Current and future goals are represented in opposite patterns in object-selective cortex

Abstract

Adaptive behavior requires the separation of current from future goals in working memory. We used fMRI of object-selective cortex to determine the representational (dis)similarities of memory representations serving current and prospective perceptual tasks. Participants remembered an object drawn from three possible categories as the target for one of two consecutive visual search tasks. A cue indicated whether the target object should be looked for first (currently relevant), second (prospectively relevant), or if it could be forgotten (irrelevant). Prior to the first search, representations of current, prospective and irrelevant objects were similar, with strongest decoding for current representations compared to prospective (Experiment 1) and irrelevant (Experiment 2). Remarkably, during the first search, prospective representations could also be decoded, but revealed anti-correlated voxel patterns compared to currently relevant representations of the same category. We propose that the brain separates current from prospective memories within the same neuronal ensembles through opposite representational patterns.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files and source code files have been provided for Figures 2,3,4, 5, S1,S2,S3 and the fMRI data is made available via the open science framework:""Current and Future Goals Are Represented in Opposite Patterns in Object-Selective Cortex."" Open Science Framework. May 31. osf.io/hcp47.For the newly added experiment 2, the data and scripts have also been provided.

The following data sets were generated

Article and author information

Author details

  1. Anouk Mariette van Loon

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    anouk.vanloon@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9015-7647
  2. Katya Olmos-Solis

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Johannes Jacobus Fahrenfort

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9025-3436
  4. Christian N L Olivers

    Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
    For correspondence
    c.n.l.olivers@vu.nl
    Competing interests
    The authors declare that no competing interests exist.

Funding

European Research Council (615423)

  • Christian N L Olivers

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human subjects: Twenty-four healthy volunteers participated in Experiment 1 and twenty-five healthy volunteers participated in Experiment 2. The experiment was approved by the Ethical Committee of the Faculty of Social and Behavioral Sciences, University of Amsterdam and conformed to the Declaration of Helsinki. All subjects provided written informed consent and consent to publish.

Copyright

© 2018, van Loon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,791
    views
  • 450
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anouk Mariette van Loon
  2. Katya Olmos-Solis
  3. Johannes Jacobus Fahrenfort
  4. Christian N L Olivers
(2018)
Current and future goals are represented in opposite patterns in object-selective cortex
eLife 7:e38677.
https://doi.org/10.7554/eLife.38677

Share this article

https://doi.org/10.7554/eLife.38677

Further reading

    1. Neuroscience
    Mazen Makke, Alejandro Pastor-Ruiz ... Dieter Bruns
    Research Article

    Complexin determines magnitude and kinetics of synchronized secretion, but the underlying molecular mechanisms remained unclear. Here, we show that the hydrophobic face of the amphipathic helix at the C-terminus of Complexin II (CpxII, amino acids 115–134) binds to fusion-promoting SNARE proteins, prevents premature secretion, and allows vesicles to accumulate in a release-ready state in mouse chromaffin cells. Specifically, we demonstrate that an unrelated amphipathic helix functionally substitutes for the C-terminal domain (CTD) of CpxII and that amino acid substitutions on the hydrophobic side compromise the arrest of the pre-fusion intermediate. To facilitate synchronous vesicle fusion, the N-terminal domain (NTD) of CpxII (amino acids 1–27) specifically cooperates with synaptotagmin I (SytI), but not with synaptotagmin VII. Expression of CpxII rescues the slow release kinetics of the Ca2+-binding mutant Syt I R233Q, whereas the N-terminally truncated variant of CpxII further delays it. These results indicate that the CpxII NTD regulates mechanisms which are governed by the forward rate of Ca2+ binding to Syt I. Overall, our results shed new light on key molecular properties of CpxII that hinder premature exocytosis and accelerate synchronous exocytosis.

    1. Neuroscience
    Elena Massai, Marco Bonizzato ... Marina Martinez
    Research Article

    Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.