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Abstract A subset of atypical memory B cells accumulates in malaria and several infections,

autoimmune disorders and aging in both humans and mice. It has been suggested these cells are

exhausted long-lived memory B cells, and their accumulation may contribute to poor acquisition of

long-lasting immunity to certain chronic infections, such as malaria and HIV. Here, we generated an

immunoglobulin heavy chain knock-in mouse with a BCR that recognizes MSP1 of the rodent

malaria parasite, Plasmodium chabaudi. In combination with a mosquito-initiated P. chabaudi

infection, we show that Plasmodium-specific atypical memory B cells are short-lived and disappear

upon natural resolution of chronic infection. These cells show features of activation, proliferation,

DNA replication, and plasmablasts. Our data demonstrate that Plasmodium-specific atypical

memory B cells are not a subset of long-lived memory B cells, but rather short-lived activated cells,

and part of a physiologic ongoing B-cell response.

DOI: https://doi.org/10.7554/eLife.39800.001

Introduction
Atypical memory B cells (AMB) are an unusual B-cell subset detected in both mouse models and

humans in the context of certain infections and autoimmune disorders, including HIV, HCV, tubercu-

losis, malaria, rheumatoid arthritis and systemic lupus erythematosus, and accumulated with age

(Knox et al., 2017b; Naradikian et al., 2016a; Portugal et al., 2017; Rubtsov et al., 2017). In the

context of infections, AMB were first described in HIV-viremic subjects, and termed tissue-like mem-

ory B cells, due to their similarity to an FCRL4-expressing memory B-cell subset found in human ton-

sillar tissues (Ehrhardt et al., 2005; Moir et al., 2008). In addition to FCRL4, these cells express

relatively high levels of other potentially inhibitory receptors including CD22, CD85j, CD85k, LAIR-1,

CD72, and PD-1, and show a profile of trafficking receptors including expression of CD11b, CD11c

and CXCR3, consistent with migration to inflamed tissues. They are antigen-experienced class-

switched B cells, which lack the expression of CD21 and the hallmark human memory B-cell marker

CD27. Further studies demonstrated the expression of the transcription factor T-bet and the cyto-

kine IFNg by these cells, also characteristic of Th1 CD4+ T cells (Knox et al., 2017b; Obeng-

Adjei et al., 2017; Portugal et al., 2017). Due to their poor functional capacity upon in vitro re-stim-

ulation with BCR ligands, AMB were characterized as dysfunctional B cells, and increased frequen-

cies of these cells was proposed to be a consequence of B-cell exhaustion driven by chronic

inflammation and stimulation, drawing parallels with T-cell exhaustion during chronic viral infections
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(Moir et al., 2008; Portugal et al., 2015; Sullivan et al., 2015). It has been hypothesized that

expansion of AMB might contribute to the mechanisms driving autoimmune disorders and deficien-

cies in acquisition of immunity to chronic infections. However, due to lack of good tools and animal

models to analyze antigen-specific atypical B cells in greater depth, many of these concepts remain

speculative.

Several studies suggest that AMB might contribute to poor acquisition of long-term immunity to

Plasmodium infection (Illingworth et al., 2013; Portugal et al., 2015; Sullivan et al., 2015;

Sullivan et al., 2016; Weiss et al., 2011; Weiss et al., 2009; Weiss et al., 2010). Indeed, some

studies demonstrated that in the absence of constant re-exposure, Plasmodium-specific serum anti-

body levels rapidly wane, and full protection from clinical symptoms is lost, suggesting that B-cell

memory is functionally impaired (Portugal et al., 2013). However, others have reported long-lasting

maintenance of Plasmodium-specific antibodies and/or memory B cells in settings of differing

malaria endemicity, and similar responses are also observed in mouse malaria models

(Dorfman et al., 2005; Ndungu et al., 2009; Ndungu et al., 2013; Ndungu et al., 2012;

Wipasa et al., 2010). Moreover, it has been shown that BCRs cloned from P. falciparum-specific

AMB from malaria-exposed adults encode P. falciparum-specific IgG antibodies, which could con-

tribute to P. falciparum-specific IgG antibodies in serum (Muellenbeck et al., 2013). These authors

proposed that P. falciparum-specific AMB do not prevent, but rather contribute to the control of

Plasmodium infection. These apparently contradictory results may reflect the fact that some studies

were performed on the general peripheral blood B-cell pool and others focused on Plasmodium-spe-

cific B cells. In determining a role for these cells in a chronic infection it would be important to follow

antigen-specific responses and to distinguish these from non-specific polyclonal B cell activation.

The study of the development of AMB is challenging and requires suitable mouse models, which

allow for identification and isolation of antigen-specific B cells that exist often at very low frequency.

Here, we generated a knock-in transgenic mouse with a high frequency of B cells specific to the 21

kDa C-terminal fragment of Plasmodium chabaudi Merozoite Surface Protein 1 (MSP121), to investi-

gate memory B cells generated following mosquito-transmission of the rodent malaria, P. chabaudi.

We identified a CD11b+CD11c+FCRL5hi subset of MSP121-specific B cells during the chronic infec-

tion with phenotypical and transcriptional features strikingly similar to those of human AMB. These

AMB disappeared as the infection progressed, leaving a CD11b—CD11c—FCRL5hi MSP121-specific

B-cell compartment with characteristics of long-lived classical memory B cells (Bmem) after the resolu-

tion of the infection. These short-lived MSP121-specific AMB were also generated in response to

immunization, suggesting they may be a normal but transient component of a B-cell response to

antigen. In this chronic P. chabaudi infection, it appears that AMB require ongoing antigenic stimula-

tion driven by the sub-patent infection to persist, and do not represent a true long-lived ‘memory’ B

cell subset. Moreover, we show that generation of Plasmodium-specific AMB does not prevent the

generation of Plasmodium-specific Bmem, and does not prevent resolution of the infection.

Results

Generation of an immunoglobulin heavy chain knock-in transgenic
mouse model to study Plasmodium-specific B cell responses
To study Plasmodium-specific B cell responses in a rodent malaria model, we generated an

IghNIMP23/+ mouse strain on the C57BL/6J background (Materials and methods and Figure 1—figure

supplement 1).

The IghNIMP23/+ mice were healthy, with no unusual behavioral or physical characteristics. There

were no alterations in total cellularity, pro-B, pre-B, immature B, mature B, total B220+CD19+ B

cells, and plasma cells in the bone marrow (Figure 1A–B), and no alterations in number of T1, T2,

T3, follicular, marginal zone, germinal center B cells, plasmablasts, plasma cells, and total cellularity

in the spleen of IghNIMP23/+ mice (Figure 1C–D) (Sen et al., 1990; Young et al., 1994). Importantly,

The IghNIMP23/+ mice had a greatly increased frequency of B cells specific for MSP121 (approximately

60% of the total B-cell compartment), as demonstrated by flow cytometry analysis of splenocytes

with a MSP121 fluorescent probe consisting of biotinylated recombinant MSP121 loaded on streptavi-

din-PE (Figure 1E–F). Thus, in this model, a recombinant light chain is not required to bring about
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Figure 1. Analysis of total bone marrow and splenic B-cell populations in IghNIMP23/+ and Igh+/+littermates. (A) Flow cytometry gating strategy to

identify different B-cell populations in bone marrow of IghNIMP23/+ mice. Arrows indicate flow of analysis. The same strategy was used for Igh+/+

littermates. (B) Percentages and numbers of different B-cell populations in bone marrow of IghNIMP23/+ and Igh+/+ littermates as defined in (A). (C) Flow

cytometry gating strategy to identify different B-cell populations in spleen of IghNIMP23/+ mice. (D) Percentages and numbers of different B-cell

Figure 1 continued on next page
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specificity. This suggest that most endogenous light chains will pair with the NIMP23 heavy chain to

generate a BCR with detectable binding to MSP121.

Increase in Plasmodium-specific B cells after mosquito transmission of
P. chabaudi
To investigate B cells in P. chabaudi infections, which last several weeks, and to avoid potential prob-

lems with activation arising from very high frequencies of MSP1-specific B cells, we reduced the pre-

cursor frequency of MSP121-specific B cells to match the natural level expected for antigen-specific B

cells more closely, yet still readily detectable by flow cytometry. We generated mixed bone marrow

(BM) chimeras by adoptively transferring a mixture of 10% bone marrow from either IghNIMP23/+ or

Igh+/+ mice (CD45.2+) together with 90% bone marrow from C57BL/6.SJL-Ptprca mice (CD45.1+)

into sub-lethally irradiated Rag2-/-.C57BL/6.SJL-Ptprca mice (CD45.1+) to generate NIMP23fiRag2-/-

and WTfiRag2-/- bone marrow chimeric mice respectively (Figure 1—figure supplement 2A–B). In

both types of chimeras, 2–3% of the B cells were CD45.2+ and in NIMP23fiRag2-/- mice approxi-

mately 1–2% of the B cells were MSP121-specific (Figure 1—figure supplement 2C–E). No MSP121-

specific B cells were detected in the control WTfiRag2-/- chimeras (Figure 1—figure supplement

2D).

Infection of C57BL/6J wt mice with P. chabaudi by mosquito bite gives rise to a short (48 hr) pre-

erythrocytic infection, followed by an acute blood parasitemia peaking approximately 10d post-

transmission. Thereafter, the infection is rapidly controlled, reaching very low parasitemias by 15d

post-transmission, with a subsequent prolonged (~90 d), but low-level chronic infection before para-

site elimination (Brugat et al., 2017; Spence et al., 2013). NIMP23fiRag2-/- mice infected with P.

chabaudi by mosquito bite, showed a similar course of parasitemia to that of control WTfiRag2-/-

mice (Figure 1—figure supplement 2F), and C57BL/6J wt mice (Brugat et al., 2017; Spence et al.,

2013; Spence et al., 2012). Importantly, the MSP121-specific IghNIMP23/+ B cells (CD45.2+MSP121
+)

in NIMP23fiRag2-/- chimeras showed a robust response to the infection, as demonstrated by a dra-

matic increase in the proportions and numbers of GL-7+CD38lo germinal centers (GC) and IgG2b+-

IgD— class-switched B cells in the spleen at 35 days post-infection (dpi) (Figure 1—figure

supplement 2G–H).

Thus, we have generated a mouse model with detectable numbers of functional MSP121-specific

B cells capable of responding to P. chabaudi infection.

Generation of Plasmodium-specific AMB after mosquito transmission of
P. chabaudi infection
We investigated whether Plasmodium-specific AMB could be identified in mice during a blood-stage

P. chabaudi infection. We selected a series of mouse homologues to human cell surface markers

described on human AMB (Charles et al., 2011; Kardava et al., 2014; Kardava et al., 2011;

Knox et al., 2017a; Li et al., 2016; Moir et al., 2008; Muellenbeck et al., 2013; Portugal et al.,

2015; Russell Knode et al., 2017; Sullivan et al., 2015). Human AMB express CD11b, CD11c, Fc

receptor-like (FCRL) 3–5, high levels of CD80, low levels of CD21, and are Ig class-switched. Mouse

FCRL5 most closely resembles human FCRL3 and is the only mouse FCRL-family member which

Figure 1 continued

populations in spleen of IghNIMP23/+ and Igh+/+ littermates as defined in (C). Data are representative of two independent experiments with four mice

per group. (E) Flow cytometry analysis of B cells obtained from spleen of Igh+/+ (left) and IghNIMP23/+ (right) mice stained with anti-B220 and CD19

antibodies in combination with an MSP121 fluorescent probe. The gates show the frequency of B cells specific to MSP121. (F) Frequencies of MSP121-

specific splenic B cells in IghNIMP23/+ and wild-type Igh+/+ littermate controls (Mann Whitney U test). Data pooled from two independent experiments

with 3–5 mice per group. Mann Whitney U test. *p<0.05. Error bars are SEM.

DOI: https://doi.org/10.7554/eLife.39800.002

The following figure supplements are available for figure 1:

Figure supplement 1. Generation of IghNIMP23/+knock in mice.

DOI: https://doi.org/10.7554/eLife.39800.003

Figure supplement 2. Generation of mixed bone marrow chimera model with reduced precursor frequency of IghNIMP23/+ B cells to study MSP121-

specific B cell responses during P. chabaudi infection.

DOI: https://doi.org/10.7554/eLife.39800.004
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contains both ITIM and ITAM motifs in its cytoplasmic tail (Davis, 2007; Davis et al., 2004;

Won et al., 2006; Zhu et al., 2013). Therefore, our flow cytometry panel for mouse AMB included

antibodies against CD11b, CD11c, FCRL5, CD21, IgD, and also CD80 and CD273 which identify

mouse B cells that are antigen-experienced and potentially memory cells (Anderson et al., 2007;

Tomayko et al., 2010; Zuccarino-Catania et al., 2014).

We detected an increased number of cells in a distinct CD11b+CD11c+ MSP121-specific B-cell

subset at 28-35dpi, in the chronic phase of P. chabaudi infection (Figure 2A–B). This subset showed

several AMB characteristics, including high expression of FCRL5 and low expression of CD21 and

IgD (Figure 2C–E). In addition, the CD11b+CD11c+ MSP121-specific B-cell subset was enriched with

cells expressing CD80 and CD273 (Figure 2C–E).

We then explored whether this CD11b+CD11c+ MSP121-specific B cell subset was detected dur-

ing the memory phase,that is after resolution of the infection. As it takes up to 90 days for a blood-

stage P. chabaudi infection to be eliminated from C57BL/6J mice (Achtman et al., 2007;

Spence et al., 2013), we measured these responses from 155dpi onwards. Unexpectedly, the num-

bers of CD11b+CD11c+ MSP121-specific B cells were not significantly higher than background level

(Figure 2A–B).

These data demonstrate that a mosquito-borne infection with P. chabaudi generates Plasmo-

dium-specific B cells resembling human AMB. However, these cells do not persist and are not

detected above background level after parasite clearance.

Transcriptome analysis confirms the AMB nature of CD11b+CD11c+

MSP121-specific B cells, and reveals a plasmablast-like signature for this
subset
To gain a better understanding of the identity of the CD11b+CD11c+ Plasmodium-specific B cell

subset, we isolated both CD11b+CD11c+ and CD11b-CD11c- MSP121-specific B cells from spleens of

P. chabaudi-infected NIMP23fiRag2-/- mice (35dpi) (Figure 3—figure supplement 1), and MSP121-

specific B cells from the spleen of naı̈ve NIMP23fiRag2-/- mice (Figure 2A), by flow cytometric sort-

ing, and performed an mRNAseq transcriptional analysis on the three populations.

We then selected a large series of key genes previously shown to be either up or downregulated

on human AMB (Supplementary file 1), and explored the expression of their mouse homologues on

the three different B-cell subsets we sorted at day 35pi. The transcriptome of CD11b+CD11c+

MSP121-specific B cells highly resembled that of human AMB. A series of hallmark genes upregu-

lated in human AMB were also upregulated in CD11b+CD11c+ MSP121-specific B cells, including IgG

(Ighg2c and Ighg2b), Cxcr3, Tbx21 (T-bet), Lair1 and Fcrl5 (Figure 3, genes in red boxes, and refer-

ences in Supplementary file 1). In addition, the MSP121-specific CD11b+CD11c+ B-cell subset

showed upregulation of Ifng, Aicda, a large array of inhibitory receptors [including Pd1, Cd72,

Cd85k, Fcgr2b (CD32b), Siglece], antigen-experienced/memory markers [Cd80, Cd86, Nt5e (CD73)

and high Cd38], and additional class-switched immunoglobulins (i.e. Igha, Ighg1 and Ighg3), all of

which have been shown to be upregulated on human AMB (Figure 3C–G, references in

Supplementary file 1). These cells also expressed Galectins (Lgals1 and Lgals3), previously impli-

cated in B-cell anergy (Clark et al., 2007) (Figure 3H), and displayed a pro-apoptotic program (e.g.

high expression of Fasl, and low expression of Bcl2) (Figure 3I). Interestingly, in agreement with

data on human AMB, MSP121-specific CD11b+CD11c+ B cells showed upregulation of Mki67

(Figure 3J), indicative of proliferation, and had characteristics of plasmablasts and/or plasma cells,

including upregulation of Cd138, Prdm1 (Blimp1) and Xbp1, and low expression of Cxcr5, Pax5, and

Bcl6 (Figure 3B and K). However, these cells showed low expression of Irf4 and S1p1, suggesting

that they may be in a pre-plasmablast or pre-migratory plasma-cell stage (Kabashima et al., 2006;

Kallies et al., 2007) (Figure 3K). Finally, and similar to human AMB, CD11b+CD11c+ MSP121-spe-

cific B cells showed low expression of Cd40, Cr2 (CD21), Ms4a1 (CD20), and Cd24a (Figure 3L).

We ran a Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) with a gene list

ranked according to their differential expression between MSP121-specific CD11b+CD11c+ AMB

sorted from infected mice and MSP121-specific B cells sorted from naı̈ve mice, using gene sets a pri-

ori obtained from Reactome (Fabregat et al., 2018). Among the gene sets yielding the top 50 sig-

nificant (fdr <0.001) highest normalized enrichment score (NES) we obtained gene sets

corresponding to cell cycle, DNA replication, generation/consumption of energy, regulation of apo-

ptosis, activation of NF-kB on B cells, and downstream signaling events of the BCR
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(Supplementary file 2 and Figure 3—figure supplement 2). These data further corroborate the

activated and proliferative nature of MSP121-specific CD11b+CD11c+ AMB.

Taken together, these data demonstrate that CD11b+CD11c+ MSP121-specific mouse AMB pres-

ent during the chronic phase of P. chabaudi infection are very similar to human AMB described in

several chronic infections. In addition, this B-cell subset shows features of activation, proliferation,

Figure 2. Generation of MSP121-specific AMB in response to mosquito transmitted P.chabaudi infection. (A) Flow

cytometry showing differential expression of CD11b and CD11c on splenic MSP121-specific B cells from

NIMP23fiRag2-/- chimeric mice before infection (day 0) and at 35 and 155dpi. (B) Numbers of splenic MSP121-

specific CD11b+CD11c+ AMB from NIMP23fiRag2-/- during the course of mosquito transmitted P. chabaudi

infection. Kruskal-Wallis test vs day 0. ****, p<0.0001 (C) Flow cytometry showing expression of CD21/35, FCRL5,

IgD, CD273 and CD80 on different subsets of splenic MSP121-specific B cells from NIMP23fiRag2-/- chimeric mice

defined based on CD11b and CD11c expression at 35dpi. (D) Geometric mean fluorescence intensity (MFI) of

CD21/35, FCRL5, IgD, CD273 and CD80 expression on different subsets of splenic MSP121-specific B cells from

NIMP23fiRag2-/- chimeric mice defined based on CD11b and CD11c expression at 35dpi. (E) Frequencies of

CD21/35, FCRL5, IgD, CD273 and CD80 positive cells among different subsets of splenic MSP121-specific B cells

from NIMP23fiRag2-/- chimeric mice defined based on CD11b and CD11c expression at 35dpi. Two-way ANOVA

vs CD11b-CD11c- subset. *p<0.05; **p<0.01, ***p<0.001; ****p<0.0001. Error bars are SEM. Data pooled from

three independent experiments with 3–5 mice per group.

DOI: https://doi.org/10.7554/eLife.39800.005
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Figure 3. Transcriptome analysis of sorted splenic MSP121-specific CD11b+CD11c+AMB. MSP121-specific CD11b+CD11c+ (AMB) and CD11b—CD11c—

B cells were flow cytometry sorted from the spleen of NIMP23fiRag2-/- chimeric mice at 35dpi; MSP121-specific B cells were flow cytometry sorted from

the spleen of naı̈ve NIMP23fiRag2-/-, and these three B cell populations were submitted to mRNAseq analysis. The heat maps display level of

expression of selected individual genes, organized in functional clusters related to (A) Fc receptor like molecules, (B) cell trafficking, (C) cytokines, (D)

transcription factors, (E) inhibitory receptors, (F) antigen experience/memory, (G) immunoglobulins, (H) galectins, (I) apoptosis, (J) proliferation, (K)

plasma cells/plasmablasts/germinal centers, (L) surface markers. Each column corresponds to data from an individual mouse (n = 5 35 dpi, n = 5 0 dpi).

DOI: https://doi.org/10.7554/eLife.39800.006

The following figure supplements are available for figure 3:

Figure supplement 1. Gating strategy for the sorting of splenic MSP121-specific CD11b+CD11c+ AMB and CD11b—CD11c— B cells at 35dpi.

DOI: https://doi.org/10.7554/eLife.39800.007

Figure supplement 2. Profile of the Running ES Score and positions of GeneSet members on the rank ordered list for selected Reactome pathway

gene sets.

DOI: https://doi.org/10.7554/eLife.39800.008
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DNA replication and plasmablasts, resembling previous observations in human AMB

(Muellenbeck et al., 2013).

Generation of Plasmodium-specific AMB in response to immunization
The occurrence of CD11b+CD11c+ AMB might be a consequence of aberrant B-cell activation driven

exclusively by certain pathogens. Alternatively, they might be part of a normal B-cell response, which

is exacerbated by the persistent nature of certain infections. To test whether CD11b+CD11c+FCRL5+

AMB could be generated in the absence of persistent infection, we immunized mice with MSP121. A

previous report had demonstrated the presence of CD11b+CD11c+Tbet+ B-cells 24 hr post-immuni-

zation with R848, a TLR7/8 ligand (Rubtsova et al., 2013). Therefore, we immunized IghNIMP23/+

mice with R848 together with the antigen MSP121 and looked for the appearance of MSP121-specific

CD11b+CD11c+FCRL5+ atypical B cells. We observed substantial numbers of MSP121-specific

CD11b+CD11c+ B cells in the spleens of IghNIMP23/+ mice 24 hr post-immunization (Figure 4A).

These cells expressed increased levels of both FCRL5 and CD80 (Figure 4B–C) and did not display

GC characteristics (Figure 4D), similar to the MSP121-specific CD11b+CD11c+FCRL5+ atypical B cells

generated following Plasmodium infection. The MSP121-specific CD11b+CD11c+ B cells observed

Figure 4. Generation of splenic MSP121-specific CD11b+CD11c+AMB in response to immunization. (A) Flow cytometry showing differential expression

of CD11b and CD11c on splenic MSP121-specific B cells from IghNIMP23/+ mice before immunization (day 0) and at days 1 and 3 post-immunization with

R848 and MSP121. (B) Flow cytometry showing expression of FCRL5 and CD80 on different subsets of splenic MSP121-specific B cells from IghNIMP23/+

defined based on CD11b and CD11c expression at day one post-immunization and naı̈ve mice. (C) Geometric MFI of FCRL5 and CD80 expression on

different subsets of splenic MSP121-specific B cells from IghNIMP23/+ defined based on CD11b and CD11c expression at day one post-immunization.

Two-way ANOVA vs CD11b—CD11c— subset. ****p<0.0001. (D) Flow cytometry of CD38 vs GL-7 (GC markers) on CD11b+CD11c+ MSP121-specific B

cells from IghNIMP23/+ at day one post-immunization. (E) Numbers of splenic CD11b+CD11c+ MSP121-specific B cells from IghNIMP23/+ during the course

of immunization. Kruskal-Wallis test compared to day 0. **p<0.01. Error bars are SEM. Data pooled from three independent experiments with 3–5 mice

per group.

DOI: https://doi.org/10.7554/eLife.39800.009
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after immunization appeared only transiently, as they could no longer be detected at 3 and 7d post-

immunization (Figure 4A and E).

These data demonstrate that MSP121-specific CD11b+CD11c+ AMB with no functional character-

istics of memory B cells can be generated independently of the infection and the presence of the

pathogen, and that they are short-lived cells.

Plasmodium-specific CD80+CD273+ Bmem are generated and persist
after resolution of P. chabaudi infection
Identification of mouse Bmem by flow cytometry originally relied on detecting B cells that had under-

gone Ig class-switching from IgM to IgG, and that did not express GC markers (i.e. IgG+CD38hiGL-

7lo) (Lalor et al., 1992; Ridderstad and Tarlinton, 1998). More recently, this set of markers has

been extended to include CD80, CD273 (PD-L2) and CD73, with CD273 and CD80 being the most

useful to discriminate memory from naı̈ve B cells (Tomayko et al., 2010; Zuccarino-Catania et al.,

2014). In combination, these markers allow the identification of different subsets of switched as well

as non-class switched (i.e. IgM/D+) Bmem. Therefore, we used cell surface expression of CD80 and

CD273 on MSP121-specific B cells to identify Bmem during and after resolution of P. chabaudi

infection.

MSP121-specific B cells from spleens of naı̈ve NIMP23fiRag2-/- mixed BM chimeras showed little

expression of either CD80 or CD273 (Figure 5A). By contrast, CD80+CD273+, CD80+CD273— and

CD80—CD273+ MSP121-specific B cells, both class-switched (IgM/Dlo) and non-class-switched (IgM/

Dhi), were readily detected above background levels at 28-35dpi in P. chabaudi-infected

NIMP23fiRag2-/- mixed BM chimeras (Figure 5B and D). After resolution of infection (155-170dpi),

the numbers of CD80+CD273+ and CD80+CD273— MSP121-specific B cells were either sustained or

increased, while the CD80—CD273+ population decreased, compared with 28-35dpi (Figure 5A–D).

All three MSP121-specific Bmem subsets showed high CD38 expression (Figure 5E,F). Importantly,

the MSP121-specific GC B cells detected at 28-35dpi did not express either CD80 or CD273, further

distinguishing GC from memory and atypical memory P. chabaudi-specific B-cell subsets

(Figure 5G). No MSP121-specific GC B cells were detected above background level after resolution

of the infection (Figure 5H). Finally, and in accordance with Figure 3, approximately 70% of the

MSP121-specific CD11b+CD11c+ AMB observed at days 28-35pi expressed either CD80, CD273 or a

combination of both (Figure 5I).

These data show that, in contrast to the transient AMB, splenic CD80+CD273+ and

CD80+CD273— class-switched and non-class-switched MSP121-specific Bmem persist after resolution

of P. chabaudi infection.

Plasmodium-specific Bmem express high levels of FCRL5
As discussed above, no single marker has been described so far that can identify all mouse Bmem

subsets. Surprisingly, we observed that after resolution of infection (155-170dpi), MSP121-specific B

cells expressing different combinations of CD80 and CD273 (CD80+CD273+, CD80-CD273+ or

CD80+CD273-) all expressed very high levels of FCRL5, in contrast to CD80-CD273- MSP121-specific

B cells that express no memory markers at this stage (Figure 6A). This suggests that FCRL5 might

be a marker for all Bmem. In order to confirm this, we used unsupervised methods to analyze our mul-

tiparameter flow cytometry data. We used PhenoGraph and t-SNE within the Cytofkit package

(Materials and methods, Chen et al 2016) to analyze MSP121-specific B cells based on the expression

of FCRL5, CD38, IgD, CD80 and CD273 on these cells, as determined by flow cytometry (Figure 6A

and B). The analysis identified six clusters of cells with memory characteristics displaying high

expression of CD38, CD80 and/or CD273, and variable expression of IgD, all of which expressed

high levels of FCRL5 (Figure 6C: clusters identified with purple arrows). We then used Isomap,

(Cytofkit package) to infer the relatedness between those cell subsets identified by PhenoGraph.

This confirmed high similarities between the cell clusters expressing high levels of FCRL5 with the

clusters expressing high levels of the memory markers CD80, CD273 and CD38 (Figure 6D).

To confirm the memory identity of MSP121-specific FCRL5hi B-cells detected after resolution of

the infection, we isolated MSP121-specific B cells expressing either high levels of FCRL5 or not

expressing FCRL5 (i.e. FCRL5hi and FCRL5— MSP121-specific B cells) from the spleen of P. chabaudi-

infected NIMP23fiRag2-/- mice (155dpi) (Figure 6—figure supplement 1), and MSP121-specific B
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Figure 5. Detection of MSP121-specific Bmem after resolution of P.chabaudi infection. (A), (B) and (C) Flow cytometry showing gating strategy to identify

splenic IgM/Dhi and IgM/Dlo CD273+ and/or CD80+ MSP121-specific Bmem in NIMP23fiRag2-/- chimeric mice before infection (day 0), at 35 and 155dpi,

respectively. (D) Numbers of splenic IgM/Dhi and IgM/Dlo CD273+ and/or CD80+ MSP121-specific Bmem in NIMP23fiRag2-/- chimeric mice during the

course of mosquito transmitted P. chabaudi infection. Two-way ANOVA vs day 0. **p<0.01; ***p<0.001; ****p<0.0001. (E) Flow cytometry showing

expression of CD38 on different subsets of splenic IgM/Dhi and IgM/Dlo MSP121-specific B cells from NIMP23fiRag2-/- chimeric mice defined based on

CD273 and CD80 expression at 155dpi. (F) Geometric MFI of CD38 expression on different subsets of IgM/Dhi and IgM/Dlo splenic MSP121-specific B

cells from NIMP23fiRag2-/- chimeric mice defined based on CD273 and CD80 expression at day 155 post-mosquito transmitted P. chabaudi infection.

Two-way ANOVA vs CD273-CD80- subset. **p<0.01; ***p<0.001; ****p<0.0001. Error bars are SEM. (G) Flow cytometry of CD273 and CD80 expression

on non-GC (CD38hiGL-7lo, blue) and GC (CD38loGL-7hi, red) splenic MSP121-specific B cells from NIMP23fiRag2-/- chimeric mice at 35dpi. (H) Flow

cytometry of CD38 vs GL-7 (GC markers) on splenic MSP121-specific B cells from NIMP23fiRag2-/- chimeric mice at 0 and 155dpi. (I) CD11b+CD11c+

MSP121-specific B cells overlaid on the CD80 vs CD273 plot corresponding to total MSP121-specific B cells. Data pooled from three independent

experiments with 3–7 mice per group.

DOI: https://doi.org/10.7554/eLife.39800.010
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cells from the spleen of naı̈ve NIMP23fiRag2-/- mice, by flow cytometric sorting, and performed

mRNAseq analysis on these three sorted cell populations (Figure 6E). As expected, the MSP121-spe-

cific FCRL5hi B cell subset showed high expression of genes encoding the hallmark memory B cell

markers Cd38, Cd80, Cd86, Nt5e (CD73) and Pdcd1lg2 (CD273), when compared with either

MSP121-specific FCRL5— B cells sorted at the same time or MSP121-specific B cells sorted from naı̈ve

mice (Figure 6E). Moreover, the MSP121-specific FCRL5hi B cells sorted after resolution of the infec-

tion upregulated the anti-apoptotic Bcl2 gene, which is an additional hallmark characteristic of mem-

ory B cells (Figure 6E). Importantly, FCRL5 also identified CD80+ and CD273+ MSP121-specific Bmem

subsets generated following immunization with a model antigen (Figure 6—figure supplement 2).

Figure 6. FCRL5hi identifies MSP121-specific Bmem after resolution of P.chabaudi infection. (A) Flow cytometry

showing expression of FCRL5 (right) on different subsets of splenic MSP121-specific B cells from NIMP23fiRag2-/-

chimeric mice defined based on CD273 and CD80 expression (left) at 155dpi. (B) t-SNE analysis of splenic MSP121-

specific B cells based on FCRL5, CD38, IgD, CD273 and CD80 expression measured by flow cytometry (n = 5).

Clusters identified by PhenoGraph are colored and numbered. (C) PhenoGraph heat map showing median

expression of FCRL5, CD38, IgD, CD273 and CD80 on the different clusters of MSP121-specific B cells. Arrows

point at the different clusters displaying a memory B cell phenotype. (D) Expression profiles of FCRL5, CD38,

CD273 and CD80 for the different PhenoGraph clusters visualized on the first component of ISOMAP. The

regression line estimated using the generalized linear model (GLM) is added for each marker. Data representative

of three independent experiments with 4–7 mice per group. (E) Heat map showing expression levels of different

genes on splenic FCRL5— and FCRL5hi MSP121-specific B cells sorted at 155dpi, and MSP121-specific B cells sorted

before infection (naı̈ve), determined by RNAseq analysis. Each column corresponds to data from an individual

mouse (n = 5 155 dpi, n = 5 0 dpi).

DOI: https://doi.org/10.7554/eLife.39800.011

The following figure supplements are available for figure 6:

Figure supplement 1. Gating strategy for the sorting of splenic MSP121-specific FCRL5hi Bmem and FCRL5— B cells

at 155dpi.

DOI: https://doi.org/10.7554/eLife.39800.012

Figure supplement 2. High expression of FCRL5 identifies Bmem.

DOI: https://doi.org/10.7554/eLife.39800.013
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Thus, after resolution of the infection, high expression of FCRL5 identifies P. chabaudi-specific

Bmem.

Plasmodium-specific AMB are a distinct short-lived activated B cell
subset
After identifying and sorting MSP121-specific AMB during chronic P. chabaudi infection, and

MSP121-specific Bmem after resolution of the infection, we then compared the transcriptome of these

two B-cell subsets. Principal component analysis (PCA) demonstrated a strikingly distinct transcrip-

tome of MSP121-specific AMB from that of MSP121-specific Bmem, as well as all other MSP121-specific

B-cell subsets sorted in this study (Figure 7A). The MSP121-specific AMB sorted at 35dpi formed a

separated cluster at the extreme right of the PC1 axis of the PCA plot, which accounts for the major-

ity of the variance (Figure 7A). All the other subsets [including MSP121-specific CD11b—CD11c—

B-cells sorted from the same mice and at the same day post-infection as the MSP121-specific AMB

(i.e. 35dpi)] clustered on the left of the PC1 axis, and showed differences mostly along the PC2 axis

of the PCA plot, which accounts for only 10% of the variance (Figure 7A). Interestingly, MSP121-spe-

cific CD11b—CD11c— and MSP121-specific Bmem clustered on opposite sides of the MSP121-specific

naı̈ve B-cell subset along the PC2 axis (Figure 7A), which suggests that the MSP121-specific Bmem

more closely resemble MSP121-specific naı̈ve B cells than MSP121-specific CD11b—CD11c— B cells

sorted at 35dpi.

MSP121-specific AMB sorted during chronic P. chabaudi infection, and MSP121-specific Bmem

sorted after resolution of the infection shared the expression of a series of mouse memory markers,

including Cd80, Fcrl5, Nt5e (CD73), and Cd86 (Figure 7B). However, these two subsets showed dif-

ferences in the expression pattern of anti- and pro-apoptotic genes (Figure 7C). While MSP121-spe-

cific Bmem from after infection resolution showed the highest levels of expression of the anti-

apoptotic Bcl2 gene, MSP121-specific AMB sorted during chronic P. chabaudi infection showed the

lowest levels of expression of this hallmark anti-apoptotic gene (Figure 7C). In contrast to MSP121-

specific Bmem, MSP121-specific AMB expressed high levels of the pro-apoptotic genes Bad, Bax, Fas

and Fasl (Figure 7C). Interestingly, MSP121-specific AMB expressed very high levels of class-switched

immunoglobulins, including Igha, Ighg1, Ighg2b, Ighg2c and Ighg3 (Figure 7D). Finally, MSP121-spe-

cific AMB highly expressed Cd11b, Cd11c, Tbx21, Ifng and Pdcd1 (Figure 7E), all hallmarks of

human AMB, as well as Mki67, indicative of active cell division, as previously shown in human AMB.

These data demonstrate that AMB and Bmem share the expression of memory markers. However,

they show striking differences in the expression of pro- and anti-apoptotic genes, immunoglobulins

genes, and cell proliferation genes. The increased expression of Mki67, pro-apoptotic genes and

class-switched immunoglobulins in AMB suggests that they resemble activated B cells. By contrast,

Bmem express much less Mki67 (similar to naı̈ve cells) and present an anti-apoptotic gene expression

pattern, consistent with being long-lived quiescent B cells.

Mouse FCRL5 has been shown to be expressed on marginal zone (MZ) and B1 B cells

(Won et al., 2006). Therefore, it is possible that the AMB identified in this study might represent a

specific subset of either MZ or B1 B cells. As discussed elsewhere (Baumgarth, 2011;

Garraud et al., 2012; Pillai et al., 2005; Zouali, 2011), B1 and MZ B cells are CD1dmid/hi, CD9+,

IgMhi and CD23—. B1 are further CD43+, B220lo, and may (B1a) or may not (B1b) express CD5. MZ

are further characterised by CD22hi, CD21/CR2hi, and the expression of the lysophospholipid sphin-

gosine-1 phosphate receptor S1P1, and the lineage master regulator Notch2. Indeed, MSP121-spe-

cific CD11b+CD11c+ AMB showed high expression of some markers associated with B1 and/or MZ,

including CD5, CD9 and CD43. However, these markers have also been shown to be highly

expressed by activated B2 B cells and plasma cells (Baumgarth, 2011). Studying all these canonical

markers, we found no other similarities between B1/MZ and MSP121-specific CD11b+CD11c+ AMB

to suggest a relationship between these subsets (Figure 8A). This was further corroborated by flow

cytometry analysis (Figure 8B). Moreover, unlike MZ and B1 B cells, MSP121-specific AMB were

class-switched and expressed very high levels of IgG (Figure 7D). To further characterize the identity

of MSP121-specific CD11b+CD11c+ AMB, we explored if these cells resemble GC B cells. Flow

cytometry analysis demonstrated that MSP121-specific AMB did not display a GC phenotype (i.e.

CD38hiGL-7lo) (Figure 8C) while the MSP121-specific CD38loGL-7hi GC B cells showed low expression

of both CD11b and CD11c. Thus, MSP121-specific AMB are not GC B cells.
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Figure 7. MSP121-specific AMB are a distinct short-lived activated B cell subset. (A) Principal component analysis of RNAseq transcriptome data from

splenic MSP121-specific AMB (CD11b+CD11c+, 35dpi), CD11b—CD11c— B cells (35dpi), Bmem (FCRL5hi, 155dpi), FCRL5— B cells (155dpi) and B cells

from naı̈ve mice (0dpi). The MSP121-specific AMB and Bmem are contained inside ellipses. (B) (C) (D) (E) Normalized counts corresponding to selected

Figure 7 continued on next page
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All together, these data further show that P. chabaudi-specific AMB represent a distinct subset of

short-lived activated B cells.

Discussion
Similar to other chronic infections [e.g. HIV, HCV and Mycobacterium tuberculosis (Knox et al.,

2017b; Portugal et al., 2017)], Plasmodium infection, the cause of malaria, leads to an increase in

the frequency of AMB [originally termed tissue-like memory B cells (Moir et al., 2008)] in peripheral

blood from P. falciparum-exposed subjects (Illingworth et al., 2013; Portugal et al., 2015;

Sullivan et al., 2016; Sullivan et al., 2015; Weiss et al., 2011; Weiss et al., 2010; Weiss et al.,

2009). However, mouse models to investigate Plasmodium-specific AMB are lacking. Here we have

generated an IgH knock-in transgenic mouse strain to study the generation of Plasmodium-specific

AMB in a Plasmodium chabaudi infection. We demonstrate the generation of P. chabaudi-specific

AMB in response to blood-stage mosquito-transmitted chronic P. chabaudi infection, and show the

short-lived nature of these cells. P. chabaudi infections in mice present some outstanding character-

istics for the study of AMB; a chronic phase which allows investigation of the impact of constant

immune activation driven by persistent subpatent parasitemia, followed by a clearance phase which

allows the study of immune responses after the infection is naturally resolved. Thus, it is possible to

study both exhaustion driven by chronic immune activation, and memory immune responses which

remain after P. chabaudi elimination.

The P. chabaudi-specific AMB we detected during the chronic phase of infection showed strong

similarities to human AMB described in chronic malaria. These included being class-switched, and

expressing mouse homologues of hallmark human atypical memory B-cell genes such as Itgax

(Cd11b), Itgam (Cd11c), Cxcr3, Fcrl5, Tbx21 (T-bet), Ifng, Cd80, Cd86, Aicda, and a series on inhibi-

tory receptors, including Lair1 and Pdcd1 (PD-1). Human AMB have been shown to share several

characteristics with plasmablasts (Knox et al., 2017a; Muellenbeck et al., 2013; Obeng-

Adjei et al., 2017; Sullivan et al., 2015). Interestingly, we also observed increased expression of

several genes associated with plasmablasts in P. chabaudi-specific AMB, including Cd138, Xbp1,

Prdm1 (encoding Blimp-1) and Mki67, accompanied by downregulation of Pax5 and Bcl6.

AMB resemble age-associated B cells (ABC) which accumulate with age as well as in autoimmu-

nity, and were also proposed to be a subset of long-lived memory B cells (Naradikian et al., 2016a;

Portugal et al., 2017; Rubtsov et al., 2017). Expression of T-bet, CD11c and CXCR3 are shared by

AMB, tissue-like memory B cells, and ABC (Knox et al., 2017b; Naradikian et al., 2016a). More-

over, similar to ABC, expansion of human AMB associated with malaria is driven by IFNg (Obeng-

Adjei et al., 2017). IL-21, which is highly expressed by follicular helper T cells in response to Plasmo-

dium infection (Carpio et al., 2015; Obeng-Adjei et al., 2015; Pérez-Mazliah et al., 2015), also

directly promotes T-bet expression in B cells in the context of TLR engagement (Naradikian et al.,

2016b). Taken together, these data strongly suggest that this is the same T-bet+ B-cell subset, which

accumulates with time due to repetitive antigenic exposure. In agreement with previous data

(Rubtsova et al., 2013), we show here that immunization with MSP121 and R848, a TLR7/8 ligand,

promotes a robust but short-lived CD11b+CD11c+ P. chabaudi-specific AMB response. T-bet+ atypi-

cal B cells are critical to eradicate various murine viral infections (Barnett et al., 2016;

Rubtsova et al., 2013), and a recent study showed that yellow fever and vaccinia vaccinations of

humans stimulated an acute T-bet+ B-cell response and suggested that these T-bet+ B-cell popula-

tion may function as an early responder during acute viral infections (Knox et al., 2017a). Thus,

T-bet+ B cells, even in the context of malaria, are likely to be a normal component of the immune

compartment that becomes activated and expands, most probably in response to BCR, endosomal

TLR, and IFNg or IL-21 stimulation. Moreover, a recent study shows a TLR9/IFNg-dependent activa-

tion of autoreactive T-bet+CD11c+ atypical B cells in response to P. yoelii 17XNL infection in mice

Figure 7 continued

genes representing memory B-cell markers, anti and pro-apoptotic genes, immunoglobulins and atypical memory B-cell markers, respectively, for all

five groups described in (A). Each bar represents an individual mouse. Data generated with five mice per group.
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Figure 8. Analysis of MZ, B1 and GC B cell characteristics on MSP121-specific AMB. (A) MSP121-specific CD11b+CD11c+ (AMB) and CD11b—CD11c— B

cells were flow cytometry sorted from the spleen of NIMP23fiRag2-/- chimeric mice at 35dpi; MSP121-specific B cells were flow cytometry sorted from

the spleen of naı̈ve NIMP23fiRag2-/-, and these three B cell populations were submitted to mRNAseq analysis. The heat map displays level of

expression of selected individual genes known to be up or downregulated on either MZ, B1 B cells or both. Each column represents an individual

mouse. (B) Flow cytometry analysis of surface markers of either MZ, B1 B cells or both, on MSP121-specific CD11b+CD11c+ (AMB) (blue) and MSP121-

specific IgMhi (red) B cells from the spleen of IghNIMP23/+ mice at 20dpi. (C) Flow cytometry analysis of GC markers on MSP121-specific CD11b—CD11c—

(non-AMB, left) and CD11b+CD11c+ (AMB, right) B cells from the spleen of IghNIMP23/+ mice at 20dpi. (D) Flow cytometry analysis showing the

expression of CD11b and CD11c on MSP121-specific CD11b+CD11c+ (AMB, blue) compared to GC (CD38loGL-7hi, red) B cells from the spleen of

IghNIMP23/+ mice. Data generated with 5–6 mice per group.

DOI: https://doi.org/10.7554/eLife.39800.015
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(Rivera-Correa et al., 2017). However, whether these cells remained part of the long-lived memory

B-cell pool after resolution of the infection was not explored.

Here, we show that P. chabaudi-specific AMB are short-lived activated B cells. These cells were

absent after resolution of the infection, and immunization with purified antigen and TLR agonists

resulted in a transient, yet robust, activation of P. chabaudi-specific AMB which lasted no more than

48 hr. Moreover, the IghNIMP23/+ mouse model allowed us to obtain a deep insight of the transcrip-

tome profile of MSP121-specific AMB during natural infection, and compare it side-by-side with the

transcriptome of MSP121-specific naı̈ve B cells. This allowed us to demonstrate their heavily pro-apo-

ptotic and activated transcription profile, further explaining their short-lived nature. P. chabaudi-spe-

cific AMB showed very low expression of Bcl2, and high levels of expression of several pro-apoptotic

genes including Bad, Bax, Fas and Fasl. In addition, these cells expressed very high levels of class-

switched immunoglobulins and genes associated with DNA replication and proliferation.

The association of P. chabaudi-specific AMB with ongoing infection explains several observations

in human studies: reduction of HIV plasma viremia by ART resulted in a significant reduction of HIV-

specific AMB without altering the frequency of HIV-specific Bmem (de Bree et al., 2017;

Kardava et al., 2014); individuals living in high malaria endemicity present higher frequencies of

AMB than individuals living in areas with moderate transmission (Illingworth et al., 2013;

Sullivan et al., 2015); repetitive Plasmodium episodes result in higher frequencies of AMB (Obeng-

Adjei et al., 2017); the percentage of AMB is larger in children with persistent asymptomatic Plas-

modium falciparum parasitemia as compared with parasite-free children (Weiss et al., 2009); previ-

ously exposed subjects significantly reduce the frequency of AMB following a year of continuous

absence of exposure to Plasmodium falciparum infection (Ayieko et al., 2013). These observations

all support the view that constant immune activation rather than impaired memory function leads to

the accumulation of AMB in malaria.

After resolution of infection, P. chabaudi-specific AMB did not persist, but instead subsets of P.

chabaudi-specific Bmem were readily detected. These cells expressed different combinations of previ-

ously described mouse B-cell memory markers [i.e. CD80, CD273 and CD73 (Anderson et al., 2007;

Tomayko et al., 2010; Zuccarino-Catania et al., 2014)]. P. chabaudi-specific Bmem included both

class-switched and non-class-switched cells, which show different responses to a secondary chal-

lenge infection (Krishnamurty et al., 2016). Independently of the combination of previously

described memory markers expressed on P. chabaudi-specific Bmem, all of these cells displayed very

high expression of FCRL5. Previous data showed most prominent expression of FCRL5 in marginal

zone B cells, while much less evident in the newly-formed and follicular splenic B cell subpopulations

(Davis et al., 2004; Won et al., 2006). In agreement with this, we observed expression of FCRL5 on

a subset of splenic P. chabaudi-specific B cells obtained from naı̈ve mice. However, the level of

FCRL5 expression on P. chabaudi-specific Bmem detected after resolution of the infection was notice-

ably higher than that of naı̈ve B cells both at the protein and mRNA levels. In contrast to MSP121-

specific AMB, these CD11b—CD11c—FCRL5hi MSP121-specific Bmem showed high expression of the

hallmark memory and anti-apoptotic gene Bcl2 (Bhattacharya et al., 2007). Thus, after resolution of

the infection, high expression of FCRL5 acted as a universal Bmem marker. Due to its complex dual

ITIM/ITAM signaling capacity (Zhu et al., 2013), it is tempting to speculate that FCRL5 might serve

as an important signal in the differentiation/maintenance of Bmem.

Tracking the fate of the different MSP121-specific B-cell subsets identified in this work will allow

detailing the interplay between them. A model can be proposed in which antigen-specific AMB

serve as an intermediate stage of differentiation between naı̈ve and Bmem. Alternatively, antigen-spe-

cific AMB might represent early plasmablasts or recent GC emigrates, based on class-switching and

the high expression of IgG by these cells. These scenarios are not necessarily antagonist, and might

even occur in parallel. Moreover, B1 B cells have been shown to class-switch and contribute to serum

IgG1, IgG2a and IgA to influenza (Baumgarth et al., 2005), and IgG-producing B1a B cells have

been shown to accumulate in the spleen of a mouse model of systemic lupus erythematosus

(Enghard et al., 2010). Therefore, we can’t rule out the possibility that AMB might represent a par-

ticular B1 B cell subset that expands in the spleen and blood in response to Plasmodium infection.

Our data suggest that the expansion of AMB in malaria is not a consequence of B-cell exhaustion,

but rather a physiologic stage of B-cell activation, and that these cells are sustained in high frequen-

cies by ongoing chronic infections. Thus, Plasmodium-specific AMB are neither ‘memory’, nor ‘atypi-

cal’. Importantly, our data demonstrate that robust expansion of Plasmodium-specific AMB does not
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hinder clearance of the infection, activation of germinal centers, or generation of Plasmodium-spe-

cific long-lived quiescent Bmem upon resolution of the infection.

Materials and methods

Key resources table

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
(M. musculus)

B6.SJL-Ptprca Pepcb/BoyJ
(B6.CD45.1)

The Jackson
Laboratory

MGI:4819849 Bred in the specific
pathogen-free
facilities of the MRC
National Institute
for Medical Research
and The Francis Crick
Institute

Genetic reagent
(M. musculus)

Rag2tm1Fwa

(Rag2-/-)
The Jackson
Laboratory

MGI:1858556 Bred in the
specific pathogen-
free facilities of the
MRC National Institute
for Medical Research
and The Francis Crick
Institute

Genetic reagent
(M. musculus)

IghNIMP23/+ This paper _ Bred in the specific
pathogen-free facilities
of the MRC National
Institute for Medical
Research and The Francis
Crick Institute

Strain,
strain background (Plasmodium
chabaudi
chabaudi,

strain AS)

P. chabaudi other _ European Malaria
Reagent Repository,
University of Edinburgh.

Strain,
strain
background
(Anopheles
stephensi,
strain
SD500,
female)

mosquitos PMID: 23217144 _ Bred in Jean
Langhorne’s lab

Antibody Monoclonal
Rat Anti-CD11b

BD Biosciences 563553 (dil 1/50)

Antibody Monoclonal
Hamster
Anti-Mouse
CD11c

BD Biosciences 561022 (dil 1/50)

Antibody Monoclonal
Rat Anti-Mouse
CD138

BD Biosciences 553714 (dil 1/400)

Antibody Monoclonal
Rat Anti-Mouse
CD19

BD Biosciences 565076 (dil 1/200)

Antibody Monoclonal
Rat anti-Mouse
CD19

Biolegend 115530 (dil 1/400)

Antibody Monoclonal
Rat anti-Mouse
CD19

Biolegend 115543 (dil 1/400)

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Antibody Monoclonal
Rat anti-Mouse
CD1d

Biolegend 123510 (dil 1/100)

Antibody Monoclonal
Rat anti-mouse
CD2

Biolegend 100112 (dil 1/100)

Antibody Monoclona
Rat
Anti-Mouse
CD21/35

BD Biosciences 563176 (dil 1/100)

Antibody Monoclona Rat
Anti-Mouse
CD21/35

BD Biosciences 553818 (dil 1/100)

Antibody Monoclonal Rat
anti-Mouse
CD23

eBioscience 25–0232 (dil 1/100)

Antibody Monoclonal Rat
anti-Mouse
CD273

BD Biosciences 564245 (dil 1/25)

Antibody Armenian
Hamster
anti-Mouse
CD3

Biolegend 100336 (dil 1/100)

Antibody Monoclonal Rat
anti-Mouse
CD38

Biolegend 102718 (dil 1/400)

Antibody Monoclonal Rat
anti-Mouse
CD38

eBioscience 17–0381 (dil 1/400)

Antibody Monoclonal Rat
anti-Mouse
CD38

BD Biosciences 740697 (dil 1/400)

Antibody Monoclonal
Rat anti-Mouse
CD4

Biolegend 100414 (dil 1/400)

Antibody Monoclonal Rat
anti-Mouse
CD45.1

Biolegend 110706 (dil 1/400)

Antibody Monoclonal Rat
anti-Mouse
CD45.1

Biolegend 110728 (dil 1/400)

Antibody Monoclonal Mouse
anti-Mouse
CD45.2

BD Biosciences 563685 (dil 1/50)

Antibody Monoclonal Mouse
anti-Mouse
CD45.2

Biolegend 109814 (dil 1/50)

Antibody Monoclonal
Mouse
anti-Mouse
CD45.2

Biolegend 109808 (dil 1/50)

Antibody Monoclonal
Rat
anti-Mouse CD45R/B220

BD Biosciences 564449 (dil 1/400)

Antibody Monoclonal
Rat
anti-Mouse CD45R/B220

Biolegend 103224 (dil 1/400)

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Antibody Monoclonal
Rat
anti-Mouse CD45R/B220

eBioscience 25–0452 (dil 1/400)

Antibody Monoclonal
Rat anti-Mouse
CD73

BD Biosciences 550741 (dil 1/100)

Antibody Monoclonal
Armenian
Hamster
anti-Mouse CD80

Biolegend 104729 (dil 1/25)

Antibody Monoclonal
Rat anti-Mouse
CD8a

Biolegend 100734 (dil 1/400)

Antibody Monoclonal
Rat anti-Mouse
CD9

BD Biosciences 558749 (dil 1/100)

Antibody Monoclonal
Rat anti-Mouse
CD93 (AA4.1)

eBioscience 17–5892 (dil 1/100)

Antibody FCRL5 PMID: 17082595 _ Produced in Randall
Davis’ lab (dil 1/400)

Antibody Polyclonal
Sheep
anti-Mouse FCRL5

R and D Systems FAB6756G (dil 1/50)

Antibody Monoclonal Rat
Anti-Mouse
T- and B-Cell
Activation Antigen
GL7

BD Biosciences 562080 (dil 1/100)

Antibody Monoclonal Rat
Anti-Mouse
IgD

Biolegend 405725 (dil 1/400)

Antibody Monoclonal
Rat Anti-Mouse
IgD

Biolegend 405723 (dil 1/400)

Antibody Monoclonal
Rat Anti-Mouse
IgD

Biolegend 405710 (dil 1/400)

Antibody Monoclonal Rat
Anti-Mouse
IgG2b

Biolegend 406708 (dil 1/25)

Antibody Monoclonal
Rat Anti-Mouse
IgM

Biolegend 406512 (dil 1/100)

Recombinant DNA reagent VDJH
NIMP23

anti-MSP121
variable region
coding exon
containing the
Leader-V
segment intron
from gDNA of the
NIMP23 hybridoma

PMID: 7141700 _ Produced in Jean
Langhorne’s lab

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Recombinant DNA reagent C57Bl/6 IgH
HEL variable
region
knock-in
construct

PMID: 12668643 _ Donated by Robert
Brink of the
Garvan Institute
of Medical
Research, New
South Wales, Australia

Peptide, recombinant protein MSP121 PMID: 11254580 _ Produced in Jean
Langhorne’s lab

Commercial assay or kit EZ-Link
Sulfo-NHS-LC-Biotinylation
Kit

Thermo Scientific 21435

Commercial assay or kit RiboPure
RNA Purification
Kit

Invitrogen AM1924

Commercial assay or kit Qubit 1X
dsDNA HS
Assay Kit

Invitrogen Q33231

Commercial assay or kit SMART-Seq
v4 Ultra Low
Input RNA
Kit for Sequencing

Takara 634889

Commercial assay or kit Ovation
Ultralow Library
System V2

Nugen 0344–32

Commercial assay or kit LIVE/DEAD
Fixable Aqua
Dead Cell Stain Kit

Invitrogen L34957

Commercial assay or kit LIVE/DEAD
Fixable Blue
Dead Cell Stain Kit

Invitrogen L23105

Chemical compound, drug Streptavidin-R-Phycoerythrin Prozyme PJRS25

Chemical compound, drug Streptavidin-Allophycocyanin Prozyme PJ27S

Chemical compound, drug TiterMax
Gold Adjuvant

Merck (formerly
Sigma-Aldrich)

T2684-1ML

Chemical compound, drug R848 (Resiquimod) Invivogen tlrl-r848

Chemical compound, drug TRI Reagent
Solution

Invitrogen AM9738

Software, algorithm cutadapt v1.9.1 doi:10.14806/
ej.17.1.200

Software, algorithm RSEM v1.2.31 doi:10.1186/
1471-2105-12-323

Software, algorithm STAR v2.5.1b doi:10.1093/
bioinformatics/bts635

Software, algorithm DESeq2 doi:10.1186/
s13059-014-0550-8

Software, algorithm R v3.4.0 other https://www.
r-project.org

Software, algorithm Bioconductor
v3.5

other http://www.
bioconductor.org

Software, algorithm Broad’s
Gene Set
Enrichment
Analysis (GSEA)

other http://software
.broadinstitute.org/
gsea/index.jsp

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Software, algorithm FlowJo version
9.6 or higher

Tree Star

Software, algorithm Cytofkit doi:10.1371/journa
l.pcbi.1005112.s009

Software, algorithm Prism v6 GraphPad

Mice
5-12 week-old female mice were used for experiments. C57BL/6J, C57BL/6.SJL-Ptprca (CD45.1 con-

genic), Rag2-/-.C57BL/6.SJL-Ptprca (CD45.1 congenic) and BALB/c mouse strains were bred in the

specific pathogen-free facilities of the MRC National Institute for Medical Research and The Francis

Crick Institute, and were housed conventionally with sterile bedding, food and irradiated water.

Room temperature was 22˚C with a 12 hr light/dark cycle; food and water were provided ad libitum.

The study was carried out in accordance with the UK Animals (Scientific Procedures) Act 1986 (Home

Office license 80/2538 and 70/8326), was approved by the MRC National Institute for Medical

Research Ethical Committee and was approved by The Francis Crick Institute Ethical Committee.

To produce MSP121–specific B cell knock-in mice capable of undergoing class switch recombina-

tion on the C57BL/6J genetic background, the VDJH
NIMP23 anti-MSP121 variable region coding exon

containing the Leader-V segment intron from gDNA of the NIMP23 hybridoma (Boyle et al., 1982)

was inserted by homologous recombination into the 5’ end of the endogenous IgH locus

(Taki et al., 1993) (Figure 1—figure supplement 1A–C). The VDJH
NIMP23 anti-MSP121 variable

region coding exon was inserted into a previously described IgH targeting construct, replacing the

anti-HEL heavy chain variable region coding exon that was already in it (Phan et al., 2003) (Fig-

ure 1—figure supplement 1D). The final targeting construct included a loxP-flanked neomycin resis-

tance cassette in reverse transcriptional orientation to the Igh locus, located immediately 5’ to the

rearranged VDJH
NIMP23 variable region and its associated promoter (Figure 1—figure supplement

1D). Electroporation of C57BL/6N-derived PRX embryonic stem cells with the targeting construct

and selection of homologous recombinant clones was performed using standard techniques by Poly-

Gene AG (Switzerland). One targeted ES clone was used for production of chimeric mice using stan-

dard techniques at the Biological Research Facilities of the MRC National Institute for Medical

Research, London, UK. Male chimeric mice were crossed to C57BL/6J females and progeny carrying

the IghNIMP23neo allele were crossed to PC3Cre mice (O’Gorman et al., 1997) to delete the neor

gene in the germline and generate mice carrying the IghNIMP23 allele (Figure 1—figure supplement

1D). The IghNIMP23/+ strain was maintained by backcrossing for at least 10 generations to C57BL/6J

mice.

Mixed bone marrow chimeras
Femurs and tibias were excised from female mice and cleaned of flesh using forceps and scalpel,

and BM was obtained by flushing out with IMDM supplemented with 2 mM L-glutamine, 0.5 mM

sodium pyruvate, 100 U penicillin, 100 mg streptomycin, 6 mM Hepes buffer, and 50 mM 2-ME

(Gibco, Invitrogen), using a syringe with a needle. Thereafter, single BM cell suspensions were

obtained by mashing through a 70 mm filter mesh, further sieved through 40 mm filter mesh and

washed once. Live cells were resuspended in sodium chloride solution 0.9% (Sigma) at 4 � 106 cells/

200 ml. Rag2-/-.C57BL/6.SJL-Ptprca mice were sub-lethally irradiated (5Gy) using a [137Cs] source

and reconstituted less than 24 hr after irradiation by i.v. injections of a 10% IghNIMP23/+:90% C57BL/

6.SJL-Ptprca combination of donor BM cells. Recipient mice were maintained on acidified drinking

water and analyzed for reconstitution after 6–8 weeks.

Plasmodium chabaudi infection
Plasmodium chabaudi chabaudi AS was transmitted by Anopheles stephensi mosquitoes, strain

SD500, as described elsewhere (Spence et al., 2012). Briefly, C57BL/6J mice were injected i.p. with

105 P. chabaudi-infected red blood cells and used to feed mosquitos two weeks after the injection.

Pérez-Mazliah et al. eLife 2018;7:e39800. DOI: https://doi.org/10.7554/eLife.39800 21 of 28

Research article Immunology and Inflammation Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.39800


Two weeks after mosquito feeding/infection, each experimental mouse was exposed to 20 infected

mosquitos for 30 min. Blood parasitemia in infected experimental mice was routinely monitored by

thin blood smears.

Immunizations
Mice were immunized i.p. with a combination of 100 mg of MSP121 (Quin and Langhorne, 2001)

and 50 ml of Titermax Gold emulsion (Sigma), or a combination of 50 mg of MSP121 and 50 mg of

R848 (Invivogen).

Flow cytometry and cell sorting
Spleens, lymph nodes and bone marrows were dissected and single cell suspensions were obtained

by mashing the organs through a 70 mm filter mesh in HBSS, 6 mM Hepes buffer (Gibco, Invitrogen).

After removal of red blood cells from spleens and bone marrows by treatment with lysing buffer

(Sigma), the remaining cells were resuspended in complete Iscove’s Modified Dulbecco’s Medium

[IMDM supplemented with 10% FBS Serum Gold (PAA Laboratories, GE Healthcare), 2 mM L-gluta-

mine, 0.5 mM sodium pyruvate, 100U penicillin, 100 mg streptomycin, 6 mM Hepes buffer, and 50

mM 2-ME (all from Gibco, Invitrogen)] and viable cells were counted using trypan blue (Sigma) exclu-

sion and a hemocytometer. Cells were then resuspended in PBS and incubated with APC- or PE-

labelled MSP121 fluorescent probes and/or different combinations of fluorochrome-conjugated anti-

bodies (key resources table), and either acquired after two washes with PBS, or fixed with 2% para-

formaldehyde and stored in staining buffer at 4˚C until acquisition.

The APC and PE MSP121 fluorescent probes were produced as previously described

(Krishnamurty et al., 2016; Taylor et al., 2012). Briefly, purified MSP121 (Quin and Langhorne,

2001) was biotinylated using an EZ-link Sulfo-NHS-LC- Biotinylation kit (Thermo Fisher Scientic) using

a 1:1 ratio of biotin to protein, and loaded onto Streptavidin-APC conjugated or Phycolink Streptavi-

din-R-PE conjugated (ProZyme) in a 6:1 ratio of MSP121:Streptavidin-fluorochrome.

Cell sorting was performed on a MoFlo XDP (Beckman Coulter) or a BD FACSAria Fusion (BD Bio-

sciences) and the target cell populations were directly dispensed into TRIreagent (Ambion) and

stored at �80˚C until RNA isolation. Purity checks were routinely performed for all assays by sorting

aliquots of cells into PBS containing 2% FCS and reacquiring them on the cell sorter.

Dead cells were routinely excluded from the analysis by staining with LIVE/DEAD Fixable Aqua or

Blue stain (Invitrogen). Singlets were selected based on FCS-A vs FCS-H and further based on SSC-A

vs SSC-H. ‘Fluorescence minus one’ (FMO) controls were routinely used to verify correct compensa-

tion and to set the thresholds for positive/negative events. Analysis was performed with FlowJo soft-

ware version 9.6 or higher (Tree Star).

PhenoGraph and t-distributed stochastic neighbor embedding (t-SNE) were combined to analyze

multiparameter flow cytometry data using the Cytofkit package (Chen et al., 2016). t-SNE renders

high-dimensional single-cell data based on similarities into only two dimensions, and thus helps visu-

alize multiparameter data (van der Maaten, 2008). PhenoGraph (Levine et al., 2015) allows parti-

tioning of high-dimensional single-cell data into phenotypically coherent subpopulations (i.e.

clusters). The relatedness of the cell clusters identified by PhenoGraph was inferred using Isomap

(Cytofkit package), in which related clusters/subsets can be visualised close to each other.

RNA isolation, sequencing and data analysis
Total RNA from 1�5 � 104 cells sorted into TRIreagent (Ambion) was isolated using the Ribopure kit

(Ambion). Concentration of purified RNA was determined by Qubit fluorometric quantitation using

the HS assay kit (ThermoFisher Scientific), and the quality analyzed with a 2100 Bioanalyzer (Agilent).

Samples with a RIN score above 8.50 were used for the next steps. cDNA was generated from total

RNA with the SMART-Seq v4 Ultra Low Input RNA Kit (Takara Bio USA). Next-generation sequencing

libraries were produced with the Ovation Ultralow System V2 (Nugen), and run as PE100 on a HiSeq

4000 sequencer (Illumina). GEO accession: GSE115155.

For bioinformatics analysis, paired-end sequence reads were adapter and quality trimmed using

cutadapt v1.9.1 (Martin, 2011) with the following non-default settings: ‘-a AGATCGGAAGAGC -A

AGATCGGAAGAGC –minimum-length 30 -q 20,20’. Gene-level abundance estimates were gener-

ated from the trimmed reads using RSEM v1.2.31 (Li and Dewey, 2011) running STAR v2.5.1b
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(Dobin et al., 2013) with default settings, aligned against the Mus musculus Ensembl release 89

transcriptome (mm10). All further analysis was conducted using the DESeq2 (Love et al., 2014)

package from Bioconductor v3.5 run in R v3.4.0. The expected counts were imported and rounded

to integers to generate a counts matrix. Differential expression between phenotype groups was

assessed using the DESeq function with default settings. In the case of comparisons of different

MSP121-specific B cell subsets obtained from the same experimental mouse, an additional mouse

factor was added to the design formula to accommodate the paired nature of the data. Significance

was thresholded using an FDR � 0.01. PCA analysis was conducted using DESeq’s plot PCA function

with the regularized log (rlog) transformed count data. Heat maps were generated using the regular-

ized log (rlog) transformed count data, scaled per gene using a z-score. Mouse homologues to

genes previously associated with human AMB were selected (Supplementary file 1), and those

showing significant differential expression on MSP121-specific AMB were used to produce separate

heat maps split by functional annotation (Figure 3). The GSEA pre-ranked function from the Broad’s

Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) suite was used to assess significant

enrichment of MSigDB’s C2 Reactome gene sets associated with differential expression between cell

types. The function was run using a list of genes ranked for differential expression using DESeq2’s

Wald test statistic with default settings except for: collapse dataset to gene = false enrichment

statistic = classic

Statistical analysis
Statistical analysis was performed using Mann Whitney U test, Kruskal-Wallis test followed by Dunn’s

multiple comparisons test, or Two-Way ANOVA followed by Dunnett’s multiple comparisons test on

Prism software version 6 (GraphPad). p<0.05 was accepted as a statistically significant difference.
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