1. Computational and Systems Biology
Download icon

Metabolic network percolation quantifies biosynthetic capabilities across the human oral microbiome

  1. David B Bernstein
  2. Floyd E Dewhirst
  3. Daniel Segre  Is a corresponding author
  1. Boston University, United States
  2. The Forsyth Institute, United States
Research Article
  • Cited 1
  • Views 1,819
  • Annotations
Cite this article as: eLife 2019;8:e39733 doi: 10.7554/eLife.39733

Abstract

The biosynthetic capabilities of microbes underlie their growth and interactions, playing a prominent role in microbial community structure. For large, diverse microbial communities, prediction of these capabilities is limited by uncertainty about metabolic functions and environmental conditions. To address this challenge, we propose a probabilistic method, inspired by percolation theory, to computationally quantify how robustly a genome-derived metabolic network produces a given set of metabolites under an ensemble of variable environments. We used this method to compile an atlas of predicted biosynthetic capabilities for 97 metabolites across 456 human oral microbes. This atlas captures taxonomically-related trends in biomass composition, and makes it possible to estimate inter-microbial metabolic distances that correlate with microbial co-occurrences. We also found a distinct cluster of fastidious/uncultivated taxa, including several Saccharibacteria (TM7) species, characterized by their abundant metabolic deficiencies. By embracing uncertainty, our approach can be broadly applied to understanding metabolic interactions in complex microbial ecosystems.

Article and author information

Author details

  1. David B Bernstein

    Department of Biomedical Engineering, Boston University, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6091-4021
  2. Floyd E Dewhirst

    The Forsyth Institute, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Daniel Segre

    Department of Biomedical Engineering, Boston University, Boston, United States
    For correspondence
    dsegre@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4859-1914

Funding

National Institute of Dental and Craniofacial Research (R37DE016937)

  • Floyd E Dewhirst

National Institute of General Medical Sciences (R01GM121950)

  • Daniel Segre

Defense Advanced Research Projects Agency (HR0011-15-C-0091)

  • Daniel Segre

Biological and Environmental Research (DE-SC0012627)

  • Daniel Segre

National Institute of Dental and Craniofacial Research (R01DE024468)

  • Floyd E Dewhirst
  • Daniel Segre

National Institute of General Medical Sciences (T32GM008764)

  • David B Bernstein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wenying Shou, Fred Hutchinson Cancer Research Center, United States

Publication history

  1. Received: July 5, 2018
  2. Accepted: June 13, 2019
  3. Accepted Manuscript published: June 13, 2019 (version 1)
  4. Version of Record published: July 4, 2019 (version 2)

Copyright

© 2019, Bernstein et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,819
    Page views
  • 285
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Bisrat J Debebe et al.
    Research Article Updated
    1. Computational and Systems Biology
    2. Physics of Living Systems
    Felix Eduard Nolet et al.
    Research Article