Structural principles of SNARE complex recognition by the AAA+ protein NSF
Abstract
The recycling of SNARE proteins following complex formation and membrane fusion is an essential process in eukaryotic trafficking. A highly conserved AAA+ protein, NSF (N-ethylmaleimide sensitive factor) and an adaptor protein, SNAP (soluble NSF attachment protein), disassembles the SNARE complex. We report electron-cryomicroscopy structures of the complex of NSF, αSNAP, and the full-length soluble neuronal SNARE complex (composed of syntaxin-1A, synaptobrevin-2, SNAP-25A) in the presence of ATP under non-hydrolyzing conditions at ~3.9 Å resolution. These structures reveal electrostatic interactions by which two αSNAP molecules interface with a specific surface of the SNARE complex. This interaction positions the SNAREs such that the 15 N-terminal residues of SNAP-25A are loaded into the D1 ring pore of NSF via a spiral pattern of interactions between a conserved tyrosine NSF residue and SNAP-25A backbone atoms. This loading process likely precedes ATP hydrolysis. Subsequent ATP hydrolysis then drives complete disassembly.
Data availability
The coordinates and corresponding EM density maps have been deposited in the PDB and EMDB, respectively.
-
The 20S supercomplex engaging the SNAP-25 N-terminus (class 1)Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9100).
-
The 20S supercomplex engaging the SNAP-25 N-terminus (class 1)Publicly available at the RCSB Protein Data Bank (accession no: 6MDM).
-
The 20S supercomplex engaging the SNAP-25 N-terminus (class 2)Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9101).
-
The 20S supercomplex engaging the SNAP-25 N-terminus (class 2)Publicly available at the RCSB Protein Data Bank (accession no: 6MDN).
-
The D1 and D2 domain rings of NSF engaging the SNAP-25 N-terminus within the 20S supercomplex (focused refinement on D1/D2 rings, class 1)Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9102).
-
The D1 and D2 domain rings of NSF engaging the SNAP-25 N-terminus within the 20S supercomplex (focused refinement on D1/D2 rings, class 1)Publicly available at the RCSB Protein Data Bank (accession no: 6MDO).
-
The D1 and D2 domain rings of NSF engaging the SNAP-25 N-terminus within the 20S supercomplex (focused refinement on D1/D2 rings, class 2)Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9103).
-
The D1 and D2 domain rings of NSF engaging the SNAP-25 N-terminus within the 20S supercomplex (focused refinement on D1/D2 rings, class 2)Publicly available at the RCSB Protein Data Bank (accession no: 6MDP).
Article and author information
Author details
Funding
Howard Hughes Medical Institute
- Axel T Brunger
National Institutes of Health
- Axel T Brunger
Helen Hay Whitney Foundation
- K Ian White
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Sriram Subramaniam, National Cancer Institute, United States
Publication history
- Received: June 4, 2018
- Accepted: August 26, 2018
- Accepted Manuscript published: September 10, 2018 (version 1)
- Accepted Manuscript updated: September 12, 2018 (version 2)
- Version of Record published: September 27, 2018 (version 3)
Copyright
© 2018, White et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,395
- Page views
-
- 613
- Downloads
-
- 46
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
The adult human visual system maintains the ability to be altered by sensory deprivation. What has not been considered is whether the internal neural states modulate visual sensitivity to short-term monocular deprivation. In this study we manipulated the internal neural state and reported changes in intrinsic neural oscillations with a patched eye open or closed. We investigated the influence of eye open/eye closure on the unpatched eye's contrast sensitivity and ocular dominance (OD) shifts induced by short-term monocular deprivation. The results demonstrate that internal neural states influence not only baseline contrast sensitivity but also the extent to which the adult visual system can undergo changes in ocular dominance.
-
- Neuroscience
- Physics of Living Systems
Naturally occurring body movements and collective neural activity both exhibit complex dynamics, often with scale-free, fractal spatiotemporal structure. Scale-free dynamics of both brain and behavior are important because each is associated with functional benefits to the organism. Despite their similarities, scale-free brain activity and scale-free behavior have been studied separately, without a unified explanation. Here we show that scale-free dynamics of mouse behavior and neurons in visual cortex are strongly related. Surprisingly, the scale-free neural activity is limited to specific subsets of neurons, and these scale-free subsets exhibit stochastic winner-take-all competition with other neural subsets. This observation is inconsistent with prevailing theories of scale-free dynamics in neural systems, which stem from the criticality hypothesis. We develop a computational model which incorporates known cell-type-specific circuit structure, explaining our findings with a new type of critical dynamics. Our results establish neural underpinnings of scale-free behavior and clear behavioral relevance of scale-free neural activity.