
*For correspondence:

peter.lind@umu.se

Competing interest: See

page 23

Funding: See page 23

Received: 03 June 2018

Accepted: 27 November 2018

Published: 08 January 2019

Reviewing editor: Patricia J

Wittkopp, University of

Michigan, United States

Copyright Lind et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Predicting mutational routes to new
adaptive phenotypes
Peter A Lind1,2*, Eric Libby1,3,4, Jenny Herzog1, Paul B Rainey1,5,6

1New Zealand Institute for Advanced Study, Massey University at Albany, Auckland,
New Zealand; 2Department of Molecular Biology, Umeå University, Umeå, Sweden;
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Abstract Predicting evolutionary change poses numerous challenges. Here we take advantage

of the model bacterium Pseudomonas fluorescens in which the genotype-to-phenotype map

determining evolution of the adaptive ‘wrinkly spreader’ (WS) type is known. We present

mathematical descriptions of three necessary regulatory pathways and use these to predict both

the rate at which each mutational route is used and the expected mutational targets. To test

predictions, mutation rates and targets were determined for each pathway. Unanticipated

mutational hotspots caused experimental observations to depart from predictions but additional

data led to refined models. A mismatch was observed between the spectra of WS-causing

mutations obtained with and without selection due to low fitness of previously undetected WS-

causing mutations. Our findings contribute toward the development of mechanistic models for

forecasting evolution, highlight current limitations, and draw attention to challenges in predicting

locus-specific mutational biases and fitness effects.

DOI: https://doi.org/10.7554/eLife.38822.001

Introduction
Adaptation requires the realization of beneficial mutations. As self-evident as this may be, predicting

the occurrence of beneficial mutations and their trajectories to improved fitness is fraught with chal-

lenges (Lässig et al., 2017). Nonetheless progress has been made for phenotypically diverse asexual

populations subject to strong selection. Effective approaches have drawn upon densely sampled

sequence data and equilibrium models of molecular evolution to predict amino acid preferences at

specific loci (Luksza and Lässig, 2014). Predictive strategies have also been developed based on

selection inferred from the shape of coalescent trees (Neher et al., 2014). In both instances the

models are coarse-grained and sidestep specific molecular and mutational details.

There is reason to by-pass molecular details: mutation, being a stochastic process, means that for

the most part details are likely to be idiosyncratic and unpredictable. But an increasing number of

investigations give reason to think otherwise – that adaptive molecular evolution might follow rules

(Yampolsky and Stoltzfus, 2001; Pigliucci, 2010; Stern, 2013; Laland et al., 2015). This is particu-

larly apparent from studies of parallel molecular evolution (Colosimo et al., 2005; Woods et al.,

2006; Ostrowski et al., 2008; Flowers et al., 2009; Meyer et al., 2012; Tenaillon et al., 2012;

Zhen et al., 2012; Herron and Doebeli, 2013; Galen et al., 2015; Bailey et al., 2017; Kram et al.,

2017; Stoltzfus and McCandlish, 2017), and particularly from studies that show parallel evolution

to be attributable – at least in part – to factors other than selection (McDonald et al., 2009;

Lind et al., 2015; Bailey et al., 2017).
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A standard starting position for predicting adaptive evolution recognises the importance of popu-

lation genetic parameters including mutation rate, generation time, population size, selection and

more recently information on the distribution of beneficial fitness effects. An often used approach

appeals to ‘origin-fixation’ models that estimate the probability that selection will realise particular

mutational trajectories based on the assumption that the rate of evolution is a function of the rate at

which mutations originate, multiplied by their fixation probability (for review, see (McCandlish and

Stoltzfus, 2014), for application, see for example (Weinreich et al., 2006)). Leaving aside a number

of simplifying and restrictive assumptions, population genetic approaches such as those encom-

passed by origin-fixation models require pre-existing knowledge of (or assumptions concerning)

mutation rate to a particular phenotype and selection coefficients (obtained in the absence of fre-

quency dependent effects) and thus have predictive power only in specific situations and with the

benefit of hindsight (McCandlish and Stoltzfus, 2014).

Looking to the future, there is hope that one day it might be possible to predict the course of

evolutionary change in response to specific environmental challenges in much the same way as gene

function, regulation and interactions can be predicted today based on knowledge of nucleotide

sequence data. A central issue is to define the necessary information. Mechanistic understanding of

the connection between genotype and phenotype combined with knowledge of the genomic bases

of mutational bias offer opportunities for progress.

Mutations arise randomly with respect to utility, but genetic architecture can influence the transla-

tion of mutation into phenotypic variation: the likelihood that a given mutation generates phenotypic

effects depends on the genotype-to-phenotype map (Alberch, 1991; Gompel and Prud’homme,

2009; Stern and Orgogozo, 2009; Rainey et al., 2017). Thus, the functions of gene products and

their regulatory interactions provide information on likely mutational targets underpinning particular

phenotypes. For example, consider a hypothetical structural determinant subject to both positive

and negative regulation and whose over-expression generates a given adaptive phenotype. Assum-

ing a uniform distribution of mutational events, mutations in the negative regulator (and not the pos-

itive activator) will be the primary cause of the adaptive phenotype. This follows from the fact that

loss-of-function mutations are more common than gain-of-function mutations. Indeed, an emerging

rule indicates that phenotypes determined by genetic pathways that are themselves subject to nega-

tive regulation are most likely to arise by loss-of-function mutations in negative regulatory compo-

nents (McDonald et al., 2009; Tenaillon et al., 2012; Lind et al., 2015; Fraebel et al., 2017).

eLife digest Predicting evolution might sound like an impossible task. The immense complexity

of biological systems and their interactions with the environment has meant that many biologists

have abandoned the idea as a lost cause. But despite this, evolution often repeats itself. This

repeatability offers hope for being able to spot in advance how evolution will happen. To make

general predictions, it is necessary to understand the mechanisms underlying evolutionary pathways,

and studying microbes in the laboratory allows for real-time experiments in evolution.

One of the best studied microbes for experimental evolution is Pseudomonas fluorescens, which

repeatedly evolves flattened wrinkled colonies instead of round smooth ones when there is limited

oxygen. The underlying molecular pathways that lead to this change have been studied in detail.

Lind et al. developed mathematical models to predict how often the three most common

pathways would be used and which genes were most likely to be mutated. After controlling for the

effects of natural selection and refining the models to take into account mutation hotspots, Lind

et al. were able to accurately predict the genes that would be targeted by mutations.

The findings suggest that biologists need not lose hope when it comes to the goal of predicting

evolution. A deep understanding of the molecular mechanisms of evolutionary changes are essential

to predicting the mutations that lead to adaptive change. The results are an important first step

towards forecasting organisms’ responses to changing conditions in the future. In the short term,

this is important for medical issues, including antibiotic resistance, cancer and immune receptors. In

the long term, predicting the course of evolution could be essential for survival of life on the planet.

DOI: https://doi.org/10.7554/eLife.38822.002
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Mutation is not equally likely at each nucleotide of a given genome (Lind and Andersson, 2008;

Lynch, 2010; Seier et al., 2011; Foster et al., 2015; Reijns et al., 2015; Sankar et al., 2016;

Stoltzfus and McCandlish, 2017). Numerous instances of mutational bias have been reported.

Prime examples are simple sequence repeats such as homopolymeric nucleotide tracts or di-, tri-

and tetrameric repeats that mutate at high frequency via slipped strand mispairing (Levinson and

Gutman, 1987). These readily identifiable sequences define contingency loci in obligate human

pathogens and commensals (Moxon et al., 1994) and are widespread in eukaryotic genomes

(Tautz and Renz, 1984). The behaviour of contingency loci can be further modulated by defects in

components of methyl-directed mismatch repair systems (Richardson and Stojiljkovic, 2001;

Martin et al., 2004; Hammerschmidt et al., 2014; Heilbron et al., 2014).

Certain palindromic structures also lead to mutational bias (Viswanathan et al., 2000;

Lovett, 2004) and promote amplification events that can increase target size for additional muta-

tions (Roth et al., 1996; Kugelberg et al., 2010; Reams and Roth, 2015) Transition-transversion

bias (Stoltzfus and McCandlish, 2017) and elevated mutation rates at CpG sites (Galen et al.,

2015) can further skew the distributions of mutational effects. Additional bias arises from the chro-

mosomal neighbourhood of genes under selection (Steinrueck and Guet, 2017), the location of

genes with regard to interactions with DNA replication/transcription machineries (Sankar et al.,

2016), and environmental factors that affect not only mutation rate but also the spectra of muta-

tional events (Krašovec et al., 2017; Maharjan and Ferenci, 2017; Shewaramani et al., 2017).

Beyond the genotype-to-phenotype map and mutational biases, predicting adaptive evolution

requires ability to know a priori the fitness effects of specific mutations. At the present time there is

much theoretical and empirical interest in the distribution of fitness effects (DFE) (Eyre-Walker and

Keightley, 2007) — and particularly the DFE of beneficial mutations (Orr, 2005) — because of

implications for predicting the rate of adaption and likelihood of parallel evolution (de Visser and

Krug, 2014), but knowledge of the shape of the distribution is insufficient to connect specific muta-

tions to their specific effects, or to their likelihood of occurrence. Such connections require a means

of knowing the connection between mutations and their environment-specific fitness effects. This is

a tall order. A starting point is to understand the relationship between all possible mutational routes

to a particular phenotype and the set that are realised by selection.

Here we take a bacterial system in which the genetic pathways underpinning evolution of the

adaptive ‘wrinkly spreader’ (WS) type are known and use this to explore the current limits on evolu-

tionary forecasting. Pseudomonas fluorescens SBW25 growing in static broth microcosms rapidly

depletes available oxygen establishing selective conditions that favour mutants able to colonise the

air-liquid interface. The most successful mutant-class encompasses the WS types (Ferguson et al.,

2013; Lind et al., 2017b). These types arise from mutational activation of diguanylate cyclases

(DGCs) that cause over-production of the second messenger c-di-GMP (Goymer et al., 2006;

McDonald et al., 2009), over-production of an acetylated cellulose polymer (Spiers et al., 2002;

Spiers et al., 2003) and ultimately formation of a self-supporting microbial mat (Figure 1A).

McDonald et al. (McDonald et al., 2009) showed that each time the tape of WS evolution is re-

run mutations generating the adaptive type arise in one of three DGC-encoding pathways (Wsp,

Aws, or Mws) (Figure 1A). Subsequent work revealed that when these three pathways are eliminated

from the ancestral type evolution proceeds along multiple new pathways (Lind et al., 2015) resulting

in WS types whose fitnesses are indistinguishable from those arising via mutations in Wsp, Aws, or

Mws. Parallel evolution of WS involving preferential usage of the Wsp, Aws and Mws pathways is

therefore not explained by selection: repeated use of Wsp, Aws and Mws stems from the fact that

these pathways are subject to negative regulation and thus, relative to pathways subject to positive

regulation, or requiring promoter-activating mutations, gene fusion events, or other rare mutations,

present a large mutational target (Lind et al., 2015).

Given repeatability of WS evolution, knowledge of the Wsp/Aws/Mws pathways, plus genetic

tools for mechanistic investigation — including capacity to obtain WS mutants in the absence of

selection — the WS system offers a rare opportunity to explore the extent to which knowledge of

the genotype-to-phenotype map can lead mechanistic models for evolutionary forecasting. Our find-

ings show that short-term mechanistic-level predictions of mutational pathways are possible, but

also draw attention to challenges that stem from current inability to a priori predict locus-specific

mutational biases and environment-specific fitness effects.
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Results

Obtaining an unbiased measure of pathway-specific mutation rates to
WS
Knowledge of the rate at which mutation generates WS types via each of the Wsp, Aws and Mws

pathways — unbiased by the effects of selection — provides a benchmark against which the predic-

tive power of null models can be appraised. To achieve such measures we firstly constructed a set of

genotypes containing just one of the three focal pathways: PBR721 carries the Wsp pathway but is

devoid of Aws and Mws, PBR713 carries the Aws pathway but is devoid of Wsp and Mws, while

PBR712 harbours the Mws pathway but is devoid of Wsp and Aws. Into each of these genotypes a

promoterless kanamycin resistance gene was incorporated immediately downstream of the pro-

moter of the cellulose-encoding wss operon and transcriptionally fused to an otherwise unaffected

wss operon (Figure 1B).

In the ancestral SM genotype the cellulose promoter is inactive in shaken King’s Medium B (KB)

broth (Spiers et al., 2002) and thus the strain is sensitive to kanamycin. When a WS-causing muta-

tion occurs, the wss promoter becomes active resulting in a kanamycin-resistant WS type

(Fukami et al., 2007; McDonald et al., 2011). Individual growth of this set of three genotypes in

shaken KB, combined with plating to detect kanamycin-resistant mutants, makes possible a fluctua-

tion assay (Luria and Delbrück, 1943; Hall et al., 2009) from which a direct measure of the rate at

which WS mutants arise can be obtained. Importantly, because WS types are maladapted in shaken

broth culture, the screen for kanamycin-resistant clones allows the pathway-specific mutation rate to

WS to be obtained without the biasing effects of selection for growth at the air-liquid interface

(Figure 1B). The results are shown in Figure 2.

SM WS

Selection + mutation

A

B
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Shaken

Mutation

Mutation

rate

Mutations

without selection
- targets

- mutational biases

Mutations
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(McDonald et. al. 2009)

Fitness
Pwss KanamycinR

c-di-GMPDGC

(WspR, AwsR, MwsR)

cellulose

(wss)
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Kanamycin

resistance

Figure 1. The Pseudomonas fluorescens SBW25 wrinkly spreader model. (A) Selection for access to oxygen allows

wrinkly spreader (WS) mutants to invade the ancestral smooth (SM) population in static microcosms. WS mutants

form a mat at the air-liquid interface through increased expression of the main structural component, cellulose,

encoded by the wss operon. Expression of cellulose is controlled by the second messenger c-di-GMP, which is

produced by diguanylate cyclases (DGCs). Mutations in the wsp, aws and mws operons, that activate their

respective DGCs (WspR, AwsR, MwsR), are the primary mutational pathways to WS. (B) When a reporter construct

connecting expression of the wss operon to resistance to kanamycin is used under shaken non-selective

conditions, WS mutants can be isolated without the biasing influence of natural selection. This allows estimation of

the mutation rate to WS and an unbiased spectrum of mutations defining the mutational target. Fitness can then

be assayed in competition with a common reference strain.

DOI: https://doi.org/10.7554/eLife.38822.003
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The mutation rate was highest for the Aws pathway (6.5 � 10�9); approximately double that of

Wsp (3.7 � 10�9) and an order of magnitude higher than that of the Mws pathway (0.74 � 10�9)

(Figure 2). The rate at which WS mutants arose from the ancestral genotype in which the three path-

ways are intact (11.2 � 10�9) was approximately the sum of the rates for the three pathways

(11.0 � 10�9) confirming that the Wsp, Aws and Mws pathways are the primary routes by which WS

types evolve (Lind et al., 2015). That the Aws pathway has the greatest capacity to generate WS is

surprising given the smaller target size (three genes and 2.3 kb compared to seven genes (8.4 kb) in

the Wsp pathway).

The genotype-to-phenotype map underpinning WS evolution
Much is known about the function and interactions among components of each of the three focal

pathways. This knowledge allows development of models that capture the dynamic nature of each

pathway and thus allow predictions as to the likelihood that evolution will precede via each of the

three mutational routes. An unresolved issue is the extent to which these models match experimen-

tal findings. Following a brief description of each pathway we describe the models.

The 8.4 kb Wsp pathway is a chemotaxis-like system (Goymer et al., 2006; Güvener and Har-

wood, 2007; Römling et al., 2013; Micali and Endres, 2016) composed of seven genes with the

first six genes (wspA-wspF) being transcribed as a single unit and the last (wspR from its own pro-

moter (Bantinaki et al., 2007). WspA (PFLU1219) is a methyl-accepting chemotaxis (MCP) protein

that forms a complex with the CheW-like scaffolding proteins WspB (PFLU1220) and WspD

(PFLU1222). WspA senses environmental stimuli and transmits the information via conformational

changes in the WspA/WspB/WspD complex to effect activity of WspE (PFLU1223), a CheA/Y hybrid

histidine kinase response regulator. WspE activates both the WspR (PFLU1225) diguanylate cyclase

(DGC) and the CheB-like methylesterase WspF (PFLU1224) following transference of an active phos-

phoryl group. The activity of WspA is modulated by methylation by the constitutively active CheR-

like methyltransferase WspC (PFLU1221) that transfers methyl groups to conserved glutamine resi-

dues on WspA. The demethylase WspF serves to remove these groups when in the phosphorylated

active form. WS mutants are known to arise by mutations in the WspF negative regulator and also in

the WspE kinase (McDonald et al., 2009). In vitro manipulations of WspR that abolish repression of

the DGC domain by the response regulator domain are known, but have never been observed to

occur in experimental populations (Goymer et al., 2006).
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Figure 2. Mutation rates to WS. Fluctuation tests were used to estimate the mutation rate to WS for the three

common mutational pathways to WS. Error bars represent mean and 95% confidence intervals. All mutation rates

are significantly different from all others (t-test p<0.05, see Materials and method section for details). Number of

replicates n = 200 for Aws and Wsp, n = 400 for Mws, n = 100 for WT.

DOI: https://doi.org/10.7554/eLife.38822.004
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The 2.3 kb aws operon contains three genes transcribed from a single promoter (awsXRO).

Homologous genes in Pseudomonas aeruginosa (yfiRNB, PA1121-1119) have been characterised in

detail (Malone et al., 2010; Malone et al., 2012; Xu et al., 2016). The outer membrane lipoprotein

AwsO (PFLU5209) has an OmpA domain, a signal peptide and binds to peptidoglycan. AwsO is

thought to be the sensor whose activity is modulated in response to envelope stress (Malone et al.,

2012). AwsO sequesters the periplasmic protein AwsX (PFLU5211) at the outer membrane. AwsX

functions as a negative regulator of the DGC AwsR (PFLU5210) in the inner membrane. Both

increased binding of AwsX to AwsO or loss of negative regulation by inactivation of the interaction

between AwsX and AwsR can lead to WS (McDonald et al., 2009; Malone et al., 2010;

Malone et al., 2012).

The 3.9 kb mwsR gene (PFLU5329) is known as morA (PA4601) in Pseudomonas aeruginosa, and

encodes a predicted membrane protein with both a DGC domain that produces c-di-GMP and a

phosphodiesterase (PDE) domain that degrades c-di-GMP. Little is known of the molecular details

determining its function, but both catalytic domains appear to be active (Phippen et al., 2014).

Deletion of the PDE domain results in a WS phenotype with activity being dependent on a functional

DGC domain (McDonald et al., 2009).

Development of mechanistic models predicting mutational routes to
WS
If the specific effects of changing each nucleotide (and sets of nucleotides) were known then models

for each pathway would not be required. Here, we show how knowledge of genetic architecture can

be used to build models that predict the likelihood that mutations generating WS types will arise in

a given pathway – and even in specific genes. In the following section we present four null models

that incorporate increasing levels of information concerning the genotype-to-phenotype map. The

goal of these models is two-fold: firstly to demonstrate that incorporation of knowledge of genetic

architecture allows development of models with explanatory value and secondly, to define minimal

necessary information for reliable forecasting. The results are summarised in Figure 3, which displays

the experimental data from Figure 2 (Figure 3A), along with predictions from each of the null

models.

Null Model I is intentionally naı̈ve. It uses sequence length as a proxy for mutational target size,

but ignores genetic organisation, function of predicted proteins and interaction among proteins.

The model assumes that mutational target size is proportional to the number of nucleotides at a

given locus and thus the probability that a given pathway is used to generate WS relative to another

is simply the ratio of the probability of generating WS for the two focal pathways. For any one path-

way the probability that a mutation generates WS is given by 1-(1-p)n, where p is the probability of a

mutation at a nucleotide and n is the number of nucleotides in the pathway. If the mutation probabil-

ity is low such that the expected number of mutations in a pathway is below 1, that is, np <<1 then

the binomial approximation can be used: 1-(1-p)n = np. Thus the probability that evolution follows

the Wsp pathway over the Aws pathway is: 8400 p1/ 2300 p2 = 3.65 p1/p2, where p1 and p2 are the

mutation rates for each pathway. Assuming equivalency of mutation rate, p1 = p2, evolution is pre-

dicted to proceed via the Wsp pathway 3.65 times more often than via Aws, with evolution pre-

dicted to proceed via Mws 1.65 times more often than Aws. Comparison with experimental data

shows a departure both in terms of the priority of pathways used by evolution and the frequency of

pathway usage (Figure 3A versus 3B).

Null Model II builds on Model I but only in a marginal sense. It recognises that nucleotides defin-

ing loci of interest are organised into genes, and therefore adopts gene number as a proxy for muta-

tional target size. As above, the probability that a pathway is used is 1-(1-p)n = np, but in this

instance n is the number of genes. Model II predicts that mutations in Wsp generate WS types 2.33

times more often than mutations in Aws, with mutations in Mws being 3-fold less likely to generate

WS compared to mutations in Aws (Figure 3C). This marginal adjustment makes little difference to

the fit between experimental data and predictions.

Past work has shown the explanatory value of information that comes from knowledge of gene

(protein) function and interactions (McDonald et al., 2009; Lind et al., 2015). These form the basis

of Null Model III. The relevant functions and interactions are depicted in Figure 4 as reaction dia-

grams that reflect how changes in different interactions affect the production of WS types. Organiz-

ing interactions within each pathway according to reactions has the advantage that it allows for a
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standard mathematical description of the biochemical dynamics using differential equations (see Fig-

ure 4 and Figure 4—figure supplement 1 to 3,). An additional advantage is that such an approach

allows ready incorporation of new experimental data including interaction type and interaction

strength.

One immediate consequence of this approach is that production of WS types is described entirely

through biochemical reactions. Knowing whether a WS-type is generated by a particular mutation

amounts to determining which reaction rates are altered by the mutation and whether those changes

affect the likelihood of producing WS types. This leads to an approach where mutations in compo-

nents can be classified according to their effects on reaction rates: enabling mutations increase reac-

tion rates, whereas disabling mutations decrease reaction rates.

Based on the mathematical models for the pathways, each reaction rate can be altered (either

increased or decreased) to generate higher levels of the key WS effector (the active DGC). For

example, in the Wsp pathway, if reactions 2 or 6 experience a disabling mutation, or alternatively, if

any of the reactions 1, 3, 4, or 5 experience an enabling mutation, then the level of activated (phos-

phorylated) WspR is increased. For now, it is assumed that increased activity of the relevant DGC

Wsp

Aws

Mws

CBA

D

E

Experimental Null Model I Null Model II

Null Model III - Disabling Null Model III - Enabling

Null Model IV - p
d
>>p

e
Null Model IV - p

d
<<p

e

Figure 3. Comparisons of experimental data and null model predictions for the use of the Wsp, Aws and Mws

pathways. (A) Experimental data from Figure 2. (B) Null Model I: number of base pairs as proxy for mutational

target size. (C) Null Model II: number of genes as a proxy for mutational target size. (D) Null Model III: function

and interactions between components determine mutational target size. To indicate the range of possible states

we consider the situation with enabling mutations only (left hand panel) and disabling mutations only (right hand

panel). (E) Null Model IV: as per null Model III, but interactions have both pleiotropic and continuous effects. To

indicate the range of possible states we consider the probability of disabling mutational effects (pd) to be 10 times

more common than enabling changes (pe), pd = 0.001, pe = 0.0001 (left hand panel) the probability of enabling

mutational effects (pe) to be 10 times more common than disabling changes (pd), pd = 0.0001, pe = 0.001.

DOI: https://doi.org/10.7554/eLife.38822.005
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generates a WS type. Reactions whose enabling/disabling mutations increase the amount of WS

effector are termed enabling/disabling reactions.

By comparing the number of disabling and enabling reactions in different pathways it is possible

to calculate the relative likelihood that evolution uses each mutational pathway. The Wsp pathway

encompasses two disabling and four enabling reactions, whereas the Aws pathway is defined by one

disabling and three enabling reactions. Mws encompasses a single disabling reaction and two
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Figure 4. Reaction diagrams for null models III and IV. Reaction diagrams show the interactions governing production of a wrinkly spreader in (A) Wsp,

(B) Aws and (C) Mws pathways. The blue circles indicate molecular components, the red circles indicate reactions, and arrows indicate which molecular

components are reactants and which are products. Full descriptions of the models including all reactions and the resulting systems of differential

equations are found in Figure 4—figure supplement 1 for Wsp, Figure 4—figure supplement 2 for Aws and Figure 4—figure supplement 3 for

Mws. The black edged circles are the reporter proteins, which is the activated forms of the diguanylate cyclases that directly determine whether a

pathway generates a wrinkly spreader. Increased production of any reporter leads to increased c-di-GMP concentration causing increased cellulose

production and thereby a wrinkly spreader.

DOI: https://doi.org/10.7554/eLife.38822.006

The following figure supplements are available for figure 4:

Figure supplement 1. Wsp model.

DOI: https://doi.org/10.7554/eLife.38822.007

Figure supplement 2. Aws model.

DOI: https://doi.org/10.7554/eLife.38822.008

Figure supplement 3. Mws model.

DOI: https://doi.org/10.7554/eLife.38822.009
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enabling reactions. If disabling mutations are as likely as enabling mutations, then the likelihood that

a pathway will be used by evolution is simply the ratio of the total number of enabling and disabling

reactions: 6:4:3 (Wsp:Aws:Mws). If instead, disabling mutations are much more likely than enabling

mutations, then enabling reactions can be ignored and the likelihood that a pathway will be used by

evolution becomes simply the ratio of the number of disabling reactions: 2:1:1 (Wsp:Aws:Mws)

(Figure 3D left hand panel). If the reverse is true, then the likelihood of use is a ratio of the number

of enabling reactions: 4:3:2 (Wsp:Aws:Mws) (Figure 3D right hand panel). In all cases, mutations in

the Wsp pathway are predicted to be 1.3–2 times more likely to generate WS than mutations in the

Aws pathway, with the Aws pathway being the target of evolution 1–1.5 times more often than the

Mws pathway. Although still inflating the importance of the Wsp pathway relative to Aws, Mws is

more prominent than in null Model II.

Null Model IV takes a further step toward mechanistic accuracy by endowing interactions with

pleiotropic and continuous effects. This removes two simplifying assumptions of null Model III likely

to limit predictive power. In Model III mutations affect one reaction at a time, but mutations in cer-

tain components, for example wspA, can affect more than a single reaction (WspA appears in reac-

tions 1–4). Additionally, in Model III, changes in reaction rate are assumed to be binary, however

reactions may have a range of effects on the evolution of WS types.

To accommodate pleiotropic effects, null Model IV systematically considers all combinations of

enabling and disabling changes to reaction rates and determines the likelihood that a WS type is

generated. An example of one set of the possible mutations (mi) in Wsp is 1,–1, 0, 0, 0, 0 (an

increase in r1, a decrease in r2, but no change in r3, r4, r5, or r6 (Figure 3A)). Since the Wsp pathway

has six reaction rates this amounts to 36 or 729 total combinations. However, note that reaction 3

does not share any reactants or products with reactions 5 or 6. Thus, mutations such as 0, 0, 1, 0, 1,

0 or 0, 0, 1, 0, 0, 1 are not considered because they require mutations in two separate genetic

components.

To accommodate a range of effects null Model IV simulates enabling/disabling changes of differ-

ent magnitudes and determines the resulting effect on the respective effector DGC (see Materials

and methods). Briefly, the approach addresses the lack of information concerning biochemical reac-

tion rates and molecular concentrations in the mathematical models describing WS-producing path-

way dynamics. By repeatedly sampling from the space of all possible reaction rates, initial

concentrations, and magnitudes of effects, this approach computes the probability that a particular

set of mutations (mi), for example 1,–1, 0, 0, 0, 0, results in a wrinkly spreader. This probability is rep-

resented as the conditional probability P (WS |mi 2 Wsp), which motivates a Bayesian formulation to

compare the relative probability that the different pathways produce WS. To this end, the probabil-

ity that a particular pathway will be used is decomposed into two terms: the probability that a partic-

ular set of mutations (mi) occurs in Wsp (or Aws, or Mws) represented as P (mi 2 Wsp) and the

probability that those mutations give rise to a wrinkly spreader represented as P (WS |mi 2 Wsp) (or

Aws, or Mws).

P WS\m\Wspð Þ ¼
X

i
P WSjmi 2Wspð ÞP mi 2Wspð Þ (1)

To estimate P (mi 2 Wsp) we assume fixed probabilities of enabling and disabling changes and

compute the product. Thus, the probability of mi = 1,–1, 0, 0, 0, 0 is pepd(1 � pe � pd)
4, where pe is

the probability of a mutation with an enabling effect and pd is the probability of a mutation with a

disabling effect. Recognising the value of accommodating the possibility of localised mutational bias

we note that pe and pd can be adjusted for the affected reactants. The second term, P (WS |mi 2

Wsp), relies on our sampling methodology and describes the probability that a set of disabling/

enabling changes of different magnitudes will yield a WS type (see Materials and methods).

Despite the mechanistic advances incorporated into null Model IV the Wsp pathway is still pre-

dicted to be the pathway most commonly used by evolution. The extreme cases in which disabling

mutations are more probable than enabling mutations (and vice versa) are shown in Figure 3E. The

results of simulations for the full range of pd and pe values are shown in Figure 5. Figure 5A shows

that the Wsp pathway is predicted to be the target of mutation 1.5–1.9 times more often than the

Aws pathway while Figure 5B shows that the Mws pathway is predicted to be the target of mutation

0.4–0.5 times less often that the Aws pathway. While these results agree with the experimental data

showing Mws to be least likely pathway to be followed, the predictions are at odds with the data

Lind et al. eLife 2019;8:e38822. DOI: https://doi.org/10.7554/eLife.38822 9 of 31

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.7554/eLife.38822


showing WS types to be twice as likely to arise from mutation in Aws, versus Wsp. The causes of this

discrepancy are accounted for in the next section ‘analysis of mutants reveals sources of mutational

bias’.

The Bayesian approach of null Model IV has additional utility: it allows prediction of genes likely

to be affected by mutation. Predictions as to specific genetic targets come from appraisal of the rel-

ative importance of each reaction in terms of generating WS types (Figure 5—figure supplements

1 and 2). While it is recognised that a majority of WS mutations arise from defects in negative regu-

lators of DGCs, such as WspF and AwsX (McDonald et al., 2009; Lind et al., 2015), further predic-

tions are possible based on impacts of alterations in gene function on reaction rates. For example,

with reference to the Wsp pathway (Figure 5—figure supplement 1), there are two reactions (2 and

6) that are affected by WspF function: r2 describes the rate of removal of methyl groups from the

WspA signalling complex and r6 the rate at which WspF is activated by transfer of active phosphoryl

groups from the WspE kinase. Loss-of-function (disabling) mutations being much more common

than gain-of-function (enabling) mutations means that WspF, WspA and WspE are all likely targets.

The null model predicts that in the area of parameter space in which Wsp is most likely compared to

Aws, 45% of the time WS will be generated when the second reaction, r2, is altered (Figure 5—fig-

ure supplement 1). The same is true for reaction r6. Thus the presence of a negative regulator is

predicted to extend the mutational target size well beyond the gene itself. This is also true for Aws,

where r3 is the main contributor to the WS phenotype in the case where disabling change is more

common than enabling change. Here mutations are predicted not only in the negative regulator

AwsX, but also in the interacting region of the DGC AwsR (Figure 5—figure supplement 2).

Loss-of-function mutations in negative regulators and their interacting partners are not the only

predicted targets. For Wsp r1, r3, r4, and r5 are altered approximately 5% of the time in the parame-

ter region where disabling mutations are more common than enabling mutations, but contribute

more when the rate of enabling mutations is increased (Figure 5—figure supplement 1). Enabling

mutations based on null Model IV are likely to be found in WspC (increasing r1), WspABD (increasing

r3), WspABD/WspE (increasing r4) and WspR (increasing r5) (Figure 4A). For Aws, enabling mutations

are predicted to increase reaction r1 by mutations causing constitutive activation of AwsO, r2
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Figure 5. Null Model 4 predictions of the probability of using the Wsp, Aws and Mws pathways. (A) Probability of Wsp relative to Aws. (B) Probability of

Mws relative to Aws. (C) Probability of Mws relative to Wsp. The relative contributions of individual reactions rates are available in Figure 5—figure

supplement 1 for Wsp and Figure 5—figure supplement 2 for Aws. Sensitivity analysis is shown in Figure 5—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.38822.010

The following figure supplements are available for figure 5:

Figure supplement 1. Relative contributions of reaction rates for Wsp for null Model IV.

DOI: https://doi.org/10.7554/eLife.38822.011

Figure supplement 2. Relative contributions of reaction rates for Aws for null Model IV.

DOI: https://doi.org/10.7554/eLife.38822.012

Figure supplement 3. Parameter sensitivity analysis.

DOI: https://doi.org/10.7554/eLife.38822.013
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increasing binding of AwsO and AwsX and r4 increasing formation of the active AwsR dimer

(Figure 4B, Figure 5—figure supplement 2).

In summary, high rates of WS mutations are predicted for wspF, wspE, wspA, awsX and awsR

with lower rates for wspC, wspR and awsO. Several of these predictions sit in accord with previous

experimental observations, however, notable are predictions that evolution might also target wspA

and wspR, two genes that have not previously been identified as mutational causes of WS types

(McDonald et al., 2009).

Analysis of mutants reveals sources of mutational bias
There are several reasons why predictions from the models might be out of kilter with experimental

data on mutation rates. We firstly looked to the distribution of WS generating mutations among the

109 mutants collected during the course of the fluctuation assays. Of the 109 mutants, 105 har-

boured a mutation in wsp (46 mutants), aws (41 mutants) or mws (18 mutants) (Figure 6A, Figure 6—

source data 1). The remaining four had mutations in previously described rare pathways (PFLU0085,

PFLU0183), again confirming that these non-focal pathways produce just a fraction of the total set of

WS mutants (Lind et al., 2015).

The distribution of mutations for each of the three pathways is indicative of bias. As shown in

Figure 6B, almost 29% of all WS-causing mutations (adjusted for differences in mutation rates

between the three pathways) were due to an identical 33 base pair in-frame deletion in awsX (Dt229-

g261, DY77-Q87), while a further 13% were due to an identical mutation (79 a->c, T27P) in awsR. At

least 41 different mutations in Aws lead to WS: if mutation rates were equal for these sites the prob-

ability of observing 20 identical mutations would be extremely small. In fact 10 million random sam-

plings from the observed distribution of mutations failed to recover this bias. While the Wsp

pathway also contains sites that were mutated more than once (six positions were mutated twice,

one site three times and one five times), sources of mutational bias in Wsp were less evident than in

Aws (Figure 6B).

Incorporating mutational bias into null models
The mathematical models presented above assumed no mutational bias, but the null models can be

modified to incorporate such bias. With focus on the AwsX hotspot, we show this for models II-IV.

Null Model II
The probability of a mutation at the hotspot is kp where k > 1 and p is the probability of a mutation

in non-hotspot locations. The probability that a pathway is used is: kp + (1-kp)(1-(1-p) (n-1)) where kp

is the probability of a mutation at the hotspot and (1-kp)(1-(1-p)(n-1)) is the probability there is no

mutation at the hotspot, but that there is a mutation elsewhere in the pathway. Using the binomial

approximation, the probability a given pathway is used is: kp + (1-kp)(n-1)p, which for Aws is kp+(1-

kp)2p. Figure 7A shows that if the mutation rate at the hotspot increases 10-fold (k = 10.3) then

Aws is used 1.8 times more often than Wsp. While this matches experimental data, the same 10-fold

increase applied to Mws results in mismatch. Only with a reduced mutation rate at the same locus (k

= 6.8) do predicted and observed data agree (Figure 7B).

Null Model III
The mutational hotspot in the Aws pathway occurs in AwsX, which is involved in both an enabling

and a disabling reaction. If the hotspot increases the rate of a disabling reaction by a factor k where

k > 1, then the probability the pathway is used is:

k pd þð1� k pdÞ ð1�ð1� pdÞ
ðn�1Þ
d Þ þ ð1� k pdÞ ð1� pdÞ

ðn�1Þ
d ð1�ð1� peÞ

n
eÞ;

which is the sum of probabilities of the events the hotspot is used, the hotspot is not used but a dis-

abling change occurs, and the hotspot is not used but only an enabling change occurs. Figure 7C

shows that if k is between 4 and 5.3, then there is a good fit to experimental data. The actual value

depends on the probabilities of enabling/disabling change and which reaction has the hotspot. For

Mws the mutational hotspot must have a factor between 10 and 15 (Figure 7D).
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Figure 6. Mutational targets. (A) 105 independent mutations in the wsp (n = 46), aws (n = 41) and mws (n = 18) operons were identified. Numbers of

independent mutants are shown in brackets. Full details on the mutations are available in Figure 5—source data 1. (B) Diversity of mutations with area

proportional to mutation rate (Figure 2). Two mutations (AwsX DY77-Q87 and AwsR T27P) contribute 41% of all mutations to WS suggesting that these

are mutational hot spots.

DOI: https://doi.org/10.7554/eLife.38822.014

The following source data is available for figure 6:

Source data 1. Table of all WS mutations in Wsp, Aws and Mws.

DOI: https://doi.org/10.7554/eLife.38822.015
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results (dashed red line). For null models III and IV a range is shown that depends on the probabilities of enabling (pe) and disabling (pd) changes. (G)

Comparison of experimental data (left) and revised predictions from null model IV (middle, right), incorporating a five-fold increase in pe and pd for r2

Figure 7 continued on next page
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Null Model IV
The mutational hotspot in awsX affects reaction rates r2 and r3 in the Aws system of differential

equations (Figure 4B, Figure 4—figure supplement 2). If the mutation factor is between 3.3–5.6 for

the Wsp/Aws comparison (Figure 7E) or 4.8–7.6 for the Mws/Aws comparison (Figure 7F), then pre-

dictions match observed data. Thus Model IV is the only one where the same five-fold change in the

probability of enabling/disabling change predicts observed data for all three mutational pathways

(Figure 7G). This model, updated with hotspot data, predicts that the Aws pathway is more likely to

generate WS types than Wsp for all probability values (see Figure 7H). If disabling changes are

more probable than enabling changes, then r3 dominates the predicted rate, whereas when enabling

changes are more common r2 is the major contributor (Figure 7—figure supplement 1). Knowledge

of the functional interaction between AwsX and AwsR allows interpretation of the likely effect of the

hotspot mutations in AwsX and AwsR as disabling change in r3 (Table 1).

Analysis of mutants reveals mutational targets and effects
Null Model IV of the Wsp, Aws, and Mws pathways allow estimation of the relative probability that a

WS is produced by enabling or disabling changes in a certain reaction rate. This means that in order

to evaluate the success of our predictions, the 105 WS mutations must be connected to their likely

effects on reaction rates. For some mutations this is straightforward. If a mutation completely dis-

ables the negative regulator WspF, this will reduce r2 and r6, thereby producing a wrinkly spreader.

In other cases interpretations of likely effects are more difficult and requires knowledge of the

molecular functions of the proteins and their interactions, which needs to be obtained from litera-

ture, bioinformatics and structural modelling. For example, mutations in WspA can potentially pro-

duce WS by disruption of the interaction with WspF (reducing r2), increase methylation by WspC

(increasing r1), increase signalling rate (r3) or increase phosphorylation of WspE (r4). A summary of

the interpretation of the molecular effects of mutations and how they are connected to reaction

rates is available in Table 1 with a more detailed description in Appendix 1.

Mutations were found in five genes in the Wsp pathway. The majority of the mutations were

found in the negative regulator WspF or its interacting partners WspE and WspA. These mutations

likely reduced reaction rates of r2 and r6 in accord with predictions of null Model IV. The remaining

mutations in WspC and WspR were less common, in accord with predictions and likely due to

increases in reaction rates r1 and r5, respectively. Results for the Aws pathway were also in line with

predictions with the majority of the mutations arising in the negative regulator AwsX or the interact-

ing part of AwsR (both decreasing r3), with rare mutations in AwsO and other parts of AwsR. For

MwsR, loss-of-function mutations were expected primarily in the phosphodiesterase (PDE) domain,

but mutations were found in both diguanylate cyclase (DGC) and PDE domains. A structural analysis

revealed that mutations were clustered in the interface between the domains and unlikely to disrupt

PDE function. These mutations most likely change the dynamics between the DGC and EAL domains

in a way that increases production of c-di-GMP.

Differences of mutational spectra with and without selection
The null models – and especially null Model IV – successfully predicted the mutational targets and

explained mutation rates to WS when knowledge of mutational hot spots was included. To what

Figure 7 continued

and r3 in the Aws differential equation system. Middle pie chart use pd = 0.001, pe = 0.0001 and right pie chart pd = 0.0001, pe = 0.001 to allow

comparison to Figure 3F and G. (H) Null Model IV predicted probability of Wsp relative to Aws with a hotspot in AwsX that increases the mutation rate

five-fold for pe and pd for r2 and r3 in the Aws system of differential equation (I) Null Model IV predicted probability of Aws relative to Mws with a

hotspot in AwsX that increase the mutation rate five-fold for pe and pd for r2 and r3 in the Aws system of differential equation. Figure 7—figure

supplement 1 shows the relative contribution of each reaction rate in the Aws network to the production of WS for the revised null model IV with a 5

times increase for pe and pd for r2 and r3.

DOI: https://doi.org/10.7554/eLife.38822.016

The following figure supplement is available for figure 7:

Figure supplement 1. Relative contributions of reaction rates for Aws for null Model IV with a five-fold increase in mutation factor for r2 and r3.

DOI: https://doi.org/10.7554/eLife.38822.017
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degree can such knowledge allow prediction of the outcome of the original experimental evolution

under selection (McDonald et al., 2009)? A comparison between the frequencies of mutations iso-

lated here (without selection) with those isolated under selection, reveals several notable differences

(Figure 8). The most obvious difference is in use of the Wsp pathway, which is most commonly used

(15/24) under selection and yet produces WS types at a lower rate than the Aws pathway. Differen-

ces are also apparent in the spectrum of wsp mutations, with no wspA mutations being found under

selection despite being the most commonly mutated gene without selection (15/46), and the previ-

ous failure to detect wspR mutants in a screen of 53 WS mutants (Goymer et al., 2006).

Fitness of WS types
The most obvious explanation for the differences in mutational spectra between WS isolated with or

without selection (Figure 8) is that certain mutants have a lower fitness and thus their relative

Table 1. Connection of mutational effects to reaction rates

Protein Mutation class Proposed molecular effect
Proposed reaction rate
effect References

WspA Amino acid
substitutions 352–420

Trimer-of-dimer formation,
localisation of Wsp clusters,
interaction with WspD

Increase r3 (O’Connor et al., 2012;
Griswold et al., 2002 )

WspA Deletions A281-A308 Disrupt demethylation by
WspF

Decrease r2 (McDonald et al., 2009)

WspC/
D

Fusion of WspC and
WspD

Increased methylation by
WspC, blocking access of
WspF

Increase r1, decrease r2

WspE Response regulatory
domain
phosphorylation site

Disrupt phosphorylation of
WspF

Decrease r6 Homology model

WspF Any disabling mutation Loss of negative
regulation by WspF by
demethylation of WspA

Decrease r2 (Bantinaki et al., 2007; McDonald et al., 2009)

WspR Amino acid substitutions
and small deletion in
linker region between
response regulator
and DGC domain

Constitutive activation
of DGC without
phosphorylation.
Effects on subcellular
clustering or multimeric
state.

Increase r5 (Goymer et al., 2006; De et al., 2009;
Huangyutitham et al., 2013)

AwsX In frame loss of
function mutations

Loss of negative
regulation of AwsR

Decrease r3 (Malone et al., 2012)

AwsR Amino acid
substitutions
transmembrane
helix, periplasmic
domain

Disruption of
interaction with AwsX

Decrease r3 (Malone et al., 2012)

AwsR Amino acid substitutions
HAMP linker domain

Changes in dimerization,
packing of HAMP domains
causing constitutive
activation

Increase r4 (Parkinson, 2010; Malone et al., 2012)

AwsO Amino acid substitutions
in between signal
peptide
and OmpA domain

Constitutive activation and
sequestering of AwsX

Increase r2 (McDonald et al., 2009;
Malone et al., 2012;
Xu et al., 2016)

MwsR Amino acid substitutions
and small in frame
deletions in interface
between EAL and DGC
domains

Changes to interdomain
interaction or dimerization
leading to constitutive
activation of DGC function

Decrease r2, increase r1 Homology model, (McDonald et al., 2009)

MwsR Amino acid substitutions
near DGC active site

Loss of feedback regulation
or changes to interdomain
interaction

Decrease r2, increase r1 Homology model, (McDonald et al., 2009)

DOI: https://doi.org/10.7554/eLife.38822.018
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frequencies will be lower in the original evolution experiment (McDonald et al., 2009). We mea-

sured the fitness of representative WS types with mutations in each of the mutated genes (wspA,

wspC/D, wspE, wspF, wspR, awsX, awsR, awsO, mwsR) in 1:1 competitions against a reference

WspF DT226-G275 deletion mutant marked with GFP (Figure 9). This type of fitness data should be

interpreted with caution because the fitness of WS mutants are frequency-dependent (Rainey and

Travisano, 1998) and some WS mutants are superior in early phase attachment as opposed to

growth at the air-liquid interface (Lind et al., 2015). Nevertheless, the competition experiments pro-

vide an estimate of fitness when several different WS mutants compete at the air-liquid interface (a

likely situation given a ~ 10�8 mutation rate to WS and a final population size of >1010). The fitness

data account for the over- or under-representation of some WS mutants when grown under selection

(McDonald et al., 2009) compared to those uncovered without selection (as reported here).

The three wspF mutants, the wspC-wspD fusion, and the wspE mutants have similar fitness

(p>0.38, except for WspE K734E that has slightly higher fitness (p=0.027), two-tailed t-tests). In con-

trast, both wspA mutants are slightly less fit (p<0.0214, two-tailed t-test) and both wspR mutants are

severely impaired (p<0.00007, two-tailed t-test) (Figure 9). This sits in accord with previous work in

which mutations generating WS obtained with selection have been detected in wspF and wspE, but

not wspA or wspR (Goymer et al., 2006; McDonald et al., 2009). All awsXRO mutants have similar

lower fitness (p<10�6, two-tailed t-test) compared to the wspF reference strain (Figure 9), which

explain why under selection these are found at lower frequencies compared to mutations in the wsp

pathway (McDonald et al., 2009) despite a roughly two-fold higher mutation rate to WS.

Discussion
The issue of evolutionary predictability and the relative importance of stochastic events compared to

deterministic processes have a long history in evolutionary biology (Darwin, 1872; Simpson, 1949;

Jacob, 1977; Gould, 1989; Conway Morris, 2003; Orgogozo, 2015). Recent interest has been
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Figure 8. WS mutations isolated with and without selection. (A) The mutational spectrum observed under

selection suggests underrepresentation of WspA and WspR compared to WspF and WspE. (B) Similar fitness

effects of different Aws mutants lead to similar patterns regardless of selective conditions. However the frequency

of all Aws mutants isolated under selection is much lower than expected from its high mutation rate. (C) The low

number of MwsR mutants isolated does not allow an analysis of relative rates. Only within operon comparisons are

valid for this figure as the mutants isolated without selection had double deletions of the other operons. Between

operon mutation rates are available in Figure 2.
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sparked by an increasing number of observations that both phenotypic and molecular evolution,

under certain circumstances, can be remarkably repeatable (Colosimo et al., 2005; Shindo et al.,

2005; Jost et al., 2008; Barrick et al., 2009; Lee and Marx, 2012; Meyer et al., 2012; Zhen et al.,

2012; Herron and Doebeli, 2013), but whether these cases are representative for evolutionary pro-

cesses in general remains to be determined. A related question, with greater potential for practical

applications, is whether it is possible to forecast short-term evolutionary events and if so, then the

challenge is to stipulate the data necessary to make successful predictions.

Our uniquely detailed knowledge of the WS experimental evolution system has provided a rare

opportunity to determine the contributions of mutational bias and genetic architecture to the gener-

ation of new adaptive phenotypes, and consequently explore the limits of evolutionary forecasting.

A thorough understanding of the function of the molecular species and their interactions allowed

development of null models (see especially Model IV) that capture essential features of the geno-

type-to-phenotype map sufficient to predict the relative likelihood that evolution will follow each of

the three principle pathways, along with specific mutational (genetic) targets. Even the most sophis-

ticated of these models failed to forecast outcomes that matched the experimental data shown in

Figure 2, however, the reason became apparent upon characterisation of the set of WS mutants

obtained without selection: the presence of mutational hotspots. Armed with knowledge of sources

of mutational bias it was a simple matter to refine Model IV leading to predictions matching those

observed by experiment.

Problematic at the current time is inability to a priori detect all causes of mutational bias, how-

ever, it is likely that this will improve as understanding of the biochemical causes of bias improves

and algorithms trained to recognise and detect nucleotide patterns indicative of bias are imple-

mented. One specific deletion (DY77-Q87) in awsX was found to account for nearly half (20/41) of

the mutations in the Aws pathway. Thus, despite the existence of hundreds of possible mutations
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Figure 9. Fitness of different WS mutants. Competitive fitness against a WspF DT226-G275 reference strain was

measured for representative mutations in the Wsp, Aws, Mws pathways. Pairwise competitions were performed in

quadruplicates and error bars represent ±one standard deviation. Full data, including statistical tests are available

in Figure 9—source data 1.

DOI: https://doi.org/10.7554/eLife.38822.020

The following source data is available for figure 9:

Source data 1. Data from fitness assay.

DOI: https://doi.org/10.7554/eLife.38822.021
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leading to WS (this work and (McDonald et al., 2009; McDonald et al., 2011; Lind et al., 2015))

one single mutation accounts for more than one quarter of all WS mutations. While the six base pair

direct repeat flanking the deletion provides a convincing explanation for its increased rate, it is not

clear why this deletion would be ten times more common than the DP34-A46 deletion in the same

gene that is flanked by ten base pair repeats and contains five base pairs identical to those from the

DY77-Q87 deletion (Figure 6—source data 1). There are also instances where single base pair sub-

stitutions are overrepresented: the AwsR T27P mutation is found in nine cases, while eight other sin-

gle pair substitutions in Aws were found only once. Consider further the fact that wspE (a gene

of ~2.3 kb), where changes to only four specific amino acids repeatedly cause WS, and wspF (a gene

of ~1 kb) where any mutation that disrupts function results in WS (Figure 6A) contribute equally to

the rates of at which new WS types arise.

It is evident from these findings and from related studies (Pollock and Larkin, 2004) that there is

need for detailed experimental measurement of local mutation rates in specific systems. Such investi-

gations stand to contribute to understanding of the causes of mutational bias and the extent to

which biases might be conserved among related or even unrelated organisms. If local nucleotide

sequence is the major determinant, an estimate of mutation rate will apply strictly to very closely

related species, but if the dynamics of molecular processes, such as transcription and replication

(Sankar et al., 2016), are major influences then estimates might be applicable to a wider range of

species.

Forecasting mutational routes to new phenotypes is one component of a comprehensive forecast-

ing strategy. The second requirement is ability to a priori predict fitness effects. Solving this problem

is the Holy Grail for predicting evolution, but at the current time this is not possible. That it matters

is made clear by the observation that a subset of all possible WS mutants was found after experi-

mental evolution (Figure 8) due to inability of some to successfully compete with high fitness WS

types (Figure 9).

Direct measurement of the fitness effects of large numbers of mutations is difficult, time-consum-

ing, typically only possible for microbial species and against the spirit of identifying a priori predic-

tors of fitness effects. Future success likely rests on ability to infer fitness from parameters such as

estimated effects of mutations on thermodynamic stability (Capriotti et al., 2005; Dean and Thorn-

ton, 2007; Rodrigues et al., 2016), molecular networks, evolutionary conservation of amino acid

residues (Glaser et al., 2003; Ng and Henikoff, 2003; Landau et al., 2005; Kumar et al., 2009;

Celniker et al., 2013; Choi and Chan, 2015) or machine-learning methods combining several types

of information (Bromberg and Rost, 2007; Li et al., 2009; Capriotti et al., 2013; Yates et al.,

2014; Hecht et al., 2015). Possibilities likely also exist to extrapolate findings from a small number

of mutations that are either directly constructed and assayed in the laboratory or through fitness

estimates of polymorphism data from natural populations. Recent work on the prediction of the fit-

ness effects of random mutations in several genes suggests that in many cases large effect mutations

can be predicted using methods based on evolutionary conservation (Lind et al., 2017a).

On a less ambitious scale it may be possible to take advantage of the fact that the distribution of

fitness effects associated with mutations in single genes is often bimodal – a consequence of many

mutations causing complete loss-of-function rather than intermediate deleterious; effects (San-

juan, 2010; Hietpas et al., 2011; Jacquier et al., 2013; Firnberg et al., 2014; Lind et al., 2017a;

Sarkisyan et al., 2016; Lundin et al., 2017). As such it may be sufficient to know gene function plus

consequences arising from loss of function mutations and thus treat mutations within single genes as

having equivalent fitness (Sanjuan, 2010; Jacquier et al., 2013; Sarkisyan et al., 2016; Lind et al.,

2017a). Interestingly WS mutations occurring in the same gene typically show similar fitness effects

(Figure 9). While still requiring experimental data, this simplification may fuel exploration of the rela-

tionship between large numbers of mutations and their fitness effects and thus understanding of the

extent to which fitness effects are transferable between strains with different genetic backgrounds

or closely related species (Ungerer et al., 2003; Pearson et al., 2012; Wang et al., 2014).

Taken at face value, our findings give reason to question the value of aspiring to forecast evolu-

tion from first principles based on mechanistic understanding. But we argue against such pessimism

and point firstly to the value that stems from a clear understanding of current limitations on forecast-

ing: defining what is known, what is not known, and what needs to be known. That it is possible to

take knowledge of the genotype-to-phenotype map and forecast with good accuracy targets and
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rates is an important advance. There is good reason to suspect that the principles outlined here and

previously (Lind et al., 2015) are transferable to other systems and even generalizable (Lind, 2018).

Evolutionary forecasting is in its infancy. In the short term it is likely to be most successful for bio-

logical systems where there are experimental data on a large number of independent evolutionary

events, such as is the case for influenza, HIV and cancer (Kouyos et al., 2012; Fraser et al., 2014;

Lawrence et al., 2014; Luksza and Lässig, 2014; Neher et al., 2014; Eirew et al., 2015). Evolution

might appear idiosyncratic indicating that every specific system requires detailed investigation, but

our hope is that deeper knowledge of the genotype-to-phenotype map, distribution of fitness

effects and mutational biases will allow short term forecasts to be produced using modelling without

the need for large-scale experimental studies. A major boost to further refinement of evolutionary

forecasting is likely to come from combining coarse (top down) and fine-grained (bottom-up)

approaches. Our demonstration that simple null models of functional networks can produce quanti-

tative predictions is a step forward allowing predictions to be directly tested in other experimental

systems (Lind, 2018).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Gene wspA; PFLU1219 NA

Gene wspB; PFLU1220 NA

Gene wspC; PFLU1221 NA

Gene wspD; PFLU1222 NA

Gene wspE; PFLU1223 NA

Gene wspF; PFLU1224 NA

Gene wspR; PFLU1225 NA

Gene awsX; PFLU5211, yfiR NA

Gene awsR; PFLU5210, yfiN, tpbB NA

Gene awsO; PFLU5209, yfiB NA

Gene mwsR; PFLU5329, morA NA

Gene wss; PFLU0300-PFL0309 NA

Strain, strain
background

Pseudomonas
fluorescens SBW25

PMID: 19432983;
PMID: 8830243

Genetic reagent PBR721; Daws Dmws PMID: 19704015

Genetic reagent PBR713; Dwsp Dmws PMID: 19704015

Genetic reagent PBR712; Dwsp Daws PMID: 19704015

Genetic reagent WT with pMSC PMID: 17377582

Genetic reagent PBR721 with pMSC This work Wsp pathway with pMSC

Genetic reagent PBR713 with pMSC This work Aws pathway with pMSC

Genetic reagent PBR712 with pMSC This work Mws pathway with pMSC

Cell line

Transfected construct

Biological sample

Antibody

Recombinant
DNA reagent

pMSC PMID: 17377582

Recombinant
DNA reagent

mini-Tn7(Gm)PrrnB P1 gfp-a PMID: 15186351

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Sequence-
based reagent

PFLU1219_1294R Sigma-Aldrich agacactgcggactggatct

Sequence-
based reagent

PFLU1219_UF Sigma-Aldrich ttgcctgtggagcgttctat

Sequence-
based reagent

PFLU1219_1130F Sigma-Aldrich accaggtggtggtgaccat

Sequence-
based reagent

PFLU1220_DR Sigma-Aldrich gacgatcactgcttcgatca

Sequence-
based reagent

wspD1r Sigma-Aldrich gttgcgttccagggcgag

Sequence-
based reagent

PFLU1221_DR Sigma-Aldrich acttatcgccatggataccg

Sequence-
based reagent

PFLU1221_UF Sigma-Aldrich tggatcggtgtaaacgacct

Sequence-
based reagent

PFLU1223_1511F Sigma-Aldrich atgacatcgtgcaactggaa

Sequence-
based reagent

PFLU1223_DR Sigma-Aldrich caggtccatcaggatcaggt

Sequence-
based reagent

PFLU1223_841F Sigma-Aldrich cgcccaagtgttgtatgaca

Sequence-
based reagent

PFLU1223_DR Sigma-Aldrich caggtccatcaggatcaggt

Sequence-
based reagent

PFLU1224_160R Sigma-Aldrich tccatcaccggcatgatca

Sequence-
based reagent

PFLU1224_DR Sigma-Aldrich ttttcgtcggtcttgatgtc

Sequence-
based reagent

PFLU1224_UF Sigma-Aldrich aagccagtttccacgatgac

Sequence-
based reagent

PFLU1225_DR Sigma-Aldrich gtgagggtacaccgagccta

Sequence-
based reagent

PFLU1225_UF Sigma-Aldrich tgccaaatgaacatgacctc

Sequence-
based reagent

PFLU5329_1888F Sigma-Aldrich cgtggattgggtgttcaaga

Sequence-
based reagent

PFLU5329_3118R Sigma-Aldrich cggttggtaatagagcacga

Sequence-
based reagent

wspF-seqR Sigma-Aldrich ataacggtcggcttgatacg

Sequence-
based reagent

Aws11f Sigma-Aldrich gctggttcagcttgatcgaaccc

Sequence-
based reagent

Aws16r Sigma-Aldrich atggatgctgccgatggttc

Sequence-
based reagent

Aws7f Sigma-Aldrich gcaaactcaccgcggatgag

Sequence-
based reagent

Aor Sigma-Aldrich cccgtcgattctccgtgcgc

Peptide,
recombinant
protein

Commercial
assay or kit

Chemical
compound, drug

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software, algorithm Ma-Sandri-Sarkar MLE estimator PMID: 19369502 www.keshavsingh.org/
protocols/FALCOR.html

Software,
algorithm

Julia v1.0 https://julialang.org

Software,
algorithm

Matlab 9.4

Software,
algorithm

Phyre2 PMID: 25950237 http://www.sbg.bio.
ic.ac.uk/phyre2

Software,
algorithm

Geneious 7.1 https://www.
geneious.com

Software,
algorithm

FACSDiva 7.0 BD Biosciences

Other

Strains and media
The strains used in the study are all Pseudomonas fluorescens SBW25 (Silby et al., 2009) or deriva-

tives thereof. The reporter construct (pMSC), used for isolation of WS mutants before selection,

fused the Pwss promoter to a kanamycin resistance marker (nptII) (Fukami et al., 2007;

McDonald et al., 2011). P. fluorescens strains with deletions of the wsp (PFLU1219-1225), aws

(PFLU5209-5211) and mws (PFLU5329) operons were previously constructed as described by McDo-

nald et al. (McDonald et al., 2011). All experiments used King’s medium B (KB) (King et al., 1954),

solidified with 1.5% agar and incubation was at 28˚C. All strains were stored in glycerol saline KB at

�80˚C.

Fluctuation tests and isolation of WS mutants before selection
Strains with the pMSC reporter construct and either wild type genetic background or double dele-

tions of aws/mws, wsp/mws or wsp/aws were used to estimate mutation rates to WS before selec-

tion. Overnight cultures were diluted to approximately 103 cfu/ml and 60 independent 110 ml

cultures were grown for 16–19 hr (OD600 = 0.9–1.0) with shaking (200 rpm) in 96-well plates before

plating on KB plates with 30 mg/l kanamycin. Viable counts were estimated by serial dilution and

plating on KB agar. One randomly chosen colony per independent culture with WS colony morphol-

ogy was restreaked once on KB agar. The assay was repeated at least four times for the double dele-

tion mutants and twice for the wild type strain in order to obtain enough mutants to allow

estimation of mutation rates. Mutations rates and confidence intervals were estimated using the Ma-

Sandri-Sarkar Maximum Likelihood Estimator (Hall et al., 2009) available at www.keshavsingh.org/

protocols/FALCOR.html. The mutation rates between the different strains were statistically evalu-

ated using a t-test as previously described (Rosche and Foster, 2000), but this method has only

been shown to be valid in cases where total population size is not significantly different for the

strains used. In our assay this was not the case, as determined by ANOVA, and therefore the results

of the statistical analysis should be interpreted with caution. As the estimated number of mutants

per well was <0.5 for all strains, the biasing effect of differences in fitness between WS mutants is

minimal.

Sequencing
Mutations causing the WS phenotype were identified by Sanger sequencing of candidate genes in

the remaining common pathway to WS, for example the wsp operon for the aws/mws deletion

strain. In a few cases where no mutations were identified in the previously established WS target

genes, we used genome sequencing (Illumina HiSeq, performed by Macrogen Korea).

Fitness assays
Competition assays were performed as previously described (Lind et al., 2015) by mixing the WS

mutant 1:1 with a reference strain labelled with green fluorescent protein and measuring the ratio of
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each strain before and after static growth for 24 hr using flow cytometry (BD FACS Canto). We used

a WspF DT226-G275 deletion mutant as the reference strain because WspF mutants are the most

commonly found WS type when grown under selective conditions (McDonald et al., 2009) and the

in frame deletion of 50 amino acids most likely represents a complete loss-of-function mutation with

minimal polar effects on the downstream wspR. Selection coefficients per generation were calcu-

lated as s = [ln(R(t)/R(0))]/[t], as previously described (Dykhuizen, 1990) where R is the ratio of alter-

native WS mutant to WspF DT226-G275 GFP and t the number of generations. Viable counts on KB

plates of initial and final populations were performed to calculate the number of generations. Stabil-

ity of colony morphologies was confirmed and data from microcosms with >5% smooth colonies

were excluded (two cases). Control competition experiments with isogenic WspF DT226-G275 refer-

ence strains with and without GFP were used to correct for the cost of the GFP marker. Control com-

petitions were also used to determine the cost of the double deletions and the reporter construct

relative to a wild type genetic background, for example an AwsX DY77-Q87 mutant in Dwsp/Dmws

background with pMSC was competed with a GFP labeled AwsX DY77-Q87 mutant in wild type

background. Competitions were performed in independently inoculated quadruplicates for each

strain with the number of replicates based on previous work (Lind et al., 2015).

Homology models
Homology models of the structure of WspA, WspE, WspR, AwsR, AwsO and MwsR were made using

Phyre2 in intensive mode (http://www.sbg.bio.ic.ac.uk/phyre2) (Kelley et al., 2015).

Probability estimation in the null model IV
The differential equation models describe the interactions between proteins in each of the three WS

pathways. In order to solve the differential equations, two pieces of information are required: (i) the

initial concentrations of the molecular species and (ii) the reaction rates. Although this information is

unavailable a random-sampling approach was used to generate different random sets of initial con-

centrations and reaction rates. Each random set was used to establish a baseline of potential WS

expression making it possible to evaluate whether a set of mutations results in a WS type. Effec-

tively, this approach allows sampling of the probability distribution P (WS |mi 2 Wsp) used in our

Bayesian model.

We randomly sample 1000 different sets of reaction rates and initial concentrations from uniform

priors: reaction rates were sampled randomly from a uniform distribution on log space (i.e. 10U[�2,2])

and initial concentrations of reactants were sampled from a uniform distribution U[0,10]. For each

set, the appropriate differential equation model was integrated and the steady state concentration

of the compounds that correspond to a wrinkly spreader (RR in Aws, R* in Wsp and D* for Mws)

computed. This served as a baseline for the non-WS phenotype that was used for comparison to

determine whether combinations of mutations result in increased WS expression. After obtaining the

baseline, we implemented particular combinations of enabling/disabling mutations (a mi). Ideally, a

distribution linking enabling/disabling mutations to a fold change in reaction rates would be used,

but this information is unavailable. In order to progress the effect sizes for enabling and disabling

mutations were sampled from 10U[0,2] and 10U[�2,0], respectively, and then multiplied by the reaction

rates. The differential equations were then solved for the same time that it took the baseline to

reach steady state. The final concentration of R* (Figure 4A), RR (Figure 4B) and D* (Figure 4C) was

then compared to the baseline and the number of times out of 1000 that the WS-inducing com-

pound increased served as an estimate of P (WS|mi 2 Wsp). The probability distribution stabilized by

500 random samples and additional sampling did not produce significant changes (data not shown).

The absence of empirical data on reaction rates, initial concentrations, and expected mutation

effect size meant using a random sampling approach requiring estimates for parameter ranges.

Parameter ranges were chosen to be broad enough to capture differences spanning several orders

of magnitudes while allowing numerical computations for solving the differential equations. To

assess the effect of these ranges on the results, the sampling procedure was repeated for WSP for

three different parameter regimes (i) an expanded range for initial concentrations [0–50], (ii) an

expanded range for reaction rates 10[-3,3], (iii) a compressed range for mutational effect size 10̂[-1,1].

This analysis shows that qualitative results are robust to these changes (see Figure 5—figure supple-

ment 3).
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Source code and equations are available in Supplementary file 1.
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Huangyutitham V, Güvener ZT, Harwood CS. 2013. Subcellular clustering of the phosphorylated WspR response
regulator protein stimulates its diguanylate cyclase activity. mBio 4:e00242. DOI: https://doi.org/10.1128/mBio.
00242-13, PMID: 23653447

Jacob F. 1977. Evolution and tinkering. Science 196:1161–1166. DOI: https://doi.org/10.1126/science.860134,
PMID: 860134

Jacquier H, Birgy A, Le Nagard H, Mechulam Y, Schmitt E, Glodt J, Bercot B, Petit E, Poulain J, Barnaud G, Gros
PA, Tenaillon O. 2013. Capturing the mutational landscape of the beta-lactamase TEM-1. PNAS 110:13067–
13072. DOI: https://doi.org/10.1073/pnas.1215206110, PMID: 23878237

Jost MC, Hillis DM, Lu Y, Kyle JW, Fozzard HA, Zakon HH. 2008. Toxin-resistant sodium channels: parallel
adaptive evolution across a complete gene family. Molecular Biology and Evolution 25:1016–1024.
DOI: https://doi.org/10.1093/molbev/msn025, PMID: 18258611

Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. 2015. The Phyre2 web portal for protein modeling,
prediction and analysis. Nature Protocols 10:845–858. DOI: https://doi.org/10.1038/nprot.2015.053, PMID: 25
950237

King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin and fluorescin. The
Journal of Laboratory and Clinical Medicine 44:301–307. PMID: 13184240

Kouyos RD, Leventhal GE, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Bonhoeffer S. 2012. Exploring
the complexity of the HIV-1 fitness landscape. PLOS Genetics 8:e1002551. DOI: https://doi.org/10.1371/
journal.pgen.1002551, PMID: 22412384

Kram KE, Geiger C, Ismail WM, Lee H, Tang H, Foster PL, Finkel SE. 2017. Adaptation of Escherichia coli to
Long-Term Serial Passage in Complex Medium: Evidence of Parallel Evolution. mSystems 2:16. DOI: https://
doi.org/10.1128/mSystems.00192-16
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Lässig M, Mustonen V, Walczak AM. 2017. Predicting evolution. Nature Ecology & Evolution 1:0077.
DOI: https://doi.org/10.1038/s41559-017-0077

Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, Meyerson M, Gabriel SB, Lander
ES, Getz G. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–
501. DOI: https://doi.org/10.1038/nature12912, PMID: 24390350

Lind et al. eLife 2019;8:e38822. DOI: https://doi.org/10.7554/eLife.38822 25 of 31

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.1534/genetics.106.055863
http://www.ncbi.nlm.nih.gov/pubmed/16624907
https://doi.org/10.1038/nsb753
http://www.ncbi.nlm.nih.gov/pubmed/11799399
https://doi.org/10.1111/j.1365-2958.2007.06008.x
http://www.ncbi.nlm.nih.gov/pubmed/18028314
https://doi.org/10.1093/bioinformatics/btp253
https://doi.org/10.1093/bioinformatics/btp253
http://www.ncbi.nlm.nih.gov/pubmed/19369502
https://doi.org/10.1038/nature13884
http://www.ncbi.nlm.nih.gov/pubmed/25373677
https://doi.org/10.1186/1471-2164-16-S8-S1
http://www.ncbi.nlm.nih.gov/pubmed/26110438
https://doi.org/10.1534/genetics.114.163147
https://doi.org/10.1534/genetics.114.163147
http://www.ncbi.nlm.nih.gov/pubmed/24814466
https://doi.org/10.1371/journal.pbio.1001490
http://www.ncbi.nlm.nih.gov/pubmed/23431270
https://doi.org/10.1073/pnas.1016024108
http://www.ncbi.nlm.nih.gov/pubmed/21464309
https://doi.org/10.1128/mBio.00242-13
https://doi.org/10.1128/mBio.00242-13
http://www.ncbi.nlm.nih.gov/pubmed/23653447
https://doi.org/10.1126/science.860134
http://www.ncbi.nlm.nih.gov/pubmed/860134
https://doi.org/10.1073/pnas.1215206110
http://www.ncbi.nlm.nih.gov/pubmed/23878237
https://doi.org/10.1093/molbev/msn025
http://www.ncbi.nlm.nih.gov/pubmed/18258611
https://doi.org/10.1038/nprot.2015.053
http://www.ncbi.nlm.nih.gov/pubmed/25950237
http://www.ncbi.nlm.nih.gov/pubmed/25950237
http://www.ncbi.nlm.nih.gov/pubmed/13184240
https://doi.org/10.1371/journal.pgen.1002551
https://doi.org/10.1371/journal.pgen.1002551
http://www.ncbi.nlm.nih.gov/pubmed/22412384
https://doi.org/10.1128/mSystems.00192-16
https://doi.org/10.1128/mSystems.00192-16
https://doi.org/10.1371/journal.pbio.2002731
http://www.ncbi.nlm.nih.gov/pubmed/28837573
http://www.ncbi.nlm.nih.gov/pubmed/28837573
https://doi.org/10.1534/genetics.110.114074
http://www.ncbi.nlm.nih.gov/pubmed/20215473
https://doi.org/10.1038/nprot.2009.86
http://www.ncbi.nlm.nih.gov/pubmed/19561590
http://www.ncbi.nlm.nih.gov/pubmed/19561590
https://doi.org/10.1098/rspb.2015.1019
https://doi.org/10.1093/nar/gki370
http://www.ncbi.nlm.nih.gov/pubmed/15980475
https://doi.org/10.1038/s41559-017-0077
https://doi.org/10.1038/nature12912
http://www.ncbi.nlm.nih.gov/pubmed/24390350
https://doi.org/10.7554/eLife.38822


Lee MC, Marx CJ. 2012. Repeated, selection-driven genome reduction of accessory genes in experimental
populations. PLOS Genetics 8:e1002651. DOI: https://doi.org/10.1371/journal.pgen.1002651, PMID: 22589730

Levinson G, Gutman GA. 1987. Slipped-strand mispairing: a major mechanism for DNA sequence evolution.
Molecular Biology and Evolution 4:203–221. DOI: https://doi.org/10.1093/oxfordjournals.molbev.a040442,
PMID: 3328815

Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P. 2009. Automated inference
of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25:2744–2750. DOI: https://
doi.org/10.1093/bioinformatics/btp528, PMID: 19734154

Lind PA, Andersson DI. 2008. Whole-genome mutational biases in bacteria. PNAS 105:17878–17883.
DOI: https://doi.org/10.1073/pnas.0804445105, PMID: 19001264

Lind PA, Farr AD, Rainey PB. 2015. Experimental evolution reveals hidden diversity in evolutionary pathways.
eLife 4:e07074. DOI: https://doi.org/10.7554/eLife.07074

Lind PA, Arvidsson L, Berg OG, Andersson DI. 2017a. Variation in Mutational Robustness between Different
Proteins and the Predictability of Fitness Effects. Molecular Biology and Evolution 34:408–418. DOI: https://doi.
org/10.1093/molbev/msw239, PMID: 28025272

Lind PA, Farr AD, Rainey PB. 2017b. Evolutionary convergence in experimental Pseudomonas populations. The
ISME Journal 11:589–600. DOI: https://doi.org/10.1038/ismej.2016.157, PMID: 27911438

Lind PA. 2018. Evolutionary forecasting of phenotypic and genetic outcomes of experimental evolution in
Pseudomonas. bioRxiv. DOI: https://doi.org/10.1101/342261

Lovett ST. 2004. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA
sequences. Molecular Microbiology 52:1243–1253. DOI: https://doi.org/10.1111/j.1365-2958.2004.04076.x,
PMID: 15165229
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Predicting mutational routes to new adaptive phenotypes
Peter A. Lind, Eric Libby, Jenny Herzog and Paul B. Rainey

Analysis of mutations and molecular effects
Wsp pathway: Mutations were identified in five genes of the seven-gene pathway all of which

were predicted by null model IV (Figure 5—figure supplement 1). The most commonly

mutated gene was wspA (PFLU1219), with ten out of 15 mutations (Figure 6) being amino

acid substitutions (six unique) clustered in the region 352–420 at the stalk of the signalling

domain. This region has been implicated in trimer-of-dimer formation for the WspA

homologue in Pseudomonas aeruginosa (O’Connor et al., 2012) which is critical for self-

assembly and localization of Wsp clusters in the membrane. It is possible that these mutations

stabilize trimer of dimer formation, change the subcellular location of the Wsp complex, or

affect interaction with WspD (putative interface 383–420 in WspA) (Griswold et al., 2002) and

thus affecting relay of signal to WspE. These effects we interpreted as enabling mutations

increasing r3 in Figure 4A. The four additional mutations were in frame deletions in a separate

region of the transducer domain (DT293 - E299, DA281-A308). Although it is possible that

these mutations could also affect trimer-of-dimer formation, there are predicted methylation

sites in the region (Rice and Dahlquist, 1991) that regulate the activity of the protein via

methyltransferase WspC and methylesterase WspF. Given that disabling mutations are more

common than enabling mutations it is likely that these mutations decrease r2 in Figure 4A by

disrupting the interaction with WspF. We also identified a single mutation that fused the open

reading frame of WspC, the methyltransferase that positively regulates WspA activity, to

WspD, resulting in a chimeric protein (Figure 6, Figure 6—source data 1). This mutation is

likely to be a rare enabling mutation that increases the activity of WspC (increasing r1 in

Figure 4A) by physically tethering it to the WspABD complex thus allowing it to more

effectively counteract the negative regulator WspF. Alternatively, the tethering may physically

block the interaction with WspF (decrease of r2 in Figure 4A).

The second most commonly mutated gene in the wsp operon was wspE (PFLU1223)

(Figure 6). Four amino acids were repeatedly mutated in the response regulatory domain of

WspE and all cluster closely in a structural homology model made with Phyre2 (Kelley et al.,

2015). All mutated residues surround the active site of the phosphorylated D682 and it is

likely that they disrupt feedback regulation by decreasing phosphorylation of the negative

regulator WspF (decreasing r6) rather than increasing activation of WspR (r5 in Figure 4A).

Twelve mutations were detected in wspF (PFLU1224). These are distributed throughout the

gene and include amino acid substitutions, in-frame deletions as well as a frame-shift and a

stop codon (Figure 6). The pattern of mutations is consistent with both the role of WspF as a

negative regulator of WspA activity and the well-characterised effect of loss-of-function

mutations in this gene (Bantinaki et al., 2007; McDonald et al., 2009). The mutations are

interpreted as decreasing r2 in Figure 4A.

Five mutations were found in WspR (PFLU1225), the DGC output response regulator that

produces c-di-GMP and activates expression of cellulose (Figure 6). All mutations were

located in the linker region between the response regulator and DGC domains. Mutations in

this region are known to generate constitutively active wspR alleles by relieving the

requirement for phosphorylation (Goymer et al., 2006). They may additionally affect

subcellular clustering of WspR (Huangyutitham et al., 2013) or shift the equilibrium between

the dimeric form of WspR, with low basal activity, towards a tetrameric activated form

(De et al., 2009). In our model these increase reaction r5.

Aws pathway: Mutations were identified in all three genes of the Aws pathway – all of

which were predicted by the null Model IV. In the Aws pathway, mutations were most

commonly found in awsX (25 out of 41 mutations (Figure 6). The above-mentioned mutational
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hotspot produced in-frame deletions likely mediated by 6 bp direct repeats (Figure 6—source

data 1). The deletions are consistent with a loss of function and a decrease in r3 (Figure 4B)

that would leave the partially overlapping open reading frame of the downstream gene (awsR)

unaffected.

The DGC AwsR, was mutated in 14 cases with an apparent mutational hot spot at T27P

(nine mutants) in a predicted transmembrane helix (amino acids 19–41). The remaining

mutations were amino acid substitutions in the HAMP linker and in the PAS-like periplasmic

domain between the two transmembrane helices. These amino acid substitutions are distant

to the output DGC domain (Figure 6) and their effects are difficult to interpret, but they could

cause changes in dimerization (Malone et al., 2012) or the packing of HAMP domains, which

could, in turn, alter transmission of conformational changes in the periplasmic PAS-like domain

to the DGC domain causing constitutive activation (Parkinson, 2010). Such effects would

increase r4 in Figure 4B. Mutations in the N-terminal part of the protein are easier to interpret

based on the existing functional model (Malone et al., 2012) and most likely disrupt

interactions with the periplasmic negative regulator AwsX resulting in a decrease in r3 in

Figure 4B.

Two mutations were found in the outer membrane lipoprotein protein AwsO between the

signal peptide and the OmpA domain (Figure 6). Both mutations were glutamine to proline

substitutions (Q34P, Q40P), which together with a previously reported G42V mutation

(McDonald et al., 2009) suggest that multiple changes in this small region can cause a WS

phenotype. This is also supported by data from Pseudomonas aeruginosa in which mutations

in nine different positions in this region lead to a small colony variant phenotype similar to WS

(Malone et al., 2012). A functional model based on the YfiBNR in P. aeruginosa

(Malone et al., 2012; Xu et al., 2016), suggest that AwsO sequesters AwsX at the outer

membrane and that mutations in the N-terminal part of the protein lead to constitutive

activation and increased binding of AwsX. This would correspond to an increase in r2 in

Figure 4B, which would relieve negative regulation of AwsR.

Mws pathway: The MwsR pathway (comprising just a single gene) harbours mutations in

both DGC and phosphodiesterase (PDE) domains. Mainly mutations in the C-terminal

phosphodiesterase (PDE) domain were predicted (Figure 4C). Eleven of 18 mutations were

identical in-frame deletions (DR1024-E1026) in the PDE domain, mediated by 8 bp direct

repeats (Figure 6, Figure 6—source data 1). It has been shown previously that deletion of the

entire PDE domain generates the WS phenotype (McDonald et al., 2009), suggesting a

negative regulatory role that causes a decrease of r2 in the model in Figure 4C. One

additional mutation was found in the PDE domain (E1083K) located close to R1024 in a

structural homology model made with Phyre2 (Kelley et al., 2015), but distant to the active

site residues (E1059-L1061). Previously reported mutations (A1018T, ins1089DV)

(McDonald et al., 2009) are also distant from the active site and cluster in the same region in

a structural homology model. This suggests that loss of phosphodiesterase activity may not be

the mechanism leading to the WS phenotype. This is also supported by the high solvent

accessibility of the mutated residues, which indicates that major stability-disrupting mutations

are unlikely and changes in interactions between domains or dimerization are more probable.

Thus, it is likely that the WS phenotype resulting from a deletion in the PDE domain is caused

by disruption of domain interactions or dimerization rather than loss of phosphodiesterase

activity.

The remaining mutations within mwsR are amino acid substitutions in the GGDEF domain,

close to the DGC active site (G927-F931) with the exception of a duplication of I978-G985.

While it is possible that these mutations directly increase the catalytic activity of the DGC,

increasing r1 in Figure 4C, such enabling mutations are considered to be rare. An alternative

hypothesis is that these mutations either interfere with c-di-GMP feedback regulation or

produce larger conformational changes that change inter-domain or inter-dimer interactions,

similar to the mutations in the PDE domain. Based on these data we reject the current model

of Mws function, which predicted mutations decreasing r2 (Figure 4C) through mutations

inactivating the PDE domain. We instead suggest that the mutations are likely to disrupt the

conformational dynamics between the domains and could be seen either as activating
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mutations causing constitutive activation or disabling mutations with much reduced mutational

target size that must specifically disrupt the interaction surface between the domains. In both

cases the previous model leads to an overestimation of the rate to WS for the Mws pathway.
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