A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast

Abstract

Replicative aging of Saccharomyces cerevisiae is an established model system for eukaryotic cellular aging. A limitation in yeast lifespan studies has been the difficulty of separating old cells from young cells in large quantities. We engineered a new platform, the Miniature-chemostat Aging Device (MAD), that enables purification of aged cells at sufficient quantities for genomic and biochemical characterization of aging yeast populations. Using MAD, we measured DNA accessibility and gene expression changes in aging cells. Our data highlight an intimate connection between aging, growth rate, and stress. Stress-independent genes that change with age are highly enriched for targets of the signal recognition particle (SRP). Combining MAD with an improved ATAC-Seq method, we find that increasing proteasome activity reduces rDNA instability usually observed in aging cells, and contrary to published findings, provide evidence that global nucleosome occupancy does not change significantly with age.

Data availability

We've included all processed data in easily accessible tables.Sequencing data have been deposited in GEO under accession codes GSE118581

The following data sets were generated
    1. Hendrickson DG
    2. Soifer I
    (2018) Genomic analysis of aging yeast
    Publicly available at the NCBI Gene Expression Omnibus (accession no: GSE118581).

Article and author information

Author details

  1. David G Hendrickson

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    David G Hendrickson, Is affiliated with Calico Life Sciences. There are no other competing interests.
  2. Ilya Soifer

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Ilya Soifer, Is affiliated with Calico Life Sciences. There are no other competing interests.
  3. Bernd J Wranik

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Bernd J Wranik, Is affiliated with Calico Life Sciences. There are no other competing interests.
  4. Griffin Kim

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Griffin Kim, Is affiliated with Calico Life Sciences. There are no other competing interests.
  5. Michael Robles

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Michael Robles, Is affiliated with Calico Life Sciences. There are no other competing interests.
  6. Patrick A Gibney

    Calico Life Sciences, LLC, South San Francisco, United States
    Competing interests
    Patrick A Gibney, Is affiliated with Calico Life Sciences. There are no other competing interests.
  7. R Scott McIsaac

    Calico Life Sciences, LLC, South San Francisco, United States
    For correspondence
    rsm@calicolabs.com
    Competing interests
    R Scott McIsaac, Is affiliated with Calico Life Sciences. There are no other competing interests.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5339-6032

Funding

This was work was funded by Calico Life Sciences, LLC

Reviewing Editor

  1. Matt Kaeberlein, University of Washington, United States

Version history

  1. Received: July 18, 2018
  2. Accepted: October 17, 2018
  3. Accepted Manuscript published: October 18, 2018 (version 1)
  4. Accepted Manuscript updated: October 19, 2018 (version 2)
  5. Version of Record published: November 28, 2018 (version 3)

Copyright

© 2018, Hendrickson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 12,872
    views
  • 1,336
    downloads
  • 56
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David G Hendrickson
  2. Ilya Soifer
  3. Bernd J Wranik
  4. Griffin Kim
  5. Michael Robles
  6. Patrick A Gibney
  7. R Scott McIsaac
(2018)
A new experimental platform facilitates assessment of the transcriptional and chromatin landscapes of aging yeast
eLife 7:e39911.
https://doi.org/10.7554/eLife.39911

Share this article

https://doi.org/10.7554/eLife.39911

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article Updated

    Runs-of-homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE (runs-of-homozygous diplotype cluster enumerator), to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 single nucleotide polymorphisms (SNPs) and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended human leukocyte antigen (HLA) region and autoimmune disorders. We found an association between a diplotype covering the homeostatic iron regulator (HFE) gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (p-value = 1.82 × 10−11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Richard Sejour, Janet Leatherwood ... Bruce Futcher
    Research Article

    Previously, Tuller et al. found that the first 30–50 codons of the genes of yeast and other eukaryotes are slightly enriched for rare codons. They argued that this slowed translation, and was adaptive because it queued ribosomes to prevent collisions. Today, the translational speeds of different codons are known, and indeed rare codons are translated slowly. We re-examined this 5’ slow translation ‘ramp.’ We confirm that 5’ regions are slightly enriched for rare codons; in addition, they are depleted for downstream Start codons (which are fast), with both effects contributing to slow 5’ translation. However, we also find that the 5’ (and 3’) ends of yeast genes are poorly conserved in evolution, suggesting that they are unstable and turnover relatively rapidly. When a new 5’ end forms de novo, it is likely to include codons that would otherwise be rare. Because evolution has had a relatively short time to select against these codons, 5’ ends are typically slightly enriched for rare, slow codons. Opposite to the expectation of Tuller et al., we show by direct experiment that genes with slowly translated codons at the 5’ end are expressed relatively poorly, and that substituting faster synonymous codons improves expression. Direct experiment shows that slow codons do not prevent downstream ribosome collisions. Further informatic studies suggest that for natural genes, slow 5’ ends are correlated with poor gene expression, opposite to the expectation of Tuller et al. Thus, we conclude that slow 5’ translation is a ‘spandrel’--a non-adaptive consequence of something else, in this case, the turnover of 5’ ends in evolution, and it does not improve translation.