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Abstract SWELL1 (LRRC8A) is the only essential subunit of the Volume Regulated Anion Channel

(VRAC), which regulates cellular volume homeostasis and is activated by hypotonic solutions.

SWELL1, together with four other LRRC8 family members, potentially forms a vastly heterogeneous

cohort of VRAC channels with different properties; however, SWELL1 alone is also functional. Here,

we report a high-resolution cryo-electron microscopy structure of full-length human homo-

hexameric SWELL1. The structure reveals a trimer of dimers assembly with symmetry mismatch

between the pore-forming domain and the cytosolic leucine-rich repeat (LRR) domains. Importantly,

mutational analysis demonstrates that a charged residue at the narrowest constriction of the

homomeric channel is an important pore determinant of heteromeric VRAC. Additionally, a

mutation in the flexible N-terminal portion of SWELL1 affects pore properties, suggesting a

putative link between intracellular structures and channel regulation. This structure provides a

scaffold for further dissecting the heterogeneity and mechanism of activation of VRAC.

DOI: https://doi.org/10.7554/eLife.38461.001

Introduction
VRAC is a ubiquitously expressed mammalian anion channel implicated in diverse physiological pro-

cesses including volume regulation, cell proliferation, release of excitatory amino acids, and apopto-

sis (Hyzinski-Garcı́a et al., 2014; Nilius et al., 1997; Pedersen et al., 2016). It is suggested to play

a role in a variety of human diseases including stroke, diabetes, and cancer (Hyzinski-Garcı́a et al.,

2014; Planells-Cases et al., 2015; Zhang et al., 2017). A causative link has been established

between a chromosomal translocation in the SWELL1 (LRRC8A) gene and a human B cell deficiency

disease, agammaglobulinemia (Sawada et al., 2003).

Previous studies have shown that SWELL1 is required for VRAC activity, and that the presence of

other LRRC8 subunits dictates functional characteristics of VRAC, including pore properties

(Qiu et al., 2014; Syeda et al., 2016; Voss et al., 2014). While SWELL1 and at least one other

LRRC8 subunit are required for canonical whole-cell VRAC currents, purified homomers of SWELL1

reconstituted in lipid bilayers are activated by osmotic stimuli and blocked by VRAC antagonist,

DCPIB (Syeda et al., 2016). Interestingly, CRISPR-engineered HeLa cells lacking all LRRC8 subunits

(LRRC8-/- HeLa cells) exhibited very small but significant DCPIB-sensitive hypotonicity-induced cur-

rents after SWELL1 overexpression (Figure 1—figure supplement 1), supporting previous bilayer

results. Since the number and composition of functional native oligomeric assemblies remains
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unknown, we decided to first elucidate the structure of SWELL1 homomers. To produce homomeric

SWELL1, human SWELL1-FLAG was recombinantly expressed in LRRC8(B,C,D,E)-/- HEK293-F suspen-

sion cells, then solubilized in 1% decyl maltose neopentyl glycol (DMNG) detergent, followed by

purification and exchange into 0.05% digitonin for structure determination by cryo-EM (Figure 1—

figure supplement 2). Image analysis and reconstruction yielded a ~4 Å resolution map that was

used to build a molecular model of SWELL1 (Figure 1—figure supplements 3–

4, Supplementary file 1).

Results
SWELL1 is organized as a hexameric trimer of dimers with a four-layer domain architecture and an

overall jellyfish-like shape (Figure 1A). The transmembrane (TM) and extracellular domains (ECDs)

surround the central pore axis, and share a previously unappreciated structural homology with the

connexin (Maeda et al., 2009) and innexin (Oshima et al., 2016) gap junction channels (Figure 1—

figure supplement 5A–D). The ECD is composed of two extracellular loops (ECL1 and ECL2) that

are stabilized by three disulfide bonds (Figure 1B–C and Figure 1—figure supplement 5E–F). ECL1

contains one strand of a small beta-sheet and a helix (ECH) that faces the center of the ECD while

ECL2 contains two additional antiparallel beta strands of the beta-sheet that faces the outside of the

ECD. Each subunit contains four TM helices (TM1-4). TM1 lies closest to the central pore axis and is

tethered to a short N-terminal coil (NTC) that is parallel to the inner leaflet of the membrane. In the

cytosol, the intracellular linker domains (ILD) create a tightly packed network of helices connecting

the channel pore to the LRR domains. Each ILD is composed of two-four helices from the TM2-TM3

cytoplasmic loop (LH1-4), and five helices from the TM4-LRR linker (LH5-9) (Figure 1C). Each proto-

mer terminates in 15–16 LRRs which form a prototypical solenoid LRR fold (Figure 1B–C). LRRs from

the six protomers dimerize into three pairs, which interact to form a Celtic knot-like assembly

(Figure 1A).

eLife digest Every cell needs to regulate its internal volume or it will burst. Most of a cell’s

volume is a watery mixture of salts, proteins and other molecules. A cell can take in more water from

its surroundings, diluting this mixture and causing the cell to expand. If a cell starts to take up too

much water, it will open channel proteins in its outer membrane called volume regulated anion

channels (or VRACs for short). An open VRAC allows negatively charged ions to leave the cell, and in

the process causes water to leave the cell too. This relieves the pressure inside the cell, and the cell

starts to shrink.

The structure of a VRAC is thought to contain six subunits, and most include at least two different

kinds of subunit. Some of the subunits must be a protein called SWELL1 (which is also known as

LRRC8A). The other subunits can be any of four similar proteins from the same protein family. Since

a VRAC can contain additional subunits drawing from this pool of five proteins, many structures are

possible. But it remains unclear exactly how the structure of a VRAC allows it to sense and regulate

the volume of a cell. This is partly because scientists do not have enough information about the

architecture of this protein to understand how it might work.

Using electron microscopes, Kefauver et al. have now captured detailed images of a VRAC

composed entirely of human SWELL1 proteins. The overall structure of VRAC resembles a six-

legged jellyfish, with a pore on the cell’s exterior passing through a constricted dome followed by

three pairs of arms that extend into the cell’s interior. Given the observed structure, Kefauver et al.

speculate that the arms of the SWELL1 proteins sense salt concentrations within the cell (to tell if its

become diluted by an influx of water) and then interact with the rest of the channel. In response to

these interactions, the domed part of the VRAC constricts or dilates to help regulate the cell’s

volume.

Molecular biologists can now use these structural details to further study the fundamentals

behind how cells regulate their volume. This model will also improve scientific understanding of how

diverse VRAC structures differ in their responses to changes in pressure within cells.

DOI: https://doi.org/10.7554/eLife.38461.002
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Figure 1. Overall architecture of homomeric SWELL1. (A) Cryo-EM reconstruction of SWELL1 homohexamer

viewed from the membrane plane highlighting a dimer pair (top left, red and pink subunits) and an interface

between dimers (top right, pink and green subunits), from the extracellular side (bottom left), and from the

cytosolic side (bottom right). (B) Detailed view of SWELL1 ‘inner’ protomer. (C) Topology diagram denoting

secondary structural elements. Dashed lines indicate unresolved regions on both protomers in a dimer pair, while

dashed shape borders indicate regions that are only resolved on one protomer.

DOI: https://doi.org/10.7554/eLife.38461.003

The following figure supplements are available for figure 1:

Figure supplement 1. SWELL1 overexpression in cells lacking other LRRC8 subunits produces small DCPIB-

sensitive swelling-induced whole cell currents.

DOI: https://doi.org/10.7554/eLife.38461.004

Figure supplement 2. Purification of SWELL1-FLAG.

DOI: https://doi.org/10.7554/eLife.38461.005

Figure supplement 3. Cryo-EM data collection.

DOI: https://doi.org/10.7554/eLife.38461.006

Figure supplement 4. Model-to-map fit of electron density.

DOI: https://doi.org/10.7554/eLife.38461.007

Figure supplement 5. SWELL1 subunit pair and structural homology of SWELL1 structure to connexin-26 and

innexin-6 structures.

DOI: https://doi.org/10.7554/eLife.38461.008

Figure supplement 6. Alignment of LRRC8 subunits (res 1–435).

DOI: https://doi.org/10.7554/eLife.38461.009

Figure supplement 7. Alignment of LRRC8 subunits (res 436–810).

DOI: https://doi.org/10.7554/eLife.38461.010
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Perhaps the most striking architectural feature of VRAC is the symmetry mismatch between the

cytosolic LRR domains and the pore-forming domains of the channel, despite its homo-hexameric

assembly (Figure 2). The ECDs, TMs, and ILDs all share the same 6-fold symmetric arrangement

(Figure 2B); however, in the cytosol, LRR domains dimerize in a parallel fashion with each LRR at

either a 10 or �20˚ offset relative to the rest of its protomer, producing a 3-fold symmetric trimer of

dimers (Figure 2C). The nonequivalence between identical subunits arises from a hinge around the

conserved residue L402 in a helix of the TM4-LRR linker (Figure 2D and Figure 1—Figure supple-

ments 6 and 7). This hinge allows the LRR domains to shift as rigid bodies, producing sufficient flexi-

bility for them to interface at their edges via several charged residues (Figures 2D and 3A). As a

result, the helical C-termini of the two subunits in a dimer pair make two different sets of interactions

with the neighboring LRR (Figure 3B). Focused 3D classification of the LRR domains revealed several

arrangements of LRRs suggesting that flexibility of the LRR domains may play a functional role in

channel gating (Figure 2—figure supplement 1), similar to the intracellular domains of the CorA

magnesium channel (Matthies et al., 2016). Interestingly, the outer LRR subunit in the dimer exhib-

its helical density in the C-terminal half of the TM2-TM3 linker that rests on top of the outer proto-

mer’s LRR domain, adding an additional layer of intricacy to the network of cytosolic interactions

(Figure 1—figure supplement 5A–B). Symmetry mismatch is also observed in the homotetrameric

AMPA receptor GluA2, which similarly forms local dimers in different domain layers

(Sobolevsky et al., 2009). Furthermore, the dimer-of-dimers topology of homotetrameric AMPA-

subtype ionotropic glutamate receptors (iGluRs) defines the subunit organization of di- and tri-het-

eromeric NMDA-subtype iGluR structures (Karakas and Furukawa, 2014; Lee et al., 2014;

Figure 2. Subunit arrangement exhibits symmetry mismatch. (A) SWELL1 model viewed from the membrane plane

with domain layers viewed perpendicular to the symmetry axis. (B–C) Domain layers viewed from the top of the

channel grouped according to shared symmetry with simple schematic to demonstrate subunit arrangement. (B)

From left to right: extracellular domain layer (EC), transmembrane domain layer (TM), and intracellular linker

domain layer (ICL) all share the same 6-fold rotation symmetry axis (black hexagon). (C) The LRR domain layer has

3-fold rotational symmetry (black triangle), resulting from parallel pairing of three sets of LRR domains. (D)

Asymmetry in LRR pairing arises from a hinge at L402 on LH8 that allows rotation of the LRR domain as a rigid

body in a dimer pair. The first two TM domains of the inner (red) and outer (yellow) subunits are aligned to one

another using the PyMOL align function.

DOI: https://doi.org/10.7554/eLife.38461.011

The following figure supplement is available for figure 2:

Figure supplement 1. Flexibility in LRR domains observed during 3D classification.

DOI: https://doi.org/10.7554/eLife.38461.012
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Lü et al., 2017). By analogy, we speculate that the trimer-of-dimers assembly of SWELL1 is recapitu-

lated in, and influences the composition of, heteromeric VRACs.

Unlike other ion channels, there is little domain swapping between the subunits of the pore-form-

ing domains of the SWELL1 channel. The individual helical bundles are loosely packed with one

another and lined with hydrophobic residues. The inter-protomer space may be occupied by hydro-

phobic membrane components like lipid or cholesterol that might be important for channel assem-

bly or lipid signaling. Such densities are observed in the inter-subunit space in innexin-6 and have

been proposed to have a stabilizing role in the conformation of the helix bundles (Oshima et al.,

2016). At the upper faces of the extracellular domains, on mostly flexible loops, resides a three resi-

due KYD motif previously shown to be involved in voltage-dependent inactivation and selectivity

(Ullrich et al., 2016); interestingly, KYD extends laterally towards the neighboring subunit (Fig-

ure 4—figure supplement 1), suggesting that subunit interactions in this region contribute to these

channel properties.

The ECDs, TMs, and ILDs of all six subunits contribute to the ion-conducting pore (Figure 4A–B).

Below that, windows of 35 by 40 Å between LRR dimer pairs are sufficiently large to allow ions and

osmolytes to freely pass. In the extracellular domain, 25 Å above the membrane, a ring of arginines

(R103) at the N-terminal tip of the extracellular helix forms the narrowest constriction in the channel

structure (Figure 4A–C). We hypothesized that these arginines, only conserved between SWELL1

and the LRRC8B subunit (R99) (Figure 1—figure supplement 6), might directly interact with perme-

ant anions. To test this hypothesis, we mutated positively-charged R103 to phenylalanine, and deter-

mined whether ion selectivity was altered in SWELL1-R103F + LRRC8C heteromeric channels

Figure 3. LRRs interact via charged residues at dimer interfaces and C-termini. (A) One dimer of SWELL1 subunits.

Charged residues both of opposite and similar charges face each other in the interface between the two LRR

domains (insets, top middle and bottom left; blue spheres are positively charged residues (Arg, Lys, and His), red

spheres are negatively charged residues (Asp and Glu)). (B) C-termini of the two protomers in a dimer interact with

regions of the neighboring LRR domain. Two of three ‘outer’ subunits are removed for clarity. ‘Inner’ subunits may

be able to coordinate with one another via a triad of charged residues (E800) at their C-termini (inset, dashed

border, top right), while the C-termini of the ‘outer subunit’ may interact with the edge of the neighboring outer

subunit via charged residues R688 on LRR12 and/or K732 on LRR13 (inset, dashed blue border, bottom right).

DOI: https://doi.org/10.7554/eLife.38461.013
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Figure 4. Ion pore structure and characterization of channels with mutations at pore-contributing residues R103

and T5. (A) Cartoon model of the SWELL1 pore, with two subunits removed for clarity. A surface representation of

the radial distance between the protein surface and the pore axis is shown in grey. Pore-facing residues R103, T48

and T44, and N-terminal coil (NTC) are labeled in pink. (B) Graph of van der Waals radii of the pore, plotted

against distance along the pore axis. Locations of residues R103, T48, T44, and NTC are labeled along 2D plot.

Grey box covers potential area the N-terminus might occupy. (C) Electrostatic surface potential of channel pore,

viewed by vertical cross-section. Narrow constriction on the extracellular side of the channel is formed by a ring of

R103 residues (yellow arrows). Calculated using APBS implemented by Pymol2.0 with potentials ranging from �10

kT (red) to +10 kT (blue). (D–E) Cells expressing heteromeric VRACs composed of mutant SWELL1-

R103F + LRRC8C show reduced chloride selectivity and insensitivity to external ATP block. (D) For highly

Cl- selective channels, the voltage at which there is no net current (Vrev) is close to the equilibrium potential for

Cl- (in these experiments ECl = +9.75 mV; indicated by the dotted line). Vrev of currents mediated by SWELL1-

R103F-containing channels (orange bar; +4.6 ± 1.0 mV (mean ± s.e.m., n = 6 cells from 3 separate transfections)) is

significantly reduced compared to WT (blue bar; +8.8 ± 0.8 mV (n = 13 from 6 separate transfections); p = 0.003,

Student’s t-test. (E) The percent block of whole cell leak subtracted hypotonic-induced currents by extracellular

applied Na2ATP (2 mM) was determined at +100 mV. Outward WT SWELL1 + LRRC8C-mediated currents are

blocked 72 ± 2% (mean ± s.e.m., n = 7 from 4 separate transfections; blue bar). Outward currents mediated by

SWELL1-R103 + LRRC8C are not blocked by extracellular ATP (2 ± 3% (mean ± s.e.m., n = 5 from 3 separate

transfections; orange bar); this difference is highly significant (p = 5.4ê-8, Student’s t-test). (F) Detailed view of

coordination of NTC (purple). The NTC makes intrasubunit contacts with V157 on LH1 and a conserved Y382 at the

kink between LH6 and LH7 of the TM4-LRR linker. Additionally, P22 of the NTC makes an intersubunit contact with

a conserved P147 at the kink between TM2 and the TM2-TM3 linker of the neighboring subunit. (G–H) SWELL1-T5

is close to or part of the pore. (G) A cysteine mutation at SWELL1-T5 confers sensitivity to the polar MTS reagent

MTSES applied extracellularly; maximum percent block of T5C-containing channels (red bars) by 3.33 mM MTSES

was 74.2 ± 7.7% at �100 mV (left) and 50.4 ± 9.5% at +100 mV (right) (n = 5; mean ± s.e.m.; four separate

transfections). The unmodifiable T5R-containing heteromeric channels (blue bars) are unaffected (n = 3 from 3

separate transfections; p=0.0009 at �100 mV and p=0.010 at +100 mV, Student’s t-test). (H) Relative permeability

PI/PCl is enhanced by the T5R mutation. Reversal potentials in iodide (left) and chloride (right) 230 mOsm/kg

solutions are shown for the number of cells from 3 to 7 separate transfections (WT-, T5C- and T5R-expressing cells

were from 6, 4, and 3 transfections, respectively, in the Cl- condition, and 3, 3, and 3 transfections, respectively, in

the I- condition). The Vrev of currents mediated by SWELL1-T5R + LRRC8C (blue) in I- solution was significantly

more negative than either WT- (black) or T5C (red)-containing channels (p=0.0088 (**) and 0.0047 (***),

respectively. Table: PI/PCl is shown as means with lower and upper 95% confidence intervals.

DOI: https://doi.org/10.7554/eLife.38461.014

The following figure supplements are available for figure 4:

Figure 4 continued on next page
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heterologously expressed in HeLa LRRC8(A,B,C,D,E)-/- cells. We determined the reversal potential

(Vrev) for hypotonicity-induced Cl- currents mediated by SWELL1-R103F + LRRC8C channels. The Vrev

of currents mediated by SWELL1-R103F + LRRC8C was significantly reduced compared to wildtype

channels, indicating that the channels are less selective for Cl- (Figure 4D) (Ackerman et al., 1994;

Jackson and Strange, 1995; Tsumura et al., 1996). Furthermore, extracellular ATP at concentra-

tions that block ~75% of wildtype VRAC currents was ineffective on channels containing R103F

(Figure 4E and Figure 4—figure supplement 1). Therefore, R103 is a critical residue within SWELL1

that impacts ion selectivity as well as pore block of heteromeric VRAC channels.

Within the pore, constrictions are observed at pore-facing residues T44 and T48 (Figure 4A–B).

Interestingly, we had previously identified residue T44 via the substituted cysteine accessibility

method (SCAM) on heteromeric channels as likely to be at or near the pore (Qiu et al., 2014). Near

the bottom of the pore cavity, a constriction at the intracellular face of the membrane corresponds

to a short N-terminal coil (NTC) sitting parallel to the inner leaflet of the membrane. The first 14 resi-

dues of the N-terminus of the channel are not resolved in the cryo-EM density, presumably due to

flexibility. The absence of these residues is conspicuous; in the Cx26 and innexin-6 structures, an

N-terminal helix forms a pore funnel structure that is the narrowest constriction in the structures of

these channels and is thought to contribute to trafficking, selectivity, and gating (Kyle et al., 2008;

Maeda et al., 2009; Oshima, 2014; Oshima et al., 2016). In our reconstruction, the short portion of

the NTC that is resolved is highly coordinated by cytosolic domains and positioned to respond to

conformational changes in the cytosolic domains of one protomer, as well as movements of the

neighboring protomer (Figure 4F). Due to the similarities in pore structure between VRAC and con-

nexin/innexin (Figure 1—figure supplement 5), we conducted functional assays to interrogate the

role of the NTC in VRAC. We focused on residue T5 because the homologous residue is involved in

stabilizing the pore funnel through a hydrogen bonding network in the Cx26 structure

(Maeda et al., 2009). We made the mutation T5C to test whether extracellular addition of the nega-

tively-charged, membrane-impermeable thiol-reactive reagent, 2-sulfonatoethyl methanethiosulfo-

nate (MTSES), could alter VRAC activity in heteromeric channels composed of SWELL1-

T5C + LRRC8C in HeLa LRRC8(A,B,C,D,E)-/- cells via cysteine modification. While MTSES has no

effect on wildtype heteromeric channels (Qiu et al., 2014) or channels containing SWELL1-T5R

(Figure 4G), whole-cell currents mediated by SWELL1-T5C + LRRC8C are strongly suppressed upon

the addition of MTSES, suggesting that T5C is part of a constriction narrow enough to block the

pore upon covalent modification by MTSES (Figure 4G and Figure 4—figure supplement 2). We

next determined the role of T5 in anion selectivity. Although SWELL1-T5C-containing channels have

similar relative permeability to wildtype, SWELL1-T5R-containing channels are significantly more

selective to iodide compared to chloride, confirming that this residue is close to or part of the chan-

nel pore (Figure 4H and Figure 4—figure supplement 2). Thus, the unresolved portion of the N-ter-

minus plays a role in pore constriction in native channels composed of SWELL1 and LRRC8C. Its

absence in our structure is likely due to either the high flexibility of the region or a peculiarity of the

homomeric assembly of the channel.

Discussion
Here we report the architecture and homo-hexameric assembly of SWELL1 channels. Electrophysio-

logical analyses presented here demonstrate that the homomeric SWELL1 structure retains proper-

ties of more complex heteromers, as mutations based on the structure proved to be relevant for

VRAC currents in a cellular context. The structure of SWELL1 also provides hints as to how VRAC

gating is regulated. Since decreases in intracellular ionic strength cause activation (Syeda et al.,

2016), gating would likely be initiated by movement of intracellular domains in response to changes

Figure 4 continued

Figure supplement 1. Additional characterization of selectivity at extracellular residues.

DOI: https://doi.org/10.7554/eLife.38461.015

Figure supplement 2. Representative data from cells expressing mutations in SWELL1 at T5 in the unresolved

N-terminal region in heteromeric VRAC.

DOI: https://doi.org/10.7554/eLife.38461.016
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in salt concentration. We speculate that the multitude of charge-mediated interactions in the LRRs

endows the SWELL1 structure with ionic-strength sensitivity, and via interactions with the N-termi-

nus, the ILDs couple LRR movement to the transmembrane channel.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Gene (Homo sapiens) LRRC8A Origene Uniprot: Q8IWT6

Cell line (Homo sapiens) Freestyle 293-F ThermoFisher RRID: CVCL_D603

Cell line (Homo sapiens) HeLa ATCC RRID: CVCL_0030

Recombinant DNA
reagent

pcDNA3.1/Zeo(-) ThermoFisher cat no: V86520

Chemical compound digitonin Sigma-Aldrich CAS Number:
11024-24-1

Software, algorithm MotionCor2 doi:10.1038/nmeth.4193

Software, algorithm EMHP doi:10.1093/bioinformatics/btx500

Software, algorithm Gctf doi:10.1016/j.jsb.2015.11.003

Software, algorithm FindEM template
correlator

doi:10.1016/j.jsb.2003.11.007

Software, algorithm cryoSPARC doi: 10.1038/nmeth.4169 https://cryosparc.com/

Software, algorithm RELION RRID:SCR_016274

Software, algorithm Rosetta RRID:SCR_015701 https://www.rosettacommons.
org/software

Software, algorithm Robetta http://robetta.bakerlab.org/

Software, algorithm COOT RRID:SCR_014222 http://www2.mrc-lmb.cam.ac.uk/
personal/pemsley/coot/

Software, algorithm Phenix RRID:SCR_014224 https://www.phenix-online.org/

Software, algorithm PyMOL PyMOL Molecular Graphics
System, Schrodinger LLC

RRID:SCR_000305 http://www.pymol.org/

Software, algorithm UCSF Chimera UCSF RRID:SCR_004097 http://plato.cgl.ucsf.edu/chimera/

CRISPR LRRC8 KO cell lines
Knock-out of LRRC8 genes in HeLa and suspension Freestyle HEK293-F cell line was completed

using CRISPR/Cas9-mediated gene disruption (Ran et al., 2013). SWELL1 (LRRC8A), LRRC8B,

LRRC8D, and LRRC8E genes were targeted using guideRNA (gRNA) sequences reported by

Voss et al. (2014); the LRRC8C gene was targeted with a gRNA sequence reported by

Syeda et al. (2016). Cloning of the gRNAs into PX458-mCherry plasmid was completed as

reported in Syeda et al. (2016). Multiple plasmids were transfected simultaneously using either

Lipofectamine 2000 or PEI max. After 48–72 hr, fluorescent mCherry positive cells were single-cell

sorted into 96-well plates. Successful knock-out was determined by genotyping targeted regions

for frameshift mutations and verified by mass spectrometry analysis. For HeLa cells (LRRC8-/- HeLa

cells), complete knock-out was verified for all five LRRC8 genes. For HEK293-F suspension cells,

complete knock-out was verified for LRRC8B-E (LRRC8(B,C,D,E)-/- HEK293-F cells). One SWELL1

allele remained intact in all surviving suspension culture lines. All cell lines tested negative for

mycoplasma contamination.

Protein expression and purification
Human SWELL1 (LRRC8A) (Origene #RC208632) was cloned with a C-terminal FLAG-tag

(DYKDDDDK) separated by a triple glycine linker (SWELL1-GGG-FLAG) into a pcDNA3.1/Zeo(-) vec-

tor using Gibson cloning. HEK293-F LRRC8(B,C,D,E)-/- cells were transfected at a cell density of

1.8*10̂6 cells/mL with 1 mg/L cells of SWELL1-GGG-FLAG plasmid DNA combined with 3 mg/L cells
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of PEI max. After 48 hr, cells were pelleted and solubilized in solubilization buffer (20 mM Tris pH 8,

150 mM NaCl, 1% DMNG, 2 mg/mL iodoacetamide, and EDTA-free protease inhibitor cocktail (PIC))

at 4˚C with vigorous shaking. The cell lysate was ultracentrifuged at 90,000 x g for 30 min at 4˚C and

the supernatant was collected and combined with 1 mL/L cells of FLAG M2 affinity resin for 1 hr

batch incubation at 4˚C with gentle shaking. Resin was washed in a gravity column with 5 mL per mL

of resin (column volumes; CV) of solubilization buffer (20 mM Tris pH 8, 150 mM NaCl, 1% DMNG, 2

mg/mL iodoacetamide, and EDTA-free PIC), 5CV of high salt wash buffer (20 mM Tris pH 8, 150 mM

NaCl, 0.05% digitonin, and EDTA-free PIC), and 10CV of wash buffer (20 mM Tris pH 8, 150 mM

NaCl, 0.05% digitonin, and EDTA-free PIC). Protein was eluted using elution buffer (20 mM Tris pH

8, 150 mM NaCl, 0.05% digitonin, EDTA-free PIC and 3x FLAG peptide (Sigma or in-house peptide

production)). Sample was concentrated and injected onto Shimadzu HPLC and separated using a

Superose 6 Increase column equilibrated with running buffer (20 mM Tris pH 8, 150 mM NaCl,

0.05% digitonin, and EDTA-free PIC). The peak corresponding to SWELL1 homomeric oligomers

(~800 kDa) was collected and used for cryo-EM grid preparation. The sample was concentrated

to ~8 mg/mL using 100 kDa MWCO concentrators. Protein (3 ml) was applied to plasma cleaned

UltrAuFoil 1.2/1.3 300 mesh grids, blotted for 6 s with 0 blot force, and plunge frozen into nitrogen

cooled liquid ethane using a Vitrobot Mark IV (ThermoFisher).

Cryo-EM data collection
Images were collected at 200 kV on a Talos Arctica electron microscope (ThermoFisher) with a K2

direct electron detector (Gatan) at a nominal pixel size of 1.15 Å. Leginon software was used to

automatically collect micrographs (Suloway et al., 2005). The total accumulated dose was ~55 e-/Å2

and the defocus range was 0.8–1.5 mm. Movies were aligned and dose-weighted using MotionCor2

(Zheng et al., 2017).

Image processing
Images were assessed for quality and edges of gold holes were masked using EMHP

(Berndsen et al., 2017). CTF values were estimated using Gctf (Zhang, 2016). Template-based

particle picking was completed using FindEM template correlator (Roseman, 2004). Particles were

extracted using Relion 2.1 (Scheres, 2012) then subjected to 2D classification using cryoSPARC

(Punjani et al., 2017). 130,054 particles corresponding to good 2D class averages were selected

for further data processing. An ab initio initial model was created in cryoSPARC followed by itera-

tive angular reconstitution and reconstruction. The resulting density map was used as a seed for

refinement of the data set in Relion 2.1. Resolution of the resulting map was 4.6 Å. The map

showed significant disorder in the LRR regions; however the map reveals that LRR regions arrange

pairwise around a three-fold symmetry axis. As the transmembrane and extracellular domains were

well-resolved, refinement was pursued imposing C3 symmetry and introducing a mask that

excluded density outside of the well-defined, three-fold symmetric transmembrane/extracellular

domains. Resolution of the resulting map was 4.0 Å; transmembrane/extracellular domains were

well-resolved whereas LRR regions were largely disordered. This map was then used to create suit-

able projections that were subtracted from particles, thereby creating a particle data set corre-

sponding mostly to LRR densities. This new data set was then subjected to 3D classification in

Relion 2.1 (K-means split of 12). One of the resulting classes showed order in the pairwise LRR

arrangement around the three-fold symmetry axis. Particles corresponding to this class (25,719)

were then refined locally around the previously obtained coordinate assignment imposing three-

fold symmetry resulting in an LRR density map at 5.0 Å resolution. Additionally – due to the overall

higher degree of order – original particles corresponding to the 25,719 density-subtracted particles

were refined under three-fold symmetry constraints. Resolution of the resulting map was 4.4 Å.

Model building and refinement
An initial model of an N-terminal portion of SWELL1 was generated with RobettaCM using innexin-

6 (5H1Q) as a template structure (Oshima et al., 2016; Song et al., 2013). The SWELL1 topology

was predicted using OCTOPUS (Viklund and Elofsson, 2008). Predicted transmembrane regions

were manually aligned to the transmembrane helices of the template structure 5H1Q

(Oshima et al., 2016). Intervening regions of SWELL1 were aligned to 5H1Q using BLASTp. 10,000
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independent homology models were generated with RosettaCM and clustered using Calibur

(Li and Ng, 2010). The resulting model with the lowest Rosetta energy from the largest cluster

was used as a guide for ab initio building of the transmembrane helices, extracellular domains, and

intracellular linker domain. Sequence register was aided by bulky side chains and disulfide bonds in

the extracellular domain. A Robetta-generated model of the SWELL1 LRR domain was docked into

the EM density corresponding to the LRR of the outer subunit, which was better resolved than the

inner subunit (Kim et al., 2004). This LRR model was adjusted manually to fit the density, then

copied and docked into the LRR density of the inner subunit, followed by further adjustments. Dur-

ing the building process, manual building in COOT (Emsley and Cowtan, 2004) was iterated with

real space refinement using Phenix (Adams et al., 2010) or RosettaRelax (DiMaio et al., 2009).

Structures were evaluated using EMRinger (Barad et al., 2015) and MolProbity (Chen et al.,

2010). The final model contains residues 15–68, 94–174, 232–802 in the inner subunit and 15–68,

94–175, 214–802 in the outer subunit. Side chains of residues 15–21, 359–364, 787–802 of both

subunits and 214–233 of the outer subunit were trimmed to Cb because of limited resolution and

lack of well-defined secondary structures in these regions. Structure figures were made in Pymol

(Schrodinger,, 2017) and UCSF Chimera (Pettersen et al., 2004). Pore radii were calculated using

HOLE (Smart et al., 1996). The APBS plugin in pymol was used to calculate surface representa-

tions of electrostatic potentials.

Electrophysiology and cell culture
Electrophysiology experiments were completed with HeLa LRRC8-/- cells. HeLa LRRC8-/- cells were

transfected 1–3 days earlier with SWELL1 constructs together with LRRC8C-ires-GFP in a 2:1 ratio

(0.8 and 0.4 g/ml for each coverslip). VRAC currents using a 2:1 ratio of SWELL1:LRRC8C were at

least twice as large as those using a 1:1 ratio (data not shown). Only one cell per coverslip was

tested for its response to hypotonic solution. In experiments aimed at determining whether HeLa

LRRC8-/- cells transfected with SWELL1 only could express VRAC currents, the extracellular solution

contained (in mM) 90 NaCl, 2 KCl, 1 MgCl2, 1 CaCl2, 10 HEPES, 110 mannitol (isotonic, 300 mOsm/

kg) or 30 mannitol (hypotonic, 230mOsm/kg), pH 7.4 with NaOH; recording pipettes were filled with

intracellular solution containing (in mM): 133 CsCl, 5 EGTA, 2 CaCl2, 1 MgCl2, 10 HEPES, 4 Mg-ATP,

0.5 Na-GTP (pH 7.3 with CsOH; 106 nM free Ca2+) and had resistances of 2–3 MW. Experiments test-

ing R103F and T5 mutants used extracellular solutions described in Qiu et al. (2014) (‘bianionic’)

and intracellular solution used in Syeda et al. (2016) (130 mM CsCl, 10 HEPES, 4 Mg-ATP, pH 7.3).

These were used to determine relative permeability PI/PCl. An agar bridge was used between the

ground electrode and the bath in all experiments.
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