRs in two independent cohorts: a set of 120 individuals (‘Keck120’) that formed

the validation cohort for the original Emerson et al. study, and a set of 86 individuals (‘Brit86’) taken

from the aging study of (Britanova et al., 2016). Whereas the Keck120 repertoires were generated

using the same platform as our 666-member discovery cohort, the Brit86 repertoires were

sequenced from cDNA libraries using 5’-template switching and unique molecular identifiers. In the

1

23
4

5

Figure 6. Many HLA-restricted TCR clusters contain TCRb chains annotated as pathogen-responsive. Each point represents one of the 78 significant

HLA-restricted TCR clusters, plotted based on a normalized cluster size score (Ssize, x-axis) and an aggregate TCR co-occurrence score for the member

TCRs (ZCO, y-axis). Markers are colored by the locus of the restricting HLA allele and sized based on the strength of the association between cluster

member TCRs and the HLA allele. The database annotations associated to TCRs in each cluster are summarized with text labels using the following

abbreviations: B19 = parvovirus B19, INF = influenza, EBV = Epstein Barr Virus, RA = rheumatoid arthritis, MS = multiple sclerosis, MELA = melanoma,

T1D = type one diabetes, CMV = cytomegalovirus. Clusters labeled ‘coCMV’ are significantly associated (P<1� 10
�5) with CMV seropositivity (see main

text discussion of cluster #3). Clusters labeled 1–5 are discussed in the text and examined in greater detail in Figure 7 and Figure 8.

DOI: https://doi.org/10.7554/eLife.38358.019

The following source data and figure supplement are available for figure 6:

Source data 1. Paired TCRa chain sequences from the pairSEQ dataset of (Howie et al., 2015) for all clusters with at least 2 matched TCRb chains,

along with a score for each cluster that assesses the degree of sequence similarity among the partner chains.

DOI: https://doi.org/10.7554/eLife.38358.021

Figure supplement 1. Distributions of cluster co-occurrence scores on the two validation cohorts.

DOI: https://doi.org/10.7554/eLife.38358.020
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Figure 7. Top five HLA-restricted clusters (continued on following page). Details on the TCR sequences, occurrence patterns, and annotations for the

five most significant clusters (labeled 1–5 in Figure 6) based on size and TCR co-occurrence scores. Each panel consists of a TCRdist dendrogram (left

side, labeled with annotation, CDR3 sequence, and occurrence counts for the member TCRs) and a per-subject TCR count profile (right side) showing

the aggregate occurrence pattern of the member TCRs (blue curve) and a control pattern (green curve) produced by averaging occurrence counts from

multiple independent randomizations of the subject set for each TCR. The numbers in the two ‘Counts’ columns represent the number of HLA+ (left)

and HLA- (right) subjects whose repertoire contained the corresponding TCR, where HLA± means positive/negative for the restricting allele (for

example, A*24:02 in the case of cluster 1). Annotations use the following abbreviations: B19 (parvovirus B19), INF (influenza virus), YFV (yellow fever

virus), MELA (melanoma), T1D (type 1 diabetes), EBV (Epstein-Barr virus), RA (rheumatoid arthritis). In cases where the peptide epitope for the

annotation match is known, the first three peptide amino acids are given after ‘-p’. Non-germline CDR3 amino acids with 2 or 3 non-templated

nucleotides in their codon are shown in uppercase, while amino acids with only a single non-templated coding nucleotide are shown in lowercase.

DOI: https://doi.org/10.7554/eLife.38358.022
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absence of HLA typing information for these subjects, we simply evaluated the degree to which

each cluster’s member TCRs co-occurred over the entirety of each of these validation cohorts, using

the co-occurrence score described above (ZKeck120
CO and ZBrit86

CO columns in Table 3). Although rare

alleles and cluster-associated exposures may not occur with sufficient frequency in these smaller

cohorts to generate co-occurrence signal, co-occurrence scores support the validity of the cluster-

ings identified on the discovery cohort: 94% of the Keck120 scores and 92% of the Brit86 scores are

greater than 0, indicating a tendency of the clustered TCRs to co-occur (smoothed score distribu-

tions are shown in Figure 6—figure supplement 1).
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Figure 8. Top five HLA-restricted clusters (continued from previous page). Clusters 3–5; see preceding legend for details.

DOI: https://doi.org/10.7554/eLife.38358.023
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Covariation between CDR3 sequence and HLA allele
Given our large dataset of HLA-associated TCRb sequences, we set out to look for correlations

between CDR3 sequence and HLA allele sequence. Previous studies have identified correlations

between TCR V-gene usage and HLA alleles (Sharon et al., 2016; Blevins et al., 2016); these corre-

lations are consistent with a picture of TCR:peptide:MHC interactions in which the CDR1 and CDR2

loops (whose sequence is determined by the V gene) primarily contact the MHC while the CDR3

loops contact the peptide. To complement these studies and leverage our large set of HLA-associ-

ated sequences, we set out to look for correlations between the CDR3 sequence itself and the HLA

allele. In our previous work on epitope-specific TCRs (Dash et al., 2017), we identified a significant

negative correlation between CDR3 charge and peptide charge, suggesting a tendency toward pre-

serving charge complementarity across the TCR:pMHC interface. Although the CDR3 loop primarily

contacts the MHC-bound peptide, computational analysis of solved TCR:peptide:MHC structures in

the Protein Data Bank (Berman et al., 2000) (see Materials and methods) identified a number of

HLA sequence positions that are frequently contacted by CDR3 amino acids (Table 2). For each fre-

quently-contacted HLA position with charge variability among alleles we computed the covariation

between HLA allele charge at that position and average CDR3 charge for allele-associated TCRs.

Since portions of the CDR3 sequence are contributed by the V- and J-gene germline sequences, and

covariations are known to exist between HLA and V-gene usage, we also performed a covariation

analysis restricting to ‘non-germline’ CDR3 sequence positions whose coding sequence is deter-

mined by at least one non-templated insertion base (based on the most parsimonious VDJ recon-

struction; see Materials and methods). We found a significant negative correlation

(R ¼ �0:47;P<4� 10
�4 for the full CDR3 sequence; R ¼ �0:52;P<7� 10

�5 for the non-germline

CDR3 sequence) between CDR3 charge and the charge at position 70 of the class II beta chain (cor-

recting these p-values for the fact that we considered 7 positions yields 2:3� 10
�3 and 4:3� 10

�4).

We did not see a significant correlation for the frequently contacted position on the class II alpha

chain, perhaps due to the lack of sequence variation at the DRa locus and/or the more limited num-

ber of DQa and DPa alleles. None of the five class I positions showed significant correlations, which

could be due to their lower contact frequencies, a smaller average number of associated TCRs (51

for class I versus 309 for class II), bias toward A*02 in the structural database, or noise introduced

from multiple contacted positions varying simultaneously. Further analysis of the class II correlation

suggested that it was driven largely by HLA-DRB1 alleles: position 70 correlations were �0:56 versus

�0:10 for DR and DQ, respectively, over the full CDR3 and �0:64 vs �0:38 for the non-germline

CDR3. Figure 9 provides further detail on this DRB1-TCR charge anti-correlation, including a struc-

tural superposition showing the proximity of position 70 to the TCRb CDR3 loop.

Table 2. Covariation between HLA allele charge and average CDR3 charge of HLA-associated TCRs for HLA positions frequently

contacted by CDR3 amino acids in solved TCR:pMHC crystal structures.

MHC Class Position* Contact frequency†
Full CDR3 Non-germline CDR3‡

AAs§R-value p-value R-value p-value

II-b 70 1.48 �0.47 3.3e-04 �0.52 6.1e-05 DEGQR

II-a 64 1.09 �0.15 0.33 �0.07 0.64 ART

I 152 0.47 0.00 0.99 �0.04 0.72 AERTVW

I 151 0.46 0.08 0.50 0.06 0.59 HR

I 69 0.26 �0.13 0.28 �0.14 0.24 ART

I 76 0.21 �0.08 0.49 �0.14 0.25 AEV

I 70 0.12 0.02 0.86 0.08 0.50 HKNQS

*Only positions whose charge varies across alleles are included.

†Total number of CDR3 residues contacted (using a sidechain heavyatom distance threshold of 4.5 Å) divided by number of structures analyzed.

‡CDR3 charge is calculated over amino acids with at least one non-germline coding nucleotide.

§Amino acids present at this HLA position.

DOI: https://doi.org/10.7554/eLife.38358.024
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CMV-associated TCRb chains are largely HLA-restricted
We analyzed the HLA associations of strongly CMV-associated TCRb chains to gain insight into their

predictive power across genetically diverse individuals. Here we change perspective somewhat from

earlier sections, in that we select TCRs based on their CMV association and then evaluate HLA asso-

ciation, rather than the other way around. In their original study, Emerson et al. identified a set of

TCRb chains that were enriched in CMV seropositive individuals and showed that by counting these

CMV-associated TCRb chains in a query repertoire they could successfully predict CMV serostatus

both in cross-validation and on an independent test cohort. The success of this prediction strategy

across a diverse cohort of individuals raises the intriguing question of whether these TCRbs are pri-

marily HLA-restricted in their occurrence and in their association with CMV, or whether they span

multiple HLA types. To shed light on this question we focused on a set of 68 CMV-associated TCRb

chains whose co-occurrence with CMV seropositivity was significant at a p-value threshold of 1.5e-5

(corresponding to an FDR of 0:05; see Materials and methods). For each CMV-associated TCRb

chain, we identified its most strongly associated HLA allele and compared the p-value of this associa-

tion to the p-value of its association with CMV (Figure 10A). From this plot we can see that the

majority of the CMV-associated chains do appear to be HLA-associated, having p-values that exceed

the FDR 0:05 threshold for HLA association. The excess of highly significant HLA-association p-values

for these CMV-associated TCRbs can be seen in Figure 10B, which compares the observed p-value

A

C

B

D

E

70

Figure 9. Negative correlation between HLA allele charge at DRB1 position 70 and CDR3 charge of HLA-associated TCRs. (A–B) Allele charge (x-axis)

versus average CDR3 charge of allele-associated TCRb chains (y-axis) for 30 HLA-DRB1 alleles. Charge of the CDR3 loop was calculated over the full

CDR3 sequence (A) or over the subset of CDR3 amino acids with at least one non-germline coding nucleotide (B). Correlation p-values correspond to a

2-sided test of the null hypothesis that the slope is zero, as implemented in the function scipy.stats.linregress (N ¼ 30 alleles). (C–D) CDR3 charge

distributions for TCRs associated with alleles having defined charge at position 70 (x-axis) using the full (C) or non-germline (D) CDR3 sequence (mean

values shown as white pluses). (E) Superposition of five TCR:peptide:HLA-DR crystal structures (PDB IDs 1j8h, 2iam, 2wbj, 3o6f, and 4e41;

[Hennecke and Wiley, 2002; Deng et al., 2007; Harkiolaki et al., 2009; Yin et al., 2011; Deng et al., 2012]) showing the DRa chain in green, the

DRb chain in cyan, the peptide in magenta, the TCRb chain in blue with the CDR3 loop colored reddish brown. The TCRa chain is omitted for clarity,

and position 70 is highlighted in yellow.

DOI: https://doi.org/10.7554/eLife.38358.025

The following source data is available for figure 9:

Source data 1. Charge at position 70 and average CDR3 charge of allele-associated TCRs for 30 HLA-DRB1 alleles.

DOI: https://doi.org/10.7554/eLife.38358.026

DeWitt et al. eLife 2018;7:e38358. DOI: https://doi.org/10.7554/eLife.38358 18 of 39

Research article Computational and Systems Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.38358.025
https://doi.org/10.7554/eLife.38358.026
https://doi.org/10.7554/eLife.38358


distribution to a background distribution of HLA association p-values for randomly selected fre-

quency-matched public TCRbs.

As a next step we looked to see whether these HLA associations fully explained the CMV associa-

tion, in the sense that the CMV association was only present in subjects positive for the associated

allele. For each of the 68 CMV-associated TCRs, we divided the cohort into subjects positive for its

most strongly associated HLA allele and subjects negative for that allele. Here we considered both

2- and 4-digit resolution alleles when defining the most strongly associated allele, to allow for TCRs

whose association extends beyond a single 4-digit allele. We computed association p-values

between TCR occurrence and CMV seropositivity over these two cohort subsets independently and

compared them (Figure 10C). We see that the majority of the points lie below the y ¼ x line—indi-

cating a stronger CMV-association on the subset of the cohort positive for the associated allele—

and also below the line corresponding to the expected minimum of 68 uniform random variables

(i.e. the expected upper significance limit in the absence of CMV association on the allele-negative

cohort subsets). There are however a few TCRbs which do not appear strongly HLA-associated and

for which the CMV-association remains strong in the absence of their associated allele (the points

above the line y ¼ x in Figure 10C). For example, the public TCRb chain defined by TRBV07 and the

CDR3 sequence CASSSDSGGTDTQYF (which corresponds to the highest point in Figure 10C) is

strongly CMV-associated (22=23 subjects with this chain are CMV positive; P<3� 10
�7) but does not

show evidence of HLA association in our dataset. TCRs with HLA promiscuity may be especially inter-

esting from a diagnostic perspective, since their phenotype associations may be more robust to dif-

ferences in genetic background.

Finally, we looked to see whether CMV association completely explained the observed HLA asso-

ciations, in the sense that a response to one or more CMV epitopes was likely the only driver of HLA

association, or whether there might be evidence for other epitope-specific responses by these TCRb

chains or a more general affinity for the associated allele, perhaps driven by common self antigens.

Put another way, do we see evidence for pre-existing enrichment of any of these TCRb chains when

their associated allele is present, even in the absence of CMV, which might suggest that the CMV

response recruits from a pre-selected pool enriched for TCRs with intrinsic affinity for the restricting

allele? To approach this question we split the cohort into CMV seropositive and seronegative sub-

jects and computed, for each of the 68 CMV-associated TCRs, the strength of its association with its

preferred allele over these two subsets separately. Figure 10D compares these HLA-association p-

values computed over the subsets of the cohort positive (289 individuals, x-axis) and negative (352

individuals, y-axis) for CMV. We can see in this case that all of the associations on the CMV-positive

subset are stronger than those on the CMV-negative subset, and indeed the CMV-negative p-values

do not appear to exceed random expectation given the number of comparisons performed. Thus,

the apparent lack of any significant HLA-association on the CMV-negative cohort subset suggests

that the HLA associations of these CMV-predictive chains are largely driven by CMV exposure. A lim-

itation of this analysis is that, although the CMV-negative subset of the cohort is larger than the

CMV-positive subset, the number of TCR occurrences in the CMV-negative subset is likely lower

than in the CMV-positive subset for these CMV-associated chains, which will limit the strength of the

HLA associations that can be detected.

Discussion
Each individual’s repertoire of circulating immune receptors encodes information on their past and

present exposures to infectious and autoimmune diseases, to antigenic stimuli in the environment,

and to tumor-derived epitopes. Decoding this exposure information requires an ability to map from

amino acid sequences of rearranged receptors to their eliciting antigens, either individually or collec-

tively. One approach to developing such an antigen-mapping capability would involve collecting

deep repertoire datasets and detailed phenotypic information on immune exposures for large

cohorts of genetically diverse individuals. Correlation between immune exposure and receptor

occurrence across such datasets could then be used to train statistical predictors of exposure, as

demonstrated by Emerson et al. for CMV serostatus. The main difficulty with such an approach,

beyond the cost of repertoire sequencing, is likely to be the challenge of assembling accurate and

complete immune exposure information.
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Figure 10. CMV-associated TCRb chains are largely HLA-restricted. (A) Comparison of CMV-association (x-axis) and HLA-association (y-axis) p-values for

68 CMV-associated TCRb chains shows that the majority are also HLA associated. (B) Smoothed densities comparing HLA-association p-value

distributions for the 68 CMV-associated chains (blue) and a cohort-frequency matched set of 6800 randomly selected public TCRb chains. CMV-

associated TCRs are much more strongly HLA-associated than would be expected based solely on their cohort frequency. (C) CMV-association p-values

computed over subsets of the cohort positive (x-axis) or negative (y-axis) for the HLA allele most strongly associated with each TCR. For most of the

TCR chains, CMV association is restricted to the subset of the cohort positive for their associated HLA allele. (D) HLA-association p-values computed

over CMV-positive (x-axis) or CMV-negative (y-axis) subsets of the cohort suggest that for these 68 CMV-associated TCRb chains, HLA-association is

driven solely by response to CMV (rather than generic affinity for their associated allele, for example, or additional self or viral epitopes). In panels (A),

(C), and (D), points are colored by CMV-association p-value; in all panels we use a modified logarithmic scale based on the square root of the exponent

when plotting p-values in order to avoid compression due to a few highly significant associations.

DOI: https://doi.org/10.7554/eLife.38358.027

The following source data is available for figure 10:

Source data 1. Full and subsetted CMV- and HLA- association p-values for 68 CMV-associated TCRs.

DOI: https://doi.org/10.7554/eLife.38358.028
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For this reason, we set out to discover potential signatures of immune exposures de novo, in the

absence of phenotypic information, using only the structure of the public repertoire—its receptor

sequences and their occurrence patterns. By analyzing co-occurrence between pairs of public TCRb

chains and between individual TCRb chains and HLA alleles, we were able to identify statistically sig-

nificant clusters of co-occurring TCRs across a large cohort of individuals and in a variety of HLA

backgrounds. Indirect evidence from sequence matches to experimentally-characterized receptors

suggests that some of these TCR clusters may reflect hidden immune exposures shared among sub-

sets of the cohort members; indeed, several of the most significant clusters appear linked to com-

mon viral pathogens (parvovirus B19, influenza, CMV, and EBV).

The results of this paper demonstrate the potential for a productive dialog between statistical

analysis of TCR repertoires and immune exposure analysis. Specifically, sequences from the statisti-

cally-inferred clusters defined here could be tested for antigen reactivity or combined with immune

exposure data to infer the driver of TCR expansion, as was done here for the handful of CMV-associ-

ated clusters based on CMV serostatus information. In either case our clustering approach will

reduce the amount of independent data required, since the immune phenotype data is used for

annotation of a modest number of defined TCR groupings rather than direct discovery of predictive

TCRs from the entire public repertoire. We can also look for the presence of specific TCRs and TCR

clusters identified here in other repertoire datasets, for example from studies of specific autoimmune

diseases or pathogens, as a means of assigning putative functions. However the answer may not be

entirely straightforward: it remains possible that enrichment for other cluster TCRs, rather than being

associated with an exposure per se, is instead associated with some subject-specific genetic or epi-

genetic factor that determines whether a specific TCR response will be elicited by a given exposure.

The finding by Emerson et al.—now replicated and extended in this work—that there are large

numbers of TCRb chains whose occurrence patterns (independent of potential TCRa partners) are

strongly associated with specific HLA alleles, raises the question of what selective forces drive these

biased occurrence patterns. Our observations point to a potential role for responses to common

pathogens in selecting some of these chains in an HLA-restricted manner. Self-antigens (presented

in the thymus and/or the periphery) may also play a role in enriching for specific chains, as suggested

by (Madi et al., 2017) in their work on TCR similarity networks formed by the most frequent CDR3

sequences. Our conclusions diverge somewhat from this previous work, which may be explained by

the following factors: our use of HLA-association rather than intra-individual frequency as a filter for

selecting TCRs, our inclusion of information on the V-gene family in addition to the CDR3 sequence

when defining TCR sharing and computing TCR similarity, and our use of TCR occurrence patterns,

rather than CDR3 edit distance, to discover TCR clusters. We also find it interesting that class II loci

appear on average to have greater numbers of associated TCRb chains than class I loci (Figure 5):

presumably this reflects differences in selection and/or abundance between the CD4+ and CD8+ T

cell compartments (Sinclair et al., 2013), but the underlying explanation for this trend is unclear,

although a similar bias was observed by Sharon et al., 2016. One caveat is that it can be difficult to

reliably assign TCR associations to individual members of groups of highly correlated HLA alleles;

perfectly correlated alleles have been collapsed into haplotypes in our analysis, but there remain

allele pairs (particularly between the HLA-DR and HLA-DQ loci) that strongly co-occur across the

cohort. In addition, TCRb chains associated with multiple HLA alleles (for example, because they rec-

ognize the same peptide presented by several different alleles) might be missed in our approach;

although our analysis of HLA-association for CMV-associated TCR chains did not detect a substantial

degree of HLA promiscuity, it remains to be seen whether this extends to other classes of functional

TCRs. Alternative approaches that focus on other features, such as clonal abundance, to select TCR

chains for clustering and downstream analysis are worth pursuing. It is also worth pointing out that

our primary focus on presence/absence of TCRb chains (rather than abundance) assumes relatively

uniform sampling depths across the cohort; in the limit of very deep repertoire sequencing, patho-

gen-associated chains may be found (presumably in the naive pool) even in the absence of the asso-

ciated immune challenge, while shallow sampling reliably picks out only the most expanded T cell

clones. Here the use of clusters of responsive TCRs rather than individual chains lessens stochastic

fluctuations in TCR occurrence patterns, providing some measure of robustness.

We look forward to the accumulation of new data sets, which will enable future researchers to

move beyond the limitations of the study presented here. An ideal study would perform discovery

on repertoire data from multiple large cohorts, rather than the single large cohort generated with a
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single sequencing platform. Although we do validate TCR clusters on two independent datasets,

with one from a different immune profiling technology, performing discovery on multiple large

cohorts would presumably give more robust results. Future analyses of independent, HLA-typed

cohorts will provide additional validation of trends seen here. The lack of sequenced TCRa or paired

a/b repertoires for this cohort limits the features we can detect and may introduce bias into some of

our conclusions. Certain T cell subsets, such as MAIT and invariant natural killer T cells, are more eas-

ily recognized from a chain sequence data. It is likely that many TCRs that are associated with spe-

cific immune exposures when considered as paired TCR chains are not detectably associated with

those exposures (or with other TCRs responding to those exposures) when analyzing only the a or b

chain alone: indeed it is somewhat surprising that we find as many apparent associations and co-

occurring clusters as we do given that we are considering only the TCRb chain. Greater sequencing

depth and/or analysis of sorted T cell populations will likely be required of future studies that aim to

examine the impact of HLA on the composition of the naive T cell repertoire. We also hope that

future studies will have rich immune exposure data beyond CMV serostatus: although the cohort

members were all nominally healthy at the time of sampling, it is likely that there are a variety of

immune exposures, some presaging future pathologies, that can be observed in a diverse collection

of 650+ individuals. As an example, two of our EBV-annotated clusters contain TCRb chains also

seen in the context of rheumatoid arthritis: cross-reactivity between pathogen and autoimmune epit-

opes may mean that TCR clusters discovered on the basis of common infections also provide infor-

mation relevant in the context of autoimmunity.

Materials and methods

Datasets
TCRb repertoire sequence data for the 666 members of the discovery cohort was downloaded from

the Adaptive biotechnologies website using the link provided in the original (Emerson et al., 2017)

publication (https://clients.adaptivebiotech.com/pub/Emerson-2017-NatGen). The repertoire

sequence data for the 120 individuals in the ‘Keck120’ validation set was included in the same down-

load. Repertoire sequence data for the 86 individuals in the ‘Brit86’ validation set was downloaded

from the NCBI SRA archive using the Bioproject accession PRJNA316572 (Britanova et al., 2016)

and processed using scripts and data supplied by the authors (https://github.com/mikessh/aging-

study) in order to demultiplex the samples and remove technical replicates. Repertoire sequence

data for TCRb chains from MAIT cells was downloaded from the NCBI SRA archive using the Biopro-

ject accession PRJNA412739 (Howson et al., 2018). Repertoire sequence data for TCRb chains from

T cells sorted for CD4/CD8 surface markers were taken from the following studies: (Emerson et al.,

2013), available for download at https://clients.adaptivebiotech.com/pub/emerson-2013-jim;

(Rubelt et al., 2016), downloaded from the NCBI SRA archive using the Bioproject accession

PRJNA300878; (Li et al., 2016), downloaded from the NCBI SRA archive using the Bioproject acces-

sion PRJNA348095; and (Oakes et al., 2017), downloaded from the NCBI SRA archive using the Bio-

project accession PRJNA390125.

V and J genes were assigned by comparing the TCR nucleotide sequences to the IMGT/GENE-

DB (Giudicelli et al., 2005) nucleotide sequences of the human TR genes (sequence data down-

loaded on 9/6/2017 from http://www.imgt.org/genedb/). CDR3 nucleotide and amino acid sequen-

ces and most-parsimonious VDJ recombination scenarios were assigned by the TCRdist pipeline

(Dash et al., 2017) (the most parsimonious recombination scenario, used for identifying non-germ-

line CDR3 amino acids, is the one requiring the fewest non-templated nucleotide insertions). To

define the occurrence matrix of public TCRs and assess TCR-TCR, TCR-HLA and TCR-CMV associa-

tion, a TCRb chain was identified by its CDR3 amino acid sequence and its V-gene family (e.g.,

TRBV6-4*01 was reduced to TRBV06). TCR sequence reads for which a unique V-gene family could

not be determined (due to equally well-matched V genes from different families, a rare occurrence

in this dataset) were excluded from the analysis. The matrix M of public TCRb occurrences across

the discovery cohort, HLA allele occurrence patterns, and other associated data needed to repro-

duce the findings of this study have been deposited in the Zenodo database (doi:10.5281/

zenodo.1248193).
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Eliminating potential cross-contamination
A preliminary analysis of TCR sharing at the nucleotide level was conducted to identify potential

cross-contamination in the discovery cohort repertoires. Each TCRb nucleotide sequence that was

found in multiple repertoires was assigned a generation probability (Pgen, see below) in order to

identify nucleotide sequences with suspiciously high sharing rates among repertoires. Visual compar-

ison of the sharing rate (the number of repertoires in which each TCRb nucleotide sequence was

found) to the generation probability (Figure 11) showed that the majority of highly-shared TCRs had

correspondingly high generation probabilities; it also revealed a cluster of TCR chains with unexpect-

edly high sharing rates. Examination of the sequences of these highly-shared TCRs revealed them to

be variants of the consensus sequence CFFKQKTAYEQYF (coding sequence: tgttttttcaagcagaa-

gacggcatacgagcagtacttc). Consultation with scientists at Adaptive Biotechnologies confirmed

that these sequences were likely to represent a technical artifact of the sequencing pipeline. We

elected to remove all TCRb nucleotide sequences whose sharing rates put them outside the decision

boundary indicated by the black line in Figure 11, which eliminated the vast majority of the artifac-

tual variants as well as a handful of other highly shared, low-probability sequences (592 nucleotide

sequences in total were removed).

Measuring clonal expansion
Each public TCRb chain was assigned a clonal expansion index (Iexp) determined by its frequencies in

the repertoires in which it was found. First, the unique TCRb chains present in each repertoire were

ordered based on their inferred nucleic acid template count (Carlson et al., 2013), and assigned a

rank ranging from 0 (lowest template count) to S� 1 (highest template count), where S is the total

number of chains present in the repertoire. TCRs with the same template count were assigned the

same tied rank equal to the midpoint of the tied group. In order to compare across repertoires, the

ranks for each repertoire were then normalized by dividing by the number of unique sequences in

the repertoire. The clonal expansion index for a given public TCR t was taken to be its average nor-

malized rank for the repertoires in which it occurred:

Iexp tð Þ ¼
1

m

X

m

i¼1

ri

Si � 1
;

where the sum is taken over the m repertoires in which t is found, ri is the template-count rank of

TCR t in repertoire i, and Si is the total size of repertoire i.

HLA typing
HLA genotyping was performed and confirmed by molecular means, including sequence specific oli-

gonucleotide probe typing (SSOP), Sanger sequencing (SBT) or next generation sequencing (NGS)

(Smith et al., 2014). Independently, HLA alleles were imputed using data generated by high density

single-nucleotide polymorphism arrays as previously described (Martin et al., 2017). Imputed alleles

were compared with HLA typing data from SBT and NGS, and used to resolve ambiguous HLA

codes generated by SSOP and provide a uniform set of four digit allele assignments. HLA typing

data availability varied across loci as follows: HLA-A (629 subjects), HLA-B (630 subjects), HLA-C (629

subjects), HLA-DRB1 (630 subjects), HLA-DQA1 (522 subjects), HLA-DQB1 (630 subjects), HLA-DPA1

(606 subjects), and HLA-DPB1 (472 subjects). When calculating the association p-values between

TCRb chains and HLA alleles reported in Table 1, the cohort was restricted to the subset of subjects

with available HLA typing at the relevant locus. For comparing TCR association rates across loci in

Figure 5, associations were calculated over the cohort subset (522 subjects) with typing data at all

compared loci (A, B, C, DRB1, DQA1, and DQB1) in order to avoid spurious differences in associa-

tion strengths arising from differential data availability among the loci. Due to their very strong link-

age on our cohort, five DR-DQ haplotypes were treated as single allele units for association

calculations and clustering: DRB1*03:01-DQA1*05:01-DQB1*02:01, DRB1*15:01-DQA1*01:02-

DQB1*06:02, DRB1*13:01-DQA1*01:03-DQB1*06:03, DRB1*10:01-DQA1*01:05-DQB1*05:01, and

DRB1*09:01-DQA1*03:02-DQB1*03:03.
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TCR generation probability
We implemented a version of the probabilistic model proposed by Walczak and co-workers

(Murugan et al., 2012) in order to assign to each public TCRb chain (defined by a V-gene family and

a CDR3 amino acid sequence) a generation probability, Pgen, which captures the probability of see-

ing that TCRb in the preselection repertoire. Pgen is calculated by summing the probabilities of the

possible VDJ rearrangements that could have produced the observed TCR:

Pgen Vfamily;CDR3aa
� �

¼
s2S

X

P sð Þ

where S represents the set of possible VDJ recombination scenarios capable of producing the

observed TCR V family and CDR3 amino acid sequence. To compute the probability of a given

recombination scenario s, we use the factorization proposed by Marcou et al. (2018), which

Figure 11. Analysis of TCR sharing at the nucleotide level and VDJ recombination probabilities helps to identify potential contamination. Each point

represents a TCRb nucleotide sequence that occurs in more than one repertoire, plotted according to its generation probability (Pgen, x-axis) and the

number of repertoires in which it was seen (Nrepertoires, y-axis). Very low probability nucleotide sequences that are shared across many repertoires

represent potential cross-contamination, as confirmed for one large cluster of artifactual sequences (see the main text). We excluded all TCRb

nucleotide sequences lying above the boundary indicated by the black line (N ¼ 592).

DOI: https://doi.org/10.7554/eLife.38358.029

The following source data is available for figure 11:

Source data 1. TCRb nucleotide sequences excluded from our analysis.

DOI: https://doi.org/10.7554/eLife.38358.030
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captures observed dependencies of V-, D-, and J-gene trimming on the identity of the trimmed

gene and of inserted nucleotide identity on the identity of the preceding nucleotide:

P sð Þ ¼ P Vsð ÞP DsjJsð ÞP Jsð Þ
�P delsV jVsð ÞP delsD5

0;delsD3
0jDsð ÞP delsJjJsð Þ

�P InssVDð Þ
Q

InssVD

i

P nijni�1ð Þ

�P InssDJð Þ
Q

InssDJ

i

P mijmi�1ð Þ

Here the recombination scenario s consists of a choice of V gene (Vs), D gene (Ds), J gene (Js),

number of nucleotides trimmed back from the end of the V gene (delsV ) or J gene (delsJ) or D gene

(delsD5
0 and delsD3

0), number of nucleotides inserted between the V and D genes (InssVD) and

between the D and J genes (InssDJ) and the identities of the inserted nucleotides ( nif g and mif g

respectively). At the start of the calculation, the CDR3 amino acid sequence is converted to a list of

potential degenerate coding nucleotide sequences (here degenerate means that nucleotide class

symbols such as W (for A and T) and R (for A and G) are allowed). Since each amino acid other than

Leucine, Serine, and Arginine has a single degenerate codon (P=CCN, N = AAY, K = AAR, etc.) and

these three amino acids have two such codons (S={TCN,AGY}, R={CGN,AGR}, L={CTN,TTR}), this

list of nucleotide coding sequences is generally not too long. The generation probability is then

taken to be the sum of the probabilities of these degenerate nucleotide sequences. Since the total

number of possible recombination scenarios is in principle quite large, we make a number of approx-

imations to speed the calculation: we limit excess trimming of genes to at most three nucleotides,

where excess trimming is defined to be trimming back a germline gene nucleotide which matches

the target CDR3 nucleotide (therefore requiring non-templated reinsertion of the same nucleotide);

at most two palindromic nucleotides are allowed; sub-optimal D gene alignments are only consid-

ered up to a score gap of 2 matched nucleotides relative to the best match. The parameters of the

probability model are fit by a simple iterative procedure in which we generate rearranged sequences

using an initial model, compare the statistics of those sequences to statistics derived from observed

out-of-frame rearrangements in the dataset, and adjust the probability model parameters to itera-

tively improve agreement. We compared the nucleotide sequence generation probabilities com-

puted using our software with those computed using the published tool IGoR (Marcou et al., 2018)

and found good overall agreement: a linear regression analysis of the log10 Pgen

� �

values gives a cor-

relation coefficient R¼ 0:97 with slope of 0:98 and an intercept of 0:22 for a set of 800 randomly

selected TCRb chains.

Co-occurrence calculations
We performed an analysis of covariation across the cohort for pairs of TCR chains and for TCR chains

and HLA alleles (Figure 12). We used the hypergeometric distribution to assess the significance of

an observed overlap between two subsets of the cohort (for example, the subset of subjects positive

for a given HLA allele and the subset of subjects with a given TCRb chain in their repertoires), taking

our significance p-value to be the probability of seeing an equal or greater overlap if the two

subsets had been chosen at random:

Poverlap k;N1;N2;Nð Þ ¼
j�k

X

N1

j

� �

N�N1

N2� j

� �

N

N2

� �

where k is the size of the overlap, N1 and N2 are the sizes of the two subsets, and N is the total

cohort size (i.e., the number of individuals in the cohort). We use Poverlap to assess the significance of

an overlap Ca \Ct between an HLA allele a found in the cohort subset Ca and a TCRb chain t found

in the cohort subset Ct as follows:

PHLA a; tð Þ ¼ Poverlap jCa \Ct j; jCaj; jCt j;Nð Þ

where jCj denotes the cardinality of the set C. A complication arises when assessing TCR-TCR co-

occurrence in the presence of variable-sized repertoires: TCRs are more likely to come from the
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larger repertoires than the smaller ones, which violates the assumptions of the hypergeometric distri-

bution and leads to inflated significance scores. In particular, when we use the hypergeometric distri-

bution to model the overlap between the sets of subjects in which two TCR chains are found, we

implicitly assume that all subjects are equally likely to belong to a TCR chain’s subject set. If the sub-

ject repertoires vary in size, this assumption will not hold. For example, in the limit of a subject with

an empty repertoire, no TCR subject sets will contain that subject, which will inflate all the overlap p-

values since we are effectively overstating the size N of the cohort by 1. On the other hand, if one of

the subject repertoires contains all the public TCR chains, then each TCR-TCR overlap will automati-

cally contain that subject, again inflating the p-values since we are artificially adding 1 to each of k,

N1, N2, and N. We developed a simple heuristic to correct for this effect using a per-subject bias fac-

tor by defining

bi ¼
SiN

PN
j¼1

Sj
;

where Si is the size of repertoire i and N is the cohort size. To score an overlap between the occur-

rence patterns of two TCRb chains t and t0, where t is found in the subset Ct of the cohort, t0 is found

in the subset Ct0 , and their overlap Ct \Ct0 contains the k subjects s1; :::; sk, we adjust the overlap p-

value (Poverlap) by the product of the bias factors of the subjects in the overlap:

Figure 12. Schematic diagram illustrating the co-occurrence analysis. Co-occurrence p-values are calculated to assess TCR-TCR (PCO) and TCR-HLA

(PHLA) covariation across the cohort. Shared response to unknown immune exposures may explain strongly co-occurring TCR pairs, while significant

HLA association can highlight functional TCRs. TCRb chains are compared to a set of previously characterized TCRs for annotation purposes.

DOI: https://doi.org/10.7554/eLife.38358.031
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PCO t; t0ð Þ ¼
Y

k

j¼1

bsj

 !

Poverlap jCt \Ct0 j; jCtj; jCt0 j;Nð Þ

Here we are multiplying the hypergeometric p-value (Poverlap) by a term that corrects for the fact

that not all overlaps of size k are equally likely (the product of the k bias factors captures the relative

bias toward the observed overlap). This has the effect of decreasing the significance assigned to

overlaps involving larger repertoires, yet remains fast to evaluate, an important consideration given

that the all-vs-all TCR co-occurrence calculation involves about 1014 pairwise comparisons (and this

calculation is repeated multiple times with shuffled occurrence patterns to estimate false-discovery

rates). When clustering by co-occurrence, we augmented this heuristic p-value correction by also

eliminating repertoires with very low (fewer than 30,000) or very high (more than 120,000) numbers

of public TCRb chains (nonzero entries in the occurrence matrix M), as well as five additional reper-

toires which showed anomalously high levels of TCR nucleotide sharing with another repertoire—all

with the goal of reducing potential sources of spurious TCR-TCR co-occurrence signal.

Estimating false-discovery rates
We used the approach of (Storey and Tibshirani, 2003) to estimate false-discovery rates for detect-

ing associations between TCRs and HLA alleles and between TCRs and CMV seropositivity. Briefly,

for a fixed significance threshold P we estimate the false-discovery rate (FDR) by randomly permut-

ing the HLA allele or CMV seropositivity assignments 20 times and computing the average number

of significant associations discovered at the threshold P in these shuffled datasets. The estimated

FDR is then the ratio of this average shuffled association number to the number of significant associ-

ations discovered in the true dataset at the same threshold. In order to estimate a false-discovery

rate for TCR-TCR co-occurrence over the full cohort, we performed 20 co-occurrence calculations on

shuffled occurrence matrices, preserving the per-subject bias factors during shuffling by resampling

each TCR’s occurrence pattern with the bias distribution bif g determined by the subject repertoire

sizes.

Assigning CD4+/CD8+ status to public TCRs
We assessed the accuracy of our TCR:HLA associations by looking for HLA-associated public TCRb

chains in sequenced repertoires from T cell populations that were sorted for the presence of CD4/

CD8 surface markers. We selected four repertoire datasets with matched CD4+ and CD8+ reper-

rtoires from a total of 63 individuals (see the section Datasets for access details; [Emerson et al.,

2013; Rubelt et al., 2016; Li et al., 2016; Oakes et al., 2017]). We analyzed the occurrence pat-

terns of HLA-associated TCRb chains in these sequence datasets, producing for each TCRb counts

of the number of CD4+ and CD8+ repertoires it was observed in (NCD4 and NCD8). TCRb abundance

levels within the individual repertoires were ignored; each occurrence in a repertoire contributed a

single count to the respective CD4 or CD8 total (which therefore range between 0 and 63). Given a

threshold d on the CD4/CD8 counts difference, we assign to the CD4 compartment all TCRs for

which NCD4 � NCD8 � d, and we assign to the CD8 compartment all TCRs for which NCD8 � NCD4 � d.

Figure 5—figure supplement 1 shows the concordance between these assignments and inferences

based on the HLA class of the most strongly associated HLA allele, for all significantly associated

TCRb chains and for various threholds d.

TCR clustering
We used the DBSCAN (Ester et al., 1996) algorithm to cluster public TCRb chains by their occur-

rence patterns. DBSCAN is a simple and robust clustering procedure that requires two input param-

eters: a similarity/distance threshold (Tsim) at which two points in the dataset are considered to be

neighbors, and a minimum number of neighbors (Ncore) for a point to be considered a core, as

opposed to a border, point. DBSCAN clusters consist of the connected components of the neigh-

bor-graph over the core points, together with any border point neighbors the core cluster members

have. To prevent the discovery of fictitious clusters, Tsim and Ncore can be selected so that core points

(points with at least Ncore neighbors) are unlikely to occur by chance. There is a trade-off between

the two parameter settings: as Tsim is relaxed, points will tend to have more neighbors on average

and thus Ncore should be increased, which biases toward discovery of larger clusters; conversely,
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more stringent settings of Tsim are compatible with smaller values for Ncore which permits the discov-

ery of smaller, more tightly linked clusters.

For clustering TCRs by co-occurrence over the full cohort, we used a threshold of Tsim¼ 10
�8 and

chose a value for Ncore (6) such that no core points were found in any of the 20 shuffled datasets. In

other words, two TCRs t1 and t2 were considered to be neighbors for DBSCAN clustering if

PCO t1; t2ð Þ<10�8; a TCR was considered a core point if it had at least 6 neighbors. Choosing parame-

ters for HLA-restricted TCR clustering was slightly more involved due to the variable number of clus-

tered TCRs for different alleles, and the more complex nature of the similarity metric, whose

dependence on TCR sequence makes shuffling-based approaches more challenging. To begin, we

transformed the TCRdist sequence-similarity measure into a significance score PTCRdist which cap-

tures the probability of seeing an observed or smaller TCRdist score for two randomly selected

TCRb chains. Since public TCRb chains are on average shorter and closer to germline than private

TCRs, we derived the PTCRdist CDF by performing TCRdist calculations on randomly selected public

TCRs seen in at least 5 repertoires. We identified neighbors for DBSCAN clustering using a similarity

score Psim that combines co-occurrence and TCR sequence similarity:

Psim t1; t2ð Þ ¼ f PTCRdist t1; t2ð Þ �PCO t1; t2ð Þð Þ

where the transformation by f xð Þ ¼ x� x log xð Þ corrects for taking the product of two p-values

because f xð Þ is the cumulative distribution function of the product of two uniform random variables.

Thus, if PTCRdist and PCO are independent and uniformly distributed, the same will be true of Psim.

For HLA-restricted clustering using this combined similarity measure we set a fixed value of

Tsim¼ 10
�4 and adjusted the Ncore parameter as a function of the total number of TCRs clustered for

each allele. As in global clustering, our goal was to choose Ncore such that core points were unlikely

to occur by chance (more precisely, had a per-allele probability less than 0:05). We estimated the

probability of seeing core points by modeling neighbor number using the binomial distribution,

assuming that the observed neighbor number of a given TCR during clustering is determined by

M � 1 independent Bernoulli-distributed neighborness tests with rate r, where M is the number of

clustered TCRs. Rather than assuming a fixed neighbor-rate r across TCRs, we captured the

observed variability in neighbor-rate (due, for example, to unequal V-gene frequencies and variable

CDR3 lengths) by using a mixture of 20 rates rj
� 	

estimated from similarity comparisons on randomly

chosen public TCRs. More precisely, we choose the smallest value of Ncore for which the following

inequality holds (where M is the number of clustered TCRs for the allele in question):

M

20

X

20

j¼1

X

M�1

i¼Ncore

M� 1

i

� �

rij 1� rj
� �M�1�i

< 0:05

We also used this neighbor-number model to assign a p-value (Psize) to each cluster reflecting the

likelihood of seeing the observed degree of clustering by chance. Since DBSCAN clusters are effec-

tively single-linkage-style partitionings of the core points (together with any neighboring border

points), they can have a variety of shapes, ranging from densely interconnected graphs, to extended

clusters held together by local neighbor relationships (Ester et al., 1996). Modeling the total size of

these arbitrary groupings is challenging, so we took the simpler and more conservative approach of

assigning p-values based on the size of the largest TCR neighborhood (set of neighbors for a single

TCR) contained within each cluster. We identified the member TCR with the greatest number of

neighbors in each cluster (the cluster center) and computed the likelihood of seeing an equal or

greater neighbor-number under the mixture model described above. This significance estimate is

conservative in that it neglects clustering contributions from TCRs outside the neighborhood of the

cluster center, however in practice we observed that the majority of TCR clusters were dominated

by a single dense region of repertoire space and therefore reasonably well-captured by a single

neighborhood. To control false discovery when combining DBSCAN clusters from independent clus-

tering runs for different HLA alleles, we used the Holm method (Holm, 1979) applied to the sorted

list of cluster Psize values, with a target family-wise error rate (FWER) of 0:05 (i.e., we attempted to

limit the overall probability of seeing a false cluster to 0:05). In the Holm FWER calculation we set

the total number of hypotheses equal to the total number of TCRs clustered across all alleles minus

the cumulative neighbor-count of the cluster centers (we exclude cluster center neighbors since their
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neighbor counts are not independent of the neighbor count of the cluster center). When performing

HLA-restricted clustering, each TCRb chain was assigned to its most strongly associated HLA allele.

Where two alleles had identical or nearly identical (within a factor of 1:25) association p-values, the

TCR chain was included in the clustering analysis for both alleles.

Analyzing TCR clusters
For each (global or HLA-restricted) TCR cluster, we analyzed the occurrence patterns of the member

TCRs in order to identify a subset of the (full or allele-positive) cohort enriched for those TCRs. We

counted the number of cluster member TCRs found in each subject’s repertoire and sorted the sub-

jects by this TCR count (rank plots in Figure 3B–C and in the right panels of Figure 7). For compari-

son, we generated control TCR count plots by independently resampling the subjects for each

member TCR, preserving the frequency of each TCR and biasing by subject repertoire size. Each

complete resampling of the cluster member TCR occurrence patterns produced a subject TCR rank

plot; we repeated this resampling process 1000 times and averaged the rank plots to yield the green

(‘randomized’) curves in Figure 3B–C and Figure 7. To compare the observed and randomized

curves, we took a signed difference

DCO ¼
1�i�N
max

j�i

X

Cj�Rj

� �

þ
j>i

X

Rj�Cj

� �

� �

between the observed counts Cj and the randomized counts Rj, where the value of the subject index

i¼ imax that maximizes the right-hand side in the equation above represents a switchpoint below

which the observed counts generally exceed the randomized counts and above which the reverse is

true (both sets of counts are sorted in decreasing order). We take this switchpoint imax as an estimate

of the number of enriched subjects for the given cluster (this is the value given in the ‘Subjects’ col-

umn in Table 3).

Since the raw DCO values are not comparable between clusters of different sizes and for different

alleles, we transformed these values to a Z-score (ZCO) by generating, for each cluster, 1000 addi-

tional random TCR count curves and computing the mean (�D) and standard deviation (sD) of their

Drand
CO score distribution:

ZCO ¼
DCO��D

sD

We used this co-occurrence score ZCO together with a log-transformed version of the cluster size

p-value,

Ssize ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� log10 Psizeð Þ
p

for visualizing clustering results in Figure 6 (Ssize on the x-axis and ZCO on the y-axis) and prioritizing

individual clusters for detailed follow-up.

TCR annotations
We annotated public TCRs in our dataset by matching their sequences against two publicly available

datasets: VDJdb (Shugay et al., 2018), a curated database of TCR sequences with known antigen

specificities (downloaded on 3/29/18; about 17; 000 human TCRb entries) and McPAS-TCR

(Tickotsky et al., 2017), a curated database of pathogen-associated TCR sequences (downloaded

on 3/29/18; about 9; 000 human TCRb entries). VDJdb entries are associated with a specific MHC-

presented epitope, whereas McPAS-TCR also includes sequences of TCRs isolated from diseased tis-

sues whose epitope specificity is not defined. We added to this merged annotation database the

sequences of structurally characterized TCRs of known specificity (see below), as well as literature-

derived TCRs from a handful of primary studies (Dash et al., 2017; Glanville et al., 2017;

Song et al., 2017; Kasprowicz et al., 2006). For matches between HLA-associated TCRs and data-

base TCRs of known specificity, we filtered for agreement (at 2-digit resolution) between the associ-

ated HLA allele in our dataset and the presenting allele from the database. In other words, TCRs

belonging to B*08:01-restricted clusters were not annotated with matches to database TCRs that

bind to A*02:01-presented peptides.
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Table 3. HLA-restricted TCR clusters with size (Ssize) and co-occurrence (ZCO) scores, annotations (abbreviated as in Figure 6), and

validation scores.

Rank HLA allele Allele frequency TCRs Subjects Cluster center Ssize ZCO Annotations ZKeck120

CO
ZBrit86

CO

1 A*24:02 102 32 29 TRBV05,CASSGSGGYNEQFF 8.95 17.64 B19 10.38 6.74

2 A*02:01 218 43 66 TRBV19,CASSGRSTDTQYF 6.47 13.01 INF, T1D 12.28 4.28

3 DRB1*07:01 119 17 36 TRBV09,CASSGQGAYEQYF 4.08 12.91 coCMV 9.46 6.40

4 DRB1*15:01-DQ 112 16 27 TRBV19,CASSPDRSSYNEQFF 4.25 12.13 1.65 1.72

5 B*08:01 115 30 34 TRBV07,CASSQGPAYEQYF 5.97 8.12 EBV, RA 3.83 1.83

6 C*04:01 104 7 24 TRBV19,CASSPGGDYNEQFF 3.94 11.58 4.48 2.01

7 C*04:01 104 11 20 TRBV04,CASSHSGTGETYEQYF 4.91 9.03 7.52 1.66

8 B*15:01 55 23 27 TRBV19,CASSTTSGSYNEQFF 5.43 7.51 10.31 4.01

9 DRB1*03:01-DQ 108 26 39 TRBV29,CSVAPGWGMNTEAFF 4.49 8.61 10.96 7.09

10 A*01:01 154 8 44 TRBV24,CATSDGDTQYF 3.47 10.21 CMV, coCMV 3.80 2.42

11 B*35:01 56 18 24 TRBV10,CATGTGDSNQPQHF 4.98 6.13 EBV, RA 4.50 5.42

12 DRB1*03:01-DQ 108 11 35 TRBV07,CASSLSLAGSYNEQFF 3.09 8.15 5.35 1.40

13 A*02:01 218 10 84 TRBV20,CSARDRTGNGYTF 3.81 6.66 EBV 7.14 3.50

14 DRB1*15:01-DQ 112 15 38 TRBV05,CASSLRGVRTDTQYF 3.05 8.08 8.73 3.31

15 A*01:01 154 6 30 TRBV10,CAISESRASGDYNEQFF 3.14 7.67 11.31 2.99

16 DRB1*13:01-DQ 43 7 7 TRBV20,CSASAGESNQPQHF 3.14 7.64 �0.55 �0.35

17 DRB1*03:01-DQ 108 16 32 TRBV20,CSARGGGRSYEQYF 3.31 6.95 2.57 3.09

18 DRB1*11:01 58 14 20 TRBV06,CASSYSVRGRYSNQPQHF 3.26 7.02 8.72 3.44

19 C*08:02 37 6 15 TRBV28,CASSLGIHYEQYF 3.53 6.37 1.82 4.37

20 DRB1*15:01-DQ 112 13 51 TRBV12,CASSLAGTEKLFF 3.27 6.64 4.61 3.01

21 DRB1*03:01-DQ 108 11 23 TRBV05,CASSSTGLRSYEQYF 3.09 6.92 4.73 5.81

22 A*02:01 218 7 64 TRBV04,CASSQGTGRYEQYF 3.51 6.07 2.79 3.23

23 C*03:04 72 5 13 TRBV09,CASSVAYRGNEQFF 3.39 6.14 6.26 3.23

24 DQB1*03:01-DQA1*05:05 84 10 39 TRBV09,CASSVGTVQETQYF 2.97 6.73 3.02 3.54

25 DRB1*04:01 78 25 35 TRBV05,CASSRQGAGETQYF 3.00 6.31 5.82 1.55

26 B*08:01 115 7 30 TRBV12,CASSFEGLHGYTF 2.67 6.67 3.77 2.95

27 C*04:01 104 6 25 TRBV06,CASRTGLAGTDTQYF 3.58 4.78 3.53 3.76

28 DRB1*07:01 119 9 42 TRBV14,CASSLAGMNTEAFF 3.15 5.54 6.99 5.58

29 DQB1*03:01-DQA1*05:05 84 7 36 TRBV02,CASSELENTEAFF 2.97 5.76 5.25 3.24

30 DPB1*03:01-DPA1*01:03 42 7 16 TRBV30,CAWSADSNQPQHF 3.56 4.16 2.42 1.73

31 B*15:01 55 18 27 TRBV29,CSVETRDYEQYF 3.54 3.94 13.81 4.29

32 A*01:01 154 4 26 TRBV09,CASSVGVDSTDTQYF 2.39 6.24 �0.31 2.17

33 C*07:02 142 4 14 TRBV25,CASSPGDEQYF 2.94 5.11 coCMV 6.37 3.69

34 B*08:01 115 6 38 TRBV29,CSVGSGDYEQYF 3.01 4.85 EBV 2.73 0.75

35 A*01:01 154 6 37 TRBV20,CSAPGQGAVEQYF 2.79 5.24 2.42 3.00

36 A*23:01 22 5 7 TRBV06,CASSDGNSGNTIYF 3.38 4.02 1.91 4.11

37 DQB1*03:01-DQA1*05:05 84 7 29 TRBV15,CATSRDPGGNQPQHF 2.97 4.82 5.00 2.67

38 DPB1*04:01-DPA1*01:03 274 5 65 TRBV19,CASSIKGDTEAFF 3.31 4.14 4.89 3.42

39 DPB1*04:01-DPA1*01:03 274 4 55 TRBV19,CASRLSGDTQYF 2.84 4.95 COLO 3.80 1.25

40 B*07:02 125 7 37 TRBV02,CASRGETQYF 2.73 4.88 3.20 2.11

41 B*44:03 41 9 20 TRBV19,CASSATGGIYEQYF 3.35 3.41 MS 6.61 8.76

42 A*24:02 102 6 31 TRBV30,CAWSPGTGDYEQYF 3.05 3.91 3.56 2.99

43 DRB1*07:01 119 13 31 TRBV18,CASSPSVRNTEAFF 2.89 4.20 5.32 0.96

Table 3 continued on next page
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Structural analysis
We analyzed a set of experimentally determined TCR:peptide-MHC structures to find MHC positions

frequently contacted by the CDR3b loop. Crystal structures of complexes involving human TCRs and

human class I or class II HLA alleles (Table 4) were identified using BLAST (Altschul et al., 1997)

searches against the RCSB PDB (Berman et al., 2000) sequence database (ftp://ftp.wwpdb.org/

pub/pdb/derived_data/pdb_seqres.txt). Structural coverage of HLA loci and alleles is sparse and

highly biased toward well studied alleles such as HLA-A*02. Given the high degree of structural simi-

larity among class I and among class II MHC structures solved to date, we elected to share contact

Table 3 continued

Rank HLA allele Allele frequency TCRs Subjects Cluster center Ssize ZCO Annotations ZKeck120

CO
ZBrit86

CO

44 B*57:01 27 5 14 TRBV12,CASSPPEGETQYF 3.22 3.47 6.31 1.94

45 C*06:02 74 4 14 TRBV02,CASSAGTASTDTQYF 2.81 4.27 coCMV 4.76 3.06

46 A*11:01 47 5 7 TRBV09,CASSPKGVGYEQYF 2.75 4.31 2.43 3.32

47 DRB1*01:01 82 9 21 TRBV19,CASSIPGLAYEQYF 2.58 4.63 0.96 �0.49

48 B*07:02 125 7 21 TRBV09,CASSDRRGYTF 2.73 4.34 4.57 0.45

49 B*08:01 115 6 22 TRBV07,CASSSTGAGNQPQHF 2.67 4.24 EBV 1.00 2.85

50 B*18:01 46 5 6 TRBV27,CASSPTSEDTQYF 2.57 4.26 5.79 �0.23

51 B*27:05 36 7 13 TRBV06,CASSLRLAGLYEQYF 2.64 3.81 9.25 1.08

52 B*35:01 56 4 7 TRBV07,CASSQGPGRTYEQYF 2.46 4.10 - -

53 B*35:03 16 4 7 TRBV10,CAISVGNEQFF 2.78 3.42 1.50 0.73

54 A*02:01 218 5 126 TRBV29,CSVGTGGTNEKLFF 2.82 3.32 EBV, MELA 5.65 2.37

55 DRB1*03:01-DQ 108 6 18 TRBV02,CASSAGAGTEAFF 2.36 4.17 0.98 2.79

56 B*44:02 79 4 18 TRBV02,CASSADSSYNEQFF 2.57 3.65 2.09 2.12

57 C*03:04 72 3 8 TRBV27,CASSPRPYNEQFF 2.35 4.08 1.36 3.22

58 A*24:02 102 4 12 TRBV20,CSAREDGHEQYF 2.62 3.54 0.83 2.94

59 A*01:01 154 12 65 TRBV19,CASSIRDHNQPQHF 2.79 3.17 8.44 2.33

60 B*27:05 36 4 12 TRBV07,CASSPPGGSAYNEQFF 2.64 3.23 1.13 2.12

61 C*14:02 23 4 9 TRBV02,CASSGDTSTNEKLFF 2.48 3.50 6.23 -

62 B*27:05 36 9 12 TRBV27,CASSSGTSGNNEQFF 2.64 3.16 4.32 3.24

63 C*12:03 53 6 25 TRBV15,CATSRENEKLFF 2.90 2.51 1.88 3.08

64 A*68:01 29 4 16 TRBV05,CASSLIATNEKLFF 2.71 2.88 3.67 1.23

65 B*51:01 53 6 20 TRBV04,CASSQDYPGGSYEQYF 2.76 2.73 6.43 5.18

66 B*35:01 56 4 8 TRBV27,CASSLGAATGELFF 2.46 3.32 4.52 3.01

67 B*15:01 55 4 20 TRBV06,CASSAGTGRYEQYF 2.44 3.18 2.40 2.23

68 B*44:03 41 7 14 TRBV07,CASSSGESGANVLTF 2.97 2.01 3.92 4.81

69 DRB1*04:02 14 4 6 TRBV03,CASSQASGGANEQFF 2.44 3.04 2.04 2.22

70 B*15:01 55 4 10 TRBV19,CASSHRGGNEQFF 2.44 3.03 0.92 3.58

71 B*15:01 55 5 7 TRBV05,CASSLGVSAGELFF 2.44 2.98 �0.32 �0.12

72 A*32:01 34 3 5 TRBV12,CASSYGPGNQPQHF 2.45 2.84 5.76 3.18

73 A*02:01 218 4 23 TRBV19,CASSTGTATNEKLFF 2.42 2.89 0.84 -

74 DRB1*15:01-DQ 112 7 51 TRBV28,CASSLLGGQPQHF 2.58 2.35 0.66 1.89

75 B*18:01 46 5 15 TRBV27,CASSFPGKEQYF 2.57 2.22 �0.35 5.62

76 B*49:01 16 3 8 TRBV29,CSVERGYNEQFF 2.38 2.14 1.03 0.43

77 A*23:01 22 3 6 TRBV20,CSARDREGAGYGYTF 2.35 2.14 �0.16 �0.12

78 B*55:01 13 3 10 TRBV19,CASRGGNQPQHF 2.36 2.09 0.95 �0.28

DOI: https://doi.org/10.7554/eLife.38358.032
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Table 4. PDB structures analyzed.

PDB
ID* HLA allele Va Ja CDR3a Vb Jb CDR3b Peptide

5bs0 A*01 TRAV21*01 TRAJ28*01 CAVRPGGAGPFFVVF TRBV5-
1*01

TRBJ2-
7*01

CASSFNMATGQYF ESDPIVAQY

3qdj A*02 TRAV12-
2*01

TRAJ23*01 CAVNFGGGKLIF TRBV6-
4*01

TRBJ1-
1*01

CASSLSFGTEAFF AAGIGILTV

4l3e A*02 TRAV12-
2*01

TRAJ23*01 CAVNFGGGKLIF TRBV6-
4*01

TRBJ1-
1*01

CASSWSFGTEAFF ELAGIGILTV

5e9d A*02 TRAV12-
2*01

TRAJ24*02 CAVTKYSWGKLQF TRBV6-
5*01

TRBJ2-
7*01

CASRPGWMAGGVELYF ELAGIGILTV

3qfj A*02 TRAV12-
2*01

TRAJ24*02 CAVTTDSWGKLQF TRBV6-
5*01

TRBJ2-
7*01

CASRPGLAGGRPEQYF LLFGFPVYV

4ftv A*02 TRAV12-
2*01

TRAJ24*02 CAVTTDSWGKLQF TRBV6-
5*01

TRBJ2-
7*01

CASRPGLMSAQPEQYF LLFGYPVYV

3hg1 A*02 TRAV12-
2*01

TRAJ27*01 CAVNVAGKSTF TRBV30*01 TRBJ2-
2*01

CAWSETGLGTGELFF ELAGIGILTV

4eup A*02 TRAV12-
2*01

TRAJ45*01 CAVSGGGADGLTF TRBV28*01 TRBJ2-
1*01

CASSFLGTGVEQYF ALGIGILTV

5c0c A*02 TRAV12-
3*01

TRAJ12*01 CAMRGDSSYKLIF TRBV12-
4*01

TRBJ2-
4*01

CASSLWEKLAKNIQYF RQFGPDWIVA

5eu6 A*02 TRAV21*01 TRAJ53*01 CAVLSSGGSNYKLTF TRBV7-
3*01

TRBJ2-
3*01

CASSFIGGTDTQYF YLEPGPVTV

2p5e A*02 TRAV21*01 TRAJ6*01 CAVRPLLDGTYIPTF TRBV6-
5*01

TRBJ2-
2*01

CASSYLGNTGELFF SLLMWITQC

2bnq A*02 TRAV21*01 TRAJ6*01 CAVRPTSGGSYIPTF TRBV6-
5*01

TRBJ2-
2*01

CASSYVGNTGELFF SLLMWITQV

4mnq A*02 TRAV22*01 TRAJ40*01 CAVDSATALPYGYIF TRBV6-
5*01

TRBJ1-
1*01

CASSYQGTEAFF ILAKFLHWL

5men A*02 TRAV22*01 TRAJ40*01 CAVDSATSGTYKYIF TRBV6-
5*01

TRBJ1-
1*01

CASSYQGTEAFF ILAKFLHWL

5isz A*02 TRAV24*01 TRAJ27*01 CAFDTNAGKSTF TRBV19*01 TRBJ2-
7*01

CASSIFGQREQYF GILGFVFTL

5d2l A*02 TRAV24*01 TRAJ49*01 CAFITGNQFYF TRBV7-
2*02

TRBJ2-
5*01

CASSQTQLWETQYF NLVPMVATV

3gsn A*02 TRAV24*01 TRAJ49*01 CARNTGNQFYF TRBV6-
5*01

TRBJ1-
2*01

CASSPVTGGIYGYTF NLVPMVATV

5d2n A*02 TRAV26-
2*01

TRAJ43*01 CILDNNNDMRF TRBV7-
6*01

TRBJ1-
4*01

CASSLAPGTTNEKLFF NLVPMVATV

5euo A*02 TRAV27*01 TRAJ37*02 CAGAIGPSNTGKLIF TRBV19*01 TRBJ2-
7*01

CASSIRSSYEQYF GILGFVFTL

5hho A*02 TRAV27*01 TRAJ42*01 CAGAGSQGNLIF TRBV19*01 TRBJ2-
7*01

CASSIRSSYEQYF GILEFVFTL

2vlr A*02 TRAV27*01 TRAJ42*01 CAGAGSQGNLIF TRBV19*01 TRBJ2-
7*01

CASSSRASYEQYF GILGFVFTL

1oga A*02 TRAV27*01 TRAJ42*01 CAGAGSQGNLIF TRBV19*01 TRBJ2-
7*01

CASSSRSSYEQYF GILGFVFTL

1bd2 A*02 TRAV29/
DV5*01

TRAJ54*01 CAAMEGAQKLVF TRBV6-
5*01

TRBJ2-
7*01

CASSYPGGGFYEQYF LLFGYPVYV

5e6i A*02 TRAV35*01 TRAJ37*02 CAGPGGSSNTGKLIF TRBV27*01 TRBJ2-
2*01

CASSLIYPGELFF GILGFVFTL

3qeq A*02 TRAV35*01 TRAJ49*01 CAGGTGNQFYF TRBV10-
3*01

TRBJ1-
5*01

CAISEVGVGQPQHF AAGIGILTV

4zez A*02 TRAV38-2/
DV8*01

TRAJ30*01 CAYGEDDKIIF TRBV25-
1*01

TRBJ2-
7*01

CASRRGPYEQYF KLVALVINAV

5jhd A*02 TRAV38-2/
DV8*01

TRAJ52*01 CAWGVNAGGTSYGKLTF TRBV19*01 TRBJ1-
2*01

CASSIGVYGYTF GILGFVFTL

Table 4 continued on next page
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Table 4 continued

PDB
ID* HLA allele Va Ja CDR3a Vb Jb CDR3b Peptide

3o4l A*02 TRAV5*01 TRAJ31*01 CAEDNNARLMF TRBV20-
1*01

TRBJ1-
2*01

CSARDGTGNGYTF GLCTLVAML

3vxs A*24 TRAV21*01 TRAJ12*01 CAVRMDSSYKLIF TRBV7-
9*01

TRBJ2-
2*01

CASSSWDTGELFF RYPLTLGWCF

3vxm A*24 TRAV8-3*01 TRAJ28*01 CAVGAPSGAGSYQLTF TRBV4-
1*01

TRBJ2-
7*01

CASSPTSGIYEQYF RFPLTFGWCF

3sjv B*08 TRAV12-
1*01

TRAJ23*01 CVVRAGKLIF TRBV6-
2*01

TRBJ2-
4*01

CASGQGNFDIQYF FLRGRAYGL

3ffc B*08 TRAV14/
DV4*01

TRAJ49*01 CAMREDTGNQFYF TRBV11-
2*01

TRBJ2-
3*01

CASSFTWTSGGATDTQYF FLRGRAYGL

1mi5 B*08 TRAV26-
2*01

TRAJ52*01 CILPLAGGTSYGKLTF TRBV7-
8*01

TRBJ2-
7*01

CASSLGQAYEQYF FLRGRAYGL

4qrp B*08 TRAV9-2*01 TRAJ43*01 CALSDPVNDMRF TRBV11-
2*01

TRBJ1-
5*01

CASSLRGRGDQPQHF HSKKKCDEL

4g9f B*27 TRAV14/
DV4*02

TRAJ21*01 CAMRDLRDNFNKFYF TRBV6-
5*01

TRBJ1-
1*01

CASREGLGGTEAFF KRWIIMGLNK

4jrx B*35 TRAV19*01 TRAJ34*01 CALSGFYNTDKLIF TRBV6-
1*01

TRBJ1-
1*01

CASPGETEAFF LPEPLPQGQLTAY

2ak4 B*35 TRAV19*01 TRAJ34*01 CALSGFYNTDKLIF TRBV6-
1*01

TRBJ2-
7*01

CASPGLAGEYEQYF LPEPLPQGQLTAY

3mv7 B*35 TRAV20*01 TRAJ58*01 CAVQDLGTSGSRLTF TRBV9*01 TRBJ2-
2*01

CASSARSGELFF HPVGEADYFEY

4jry B*35 TRAV39*01 TRAJ33*01 CAVGGGSNYQLIW TRBV5-
6*01

TRBJ2-
7*01

CASSRTGSTYEQYF LPEPLPQGQLTAY

3dxa B*44 TRAV26-
1*01

TRAJ13*02 CIVWGGYQKVTF TRBV7-
9*01

TRBJ2-
1*01

CASRYRDDSYNEQFF EENLLDFVRF

3kpr B*44 TRAV26-
2*01

TRAJ52*01 CILPLAGGTSYGKLTF TRBV7-
8*01

TRBJ2-
7*01

CASSLGQAYEQYF EEYLKAWTF

4mji B*51 TRAV17*01 TRAJ22*01 CATDDDSARQLTF TRBV7-
3*01

TRBJ2-
2*01

CASSLTGGGELFF TAFTIPSI

2ypl B*57 TRAV5*01 TRAJ13*01 CAVSGGYQKVTF TRBV19*01 TRBJ1-
2*01

CASTGSYGYTF KAFSPEVIPMF

4p4k DPA1*01/
DPB1*352

TRAV9-2*01 TRAJ28*01 CALSLYSGAGSYQLTF TRBV5-
1*01

TRBJ2-
5*01

CASSLAQGGETQYF QAFWIDLFETIG

4may DQA1*01/
DQB1*05

TRAV13-
1*01

TRAJ48*01 CAASSFGNEKLTF TRBV7-
3*01

TRBJ2-
3*01

CATSALGDTQYF QLVHFVRDFAQL

5ks9 DQA1*03/
DQB1*03

TRAV20*01 TRAJ39*01 CAVALNNNAGNMLTF TRBV9*01 TRBJ2-
3*01

CASSVAPGSDTQYF APSGEGSFQPSQENPQ

4gg6 DQA1*03/
DQB1*03

TRAV26-
2*01

TRAJ45*01 CILRDGRGGADGLTF TRBV9*01 TRBJ2-
7*01

CASSVAVSAGTYEQYF QQYPSGEGSFQPSQENPQ

4z7u DQA1*03/
DQB1*03

TRAV26-
2*01

TRAJ49*01 CILRDRSNQFYF TRBV9*01 TRBJ2-
5*01

CASSTTPGTGTETQYF APSGEGSFQPSQENPQGS

4z7v DQA1*03/
DQB1*03

TRAV26-
2*01

TRAJ54*01 CILRDSRAQKLVF TRBV9*01 TRBJ2-
7*01

CASSAGTSGEYEQYF APSGEGSFQPSQENPQGS

4z7w DQA1*03/
DQB1*03

TRAV8-3*01 TRAJ36*01 CAVGETGANNLFF TRBV6-
1*01

TRBJ2-
1*01

CASSEARRYNEQFF APSGEGSFQPSQENPQGS

4ozh DQA1*05/
DQB1*02

TRAV26-
1*01

TRAJ32*01 CIVWGGATNKLIF TRBV7-
2*01

TRBJ2-
3*01

CASSVRSTDTQYF APQPELPYPQPGS

4ozg DQA1*05/
DQB1*02

TRAV26-
1*01

TRAJ45*01 CIVLGGADGLTF TRBV7-
2*01

TRBJ2-
3*01

CASSFRFTDTQYF APQPELPYPQPGS

4ozf DQA1*05/
DQB1*02

TRAV26-
1*01

TRAJ54*01 CIAFQGAQKLVF TRBV7-
2*01

TRBJ2-
3*01

CASSFRALAADTQYF APQPELPYPQPGS
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DeWitt et al. eLife 2018;7:e38358. DOI: https://doi.org/10.7554/eLife.38358 33 of 39

Research article Computational and Systems Biology Immunology and Inflammation

https://doi.org/10.7554/eLife.38358


information across loci using trans-locus sequence alignments. For class I we used the merged align-

ment (ClassI_prot.txt) available from the IPD-IMGT/HLA (Robinson et al., 2015) database. Starting

with multiple sequence alignments for individual class II loci from the IPD-IMGT/HLA database, we

inserted gaps as needed in order to created merged alignments for the class II a and b chains. These

alignments provided a common reference frame in which to combine residue-residue contacts from

the TCR:peptide-MHC structures. We considered two amino acid residues to be in contact if they

had a side chain heavyatom contact distance less than or equal to 4:5Å. The CDR3b contact fre-

quency for an alignment position (class I, class II-a, or class II-b) was defined to be the total number

of contacted CDR3b amino acids observed for that position, divided by the total number of struc-

tures analyzed. Redundancy in the structural database was assessed at the level of TCR and HLA

sequence, ignoring the sequence of the peptide. Contacts from a set of n structures all containing

the same TCR and HLA were given a weight of 1=n when computing the residue contact frequencies.

The statistical significance of correlations between HLA allele charge and average HLA-associated

TCR CDR3 charge were computed using a 2-sided test as implemented in the function scipy.stats.

linregress.

Software availability
C++ source code implementing the clustering, generation probability, and correlation algorithms

described here is available at https://github.com/phbradley/pubtcrs (copy archived at https://

github.com/elifesciences-publications/pubtcrs [Bradley, 2018]).
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Table 4 continued

PDB
ID* HLA allele Va Ja CDR3a Vb Jb CDR3b Peptide

4ozi DQA1*05/
DQB1*02

TRAV4*01 TRAJ4*01 CLVGDGGSFSGGYNKLIF TRBV20-
1*01

TRBJ2-
5*01

CSAGVGGQETQYF QPFPQPELPYPGS

5ksa DQA1*05/
DQB1*03

TRAV20*01 TRAJ33*01 CAVQFMDSNYQLIW TRBV9*01 TRBJ2-
7*01

CASSVAGTPSYEQYF QPQQSFPEQEA

5ksb DQA1*05/
DQB1*03

TRAV20*01 TRAJ6*01 CAVQASGGSYIPTF TRBV9*01 TRBJ2-
3*01

CASSNRGLGTDTQYF GPQQSFPEQEA

4e41 DRA*01/
DRB1*01

TRAV22*01 TRAJ18*01 CAVDRGSTLGRLYF TRBV5-
8*01

TRBJ2-
5*01

CASSQIRETQYF GELIGILNAAKVPAD

2iam DRA*01/
DRB1*01

TRAV22*01 TRAJ54*01 CAALIQGAQKLVF TRBV6-
6*01

TRBJ1-
3*01

CASTYHGTGYF GELIGILNAAKVPAD

1fyt DRA*01/
DRB1*01

TRAV8-4*01 TRAJ48*01 CAVSESPFGNEKLTF TRBV28*01 TRBJ1-
2*01

CASSSTGLPYGYTF PKYVKQNTLKLAT

3o6f DRA*01/
DRB1*04

TRAV26-
2*01

TRAJ32*01 CTVYGGATNKLIF TRBV20-
1*01

TRBJ1-
6*01

CSARGGSYNSPLHF FSWGAEGQRPGFGSGG

1j8h DRA*01/
DRB1*04

TRAV8-4*01 TRAJ48*01 CAVSESPFGNEKLTF TRBV28*01 TRBJ1-
2*01

CASSSTGLPYGYTF PKYVKQNTLKLAT

2wbj DRA*01/
DRB1*15

TRAV17*01 TRAJ40*01 CATDTTSGTYKYIF TRBV20-
1*01

TRBJ2-
1*01

CSARDLTSGANNEQFF MDFARVHFISALHGSGG

4h1l DRA*01/
DRB3*03

TRAV8-3*01 TRAJ37*01 CAVGASGNTGKLIF TRBV19*01 TRBJ2-
2*01

CASSLRDGYTGELFF QHIRCNIPKRISA

1zgl DRA*01/
DRB5*01

TRAV9-2*01 TRAJ12*01 CALSGGDSSYKLIF TRBV5-
1*01

TRBJ1-
1*01

CASSLADRVNTEAFF VHFFKNIVTPRTPGG

*If there are multiple structures with the same TCR and HLA allele, only the ID of the highest-resolution structure is given. During CDR3b contact analysis,

however, we combined the contacts from all redundant structures, downweighting so as to equalize the contribution from all TCR/HLA pairs.
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