Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery

  1. Ying Wang
  2. Wei Wu
  3. Xiangbing Wu
  4. Yan Sun
  5. Yi P Zhang
  6. Ling-Xiao Deng
  7. Melissa Jane Walker
  8. Wenrui Qu
  9. Chen Chen
  10. Nai-Kui Liu
  11. Qi Han
  12. Heqiao Dai
  13. Lisa BE Shields
  14. Christopher B Shields
  15. Dale R Sengelaub
  16. Kathryn J Jones
  17. George M Smith
  18. Xiao-Ming Xu  Is a corresponding author
  1. Indiana University School of Medicine, United States
  2. Norton Healthcare, United States
  3. Indiana University, United States
  4. Temple University, United States
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/39016/elife-39016-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ying Wang
  2. Wei Wu
  3. Xiangbing Wu
  4. Yan Sun
  5. Yi P Zhang
  6. Ling-Xiao Deng
  7. Melissa Jane Walker
  8. Wenrui Qu
  9. Chen Chen
  10. Nai-Kui Liu
  11. Qi Han
  12. Heqiao Dai
  13. Lisa BE Shields
  14. Christopher B Shields
  15. Dale R Sengelaub
  16. Kathryn J Jones
  17. George M Smith
  18. Xiao-Ming Xu
(2018)
Remodeling of lumbar motor circuitry remote to a thoracic spinal cord injury promotes locomotor recovery
eLife 7:e39016.
https://doi.org/10.7554/eLife.39016