Structural principles of SNARE complex recognition by the AAA+ protein NSF

  1. K Ian White
  2. Minglei Zhao
  3. Ucheor B Choi
  4. Richard A Pfuetzner
  5. Axel T Brunger  Is a corresponding author
  1. Stanford University, United States
  2. University of Chicago, United States

Abstract

The recycling of SNARE proteins following complex formation and membrane fusion is an essential process in eukaryotic trafficking. A highly conserved AAA+ protein, NSF (N-ethylmaleimide sensitive factor) and an adaptor protein, SNAP (soluble NSF attachment protein), disassembles the SNARE complex. We report electron-cryomicroscopy structures of the complex of NSF, αSNAP, and the full-length soluble neuronal SNARE complex (composed of syntaxin-1A, synaptobrevin-2, SNAP-25A) in the presence of ATP under non-hydrolyzing conditions at ~3.9 Å resolution. These structures reveal electrostatic interactions by which two αSNAP molecules interface with a specific surface of the SNARE complex. This interaction positions the SNAREs such that the 15 N-terminal residues of SNAP-25A are loaded into the D1 ring pore of NSF via a spiral pattern of interactions between a conserved tyrosine NSF residue and SNAP-25A backbone atoms. This loading process likely precedes ATP hydrolysis. Subsequent ATP hydrolysis then drives complete disassembly.

Data availability

The coordinates and corresponding EM density maps have been deposited in the PDB and EMDB, respectively.

The following data sets were generated
    1. Axel T Brunger
    (2018) The 20S supercomplex engaging the SNAP-25 N-terminus (class 1)
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9100).
    1. Axel T Brunger
    (2018) The 20S supercomplex engaging the SNAP-25 N-terminus (class 2)
    Publicly available at the EMBL-EBI Protein Data Bank (accession no: EMD-9101).

Article and author information

Author details

  1. K Ian White

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Minglei Zhao

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Ucheor B Choi

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Richard A Pfuetzner

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    For correspondence
    brunger@stanford.edu
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5121-2036

Funding

Howard Hughes Medical Institute

  • Axel T Brunger

National Institutes of Health

  • Axel T Brunger

Helen Hay Whitney Foundation

  • K Ian White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, White et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,919
    views
  • 676
    downloads
  • 74
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. K Ian White
  2. Minglei Zhao
  3. Ucheor B Choi
  4. Richard A Pfuetzner
  5. Axel T Brunger
(2018)
Structural principles of SNARE complex recognition by the AAA+ protein NSF
eLife 7:e38888.
https://doi.org/10.7554/eLife.38888

Share this article

https://doi.org/10.7554/eLife.38888

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Moritz Schloetter, Georg U Maret, Christoph J Kleineidam
    Research Article

    Neurons generate and propagate electrical pulses called action potentials which annihilate on arrival at the axon terminal. We measure the extracellular electric field generated by propagating and annihilating action potentials and find that on annihilation, action potentials expel a local discharge. The discharge at the axon terminal generates an inhomogeneous electric field that immediately influences target neurons and thus provokes ephaptic coupling. Our measurements are quantitatively verified by a powerful analytical model which reveals excitation and inhibition in target neurons, depending on position and morphology of the source-target arrangement. Our model is in full agreement with experimental findings on ephaptic coupling at the well-studied Basket cell-Purkinje cell synapse. It is able to predict ephaptic coupling for any other synaptic geometry as illustrated by a few examples.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.