1. Biochemistry and Chemical Biology
  2. Cell Biology
Download icon

Bone-Targeting Drugs: From vesicle to cytosol

  1. Michael J Rogers  Is a corresponding author
  2. Marcia A Munoz
  1. Garvan Institute of Medical Research, Australia
Insight
Cite this article as: eLife 2018;7:e38847 doi: 10.7554/eLife.38847
1 figure

Figures

How bisphosphonates act in bone.

(A) Old and damaged bone is constantly being broken down by cells called osteoclasts in a process called resorption (top left), while new bone is deposited by cells called osteoblasts (top right). Cells called osteocytes (bottom) influence both of these processes through a spidery system of tiny canals called canaliculi. After entering the circulation, the drug bisphosphonate (green) binds very effectively to calcium ions on the bone mineral surface. During resorption, the bisphosphonate on the bone surface is released into the acidic extracellular space beneath the osteoclast. (B) The bisphosphonate in the extracellular space is engulfed into osteoclasts via a process called endocytosis (1). The resulting endosomes mature to form structures called lysosomes, and two proteins, SLC37A3 and ATRAID, then interact in the membrane of the lysosome to allow the bisphosphonate to enter the cytosol (2). Once in the cytosol, the nitrogen-containing bisphosphonates inhibit an enzyme called FDPS and prevent the osteoclast from breaking down bone (3). BP: bisphosphonate; FDPS: farnesyl diphosphate synthase; SLC37A3: solute carrier family 37 member A3.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)