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Abstract The Multi-Stage Model of Carcinogenesis (MMC), developed in the 1950 s-70s,

postulated carcinogenesis as a Darwinian somatic selection process. The cellular organization of

tissues was then poorly understood, with almost nothing known about cancer drivers and stem

cells. The MMC paradigm was later confirmed, and cancer incidence was explained as a function of

mutation occurrence. However, the MMC has never been tested for its ability to account for the

discrepancies in the number of driver mutations and the organization of the stem cell

compartments underlying different cancers that still demonstrate nearly universal age-dependent

incidence patterns. Here we demonstrate by Monte Carlo modeling the impact of key somatic

evolutionary parameters on the MMC performance, revealing that two additional major

mechanisms, aging-dependent somatic selection and life history-dependent evolution of species-

specific tumor suppressor mechanisms, need to be incorporated into the MMC to make it capable

of generalizing cancer incidence across tissues and species.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.39950.001

Introduction
The theoretical foundations of the modern MMC originate from early observations by Fisher and

Hollomon (Fisher and Hollomon, 1951) and Nordling (Nordling, 1953) that the age distribution of

cancer death rates follows the sixth power of age. Nordling (Nordling, 1953) then formulated the

theory and postulated that cancer develops as a sequence of mutations that transform normal cells

into malignant cells. Later, Armitage and Doll (Armitage and Doll, 1954) supported this idea and

proposed a mathematical model to substantiate it. As nothing was known about stem cells and the

organization of tissue renewal at the time, Armitage and Doll’s model explained the probability of

sequential mutation accumulation from a single cell perspective, being unaware of the effects of

clonal selection on these probabilities. Armitage and Doll’s model, as they acknowledged, also

required that the rate of mutation accumulation is the same throughout lifespan, which was a reason-

able assumption at the time. Multiple studies have later challenged this assumption, showing

that ~50% of mutations accumulate before maturity (Dollé et al., 2000; Finette et al., 1994;

Giese et al., 2002; Horvath, 2013), although this early life pattern of mutation accumulation is not

universally observed (Welch et al., 2012; Blokzijl et al., 2016; Osorio et al., 2018). The subsequent

deceleration of mutation accumulation is now explained by the considerable slowdown of stem cell

division rate upon maturation (Bowie et al., 2006; DeGregori, 2013; Rozhok and DeGregori,
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2015; Sidorov et al., 2009). This departure from Armitage and Doll’s original assumptions has been

proposed to interfere with the MMC performance (DeGregori, 2013; Rozhok and DeGregori,

2015), but this has never been tested and is not considered by many cancer researchers.

None of the above-mentioned early founders of the theory had an understanding of the diversity

of cancer driver mutations at the time. Armitage and Doll therefore assumed a process driven by

approximately six sequentially acquired mutations, based on cancer incidence increasing as the sixth

power of age, and mentioned that many cancers behave analogously, with a supposedly similar

underlying process of carcinogenesis. Further research, however, demonstrated that cancers are

driven by very different mutations and require very different numbers of drivers, and yet these can-

cers still show very similar temporal distribution with age. Later, the theory was solidified by Peter

Nowell who developed the concept of clonal selection during carcinogenesis (Nowell, 1976) and

put the model within its current general framework. Some fundamental problems, however, were

already noticed by early theorists, when Fisher and Hollomon mentioned that childhood cancers

drastically deviate from the observed age-dependent pattern and are difficult to explain (Fisher and

Hollomon, 1951). An additional complication that early theorists were unaware of is the fact that dif-

ferent cancers originate from very different stem cell systems, with different lifetime stem cell num-

bers and cell division profiles. More recent models of age-dependent cancer incidence do operate

with the stem/progenitor cell paradigm of cancer origins (Calabrese and Shibata, 2010;

Gerstung and Beerenwinkel, 2010; Michor et al., 2004; Beerenwinkel et al., 2007;

McFarland et al., 2014). However, the analytical models used so far have not been tested for their

ability to explain age-dependent incidence for cancers driven by different numbers of mutations and

originating in stem cell pools of varying sizes. Some models are limited to the single-cell perspective

(Calabrese and Shibata, 2010) and do not account for the effect of clonal expansions in the succes-

sive accumulation of mutations. Other models are limited to modeling a typical (generic) cancer pro-

cess or to a single cancer. Models comparing and unifying the principles of cancer progression of

multiple cancer types and across multiple species are lacking. Critically, the current MMC lacks con-

sideration of fundamental evolutionary processes shaping the evolution of animal life history traits

(such as longevity, body size, and reproductive strategies) and, as such and despite multiple claims

otherwise, has so far not been placed within the framework of evolutionary theory.

While different cancers vary significantly in lifetime risk and total incidence, most cancers have

very similar temporal incidence dynamics, demonstrating approximately the same fractional

increases in incidence with age. Given the vastly different etiologies and tissues of origin, this tem-

poral incidence similarity poses a great problem to the current multi-stage model. Cancers driven by

one mutation, such as chronic myeloid leukemia (CML) in chronic phase, exhibit age-dependent

kinetics of incidence that are quite similar to cancers that require many more mutations, including

leukemias like acute myeloid leukemia (AML) and chronic lymphoblastic leukemia (CLL) thought to

also originate in hematopoietic stem cell (HSC) pools and colon cancers which originate in highly

fragmented stem cell pools (Figure 1A–C). Moreover, hematopoietic clones driven by a single driver

mutation, also thought to originate in HSC pools, have also been shown to increase with age, follow-

ing a very similar incidence increase as mutationally more complex cancers (Figure 1D). Solutions

have been proposed to explain the exponential age-dependent increase of single-mutation cancers

(Michor et al., 2006), however the tuning of the incidence of multiple cancers with various numbers

of driver mutations and originating from vastly different stem cell pools has not yet been explained.

This lack of explanation is further aggravated when another dimension is added – the incidence of

different cancers across different species. As in humans, cancer incidence closely follows the physio-

logical aging curve in other animals (Albuquerque et al., 2018). Incidence thus scales to lifespan,

but not to body size, a problem demonstrating significant deviations of cancer incidence from cell

numbers and known as Peto’s paradox (Peto et al., 1975).

We have previously proposed that explaining the above mentioned problems of the MMC

requires incorporation of evolutionary theory (DeGregori, 2013; Rozhok and DeGregori, 2015;

DeGregori, 2011; Rozhok and DeGregori, 2016). Somatic selection in tissues, just like selection in

populations, depends on tissue microenvironment. The long co-evolution of stem cells and tissue

regulatory processes should have adapted stem cells to the well-regulated microenvironments of a

fit body, which should make the normal cells highly fit and should promote stabilizing selection and

purifying selection against most phenotype-altering mutations. Aging disrupts tissue ecosystems,
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and like environmental change for organismal populations, should promote positive selection for

random mutants, including oncogenic mutations, that are adaptive to the new microenvironments.

In the present study, we employ the power of the Monte Carlo method to investigate the effect

of various factors, such as mutation rate, cell division profiles, the impact of somatic mutations on

somatic cell fitness, and the effect of aging on somatic selection and multi-stage carcinogenesis in

order to test the modern MMC model and determine if age-dependent alterations in selection are

necessary to explain cancer incidence patterns. We assume in this study that the character of age-

dependent clonal evolution and clonal expansions is tightly linked with age-dependent cancer

Figure 1. The incidence of some human cancers and clonal hematopoiesis. (A) The age distribution of the three most common types of leukemia: AML

– acute myeloid leukemia, CLL – chronic lymphocytic leukemia, CML – chronic myeloid leukemia (data of National Cancer Institute, www.seer.cancer.

gov). (B). The incidence of four other cancers (data of National Cancer Institute, www.seer.cancer.gov); the first number in the brackets indicates the

average number of predicted driver mutations in known cancer genes and the second is the average number of predicted driver mutations in all

protein coding genes according to Martincorena et al. (2017). The four cancers were chosen for their variability in the predicted numbers of driver

mutations. (C) The incidence of pooled cancers from panels A and B normalized by dividing each data point by the corresponding cancer’s maximum

incidence (removing scale and preserving shape). (D) Percent of the human population characterized by detected clonal hematopoiesis according to

Jaiswal et al. (2014); clonal hematopoiesis is detected as an increased variant allele frequency and is thought to be driven by a single mutation.

DOI: https://doi.org/10.7554/eLife.39950.002
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incidence, which has been shown for the hematopoietic system (McKerrell et al., 2015;

Genovese et al., 2014; Jaiswal et al., 2014; Xie et al., 2014). Our results demonstrate that the

MMC model holds generally and is robust against departures from mutation accumulation linearity

required by the original Armitage-Doll model. The MMC thus reproduces the general exponential

shape of cancer incidence and clonal dynamics regardless of whether stem cell divisions remain sta-

ble or change dramatically during body maturation. However, differences in the required number of

driver mutations, mutation rate and driver strength cause the MMC to fail to reproduce the

expected temporal correlation in the incidence of different cancers. The current MMC is also incapa-

ble of explaining the incidence of childhood leukemia. We demonstrate that differential aging-

dependent somatic selection improves the performance of the MMC and partially resolves these

problems. We propose additionally a theoretical model for how reproductive success and the evolu-

tion of life history traits shape the evolution of species-specific and cancer etiology-specific tumor

suppressor mechanisms. We argue that the latter mechanism should complement aging-dependent

alterations in somatic selection and resolve the observed problems in MMC performance. We gener-

alize the MMC, aging-dependent general shifts in tissue-level tumor suppressive processes, and the

evolution of group-specific cellular mechanisms into a theoretical framework that we propose to bet-

ter explain cancer incidence both across multiple cancer types and in multiple species.

Quick guide to model
Our model operates with a simulated pool of cells of varying dynamic or stable sizes competing for

niche space as one effective population. This design most closely replicates clonal processes in the

human HSC system of the bone marrow. Multiple studies demonstrate that HSCs are effectively one

population of cells that divide, differentiate and compete for a limited bone marrow niche space

(Abkowitz et al., 1996; Abkowitz et al., 2000; Catlin et al., 2011). Their spatial segregation in dif-

ferent bones is compensated by the HSC’s well-established proclivity to migrate (Wright et al.,

2001), making their competition to a large extent uniform across the body over time. HSCs repre-

sent a good population for modeling somatic evolution, as most leukemias are believed to initiate in

the HSC compartment (Fialkow et al., 1967; Jan et al., 2012; Kikushige et al., 2011;

Miyamoto et al., 2000; Shlush et al., 2014). The chart of modeled events is shown in Figure 2A

and represent a tree of possible scenarios and cell fate decisions during each update of the model.

Updates are ‘weekly’ and continue for a total of 100 years of the simulated lifespan. The size of the

simulated SC pool increases early in life and reaches its adult size by 18–20 years of age (Figure 2B

upper chart). Cell division rates change in a similar age-dependent manner (Figure 2B lower chart)

during body growth and maturation (Bowie et al., 2006; Sidorov et al., 2009), or division rates are

kept stable (for experimental purposes). While the parameters used were derived from estimates for

human HSC, relative changes in pool size and division rates should be similar for other tissues and

other animals, given the rapid increase in body size from fetus to adult.

We simulated clonal dynamics under two different paradigms: a) driver mutations have a constant

age-independent driving potential and always increase cellular somatic fitness, and b) the selective

advantage conferred to cells by driver mutations depends on age, being more positive late in life

and negative or neutral during the pre- and reproductive periods, as shown in Figure 2C. Each chart

in Figure 2C from top to bottom shows three ways of manipulating age-dependent shifting selec-

tion: (a) selection curve shift along the fitness effect axis, varying the relative strength of early nega-

tive and late positive selection for somatic cell mutants, as this ratio, if the modeled selection shift

exists in nature, is unknown; (b) varying the absolute general magnitude of selection, which is

unknown as well; (c) age distribution of the selection shift, emulating differences in evolved

lifespans.

We tracked the proportions of clones carrying different numbers of oncogenic mutations (1

through 4) under the influence of several primary factors:

(a) cell division speed and profile. HSC and other tissue stem cells are known to become much

more quiescent after body maturation (Bowie et al., 2006; Sidorov et al., 2009), resulting in 40–

50% of mutations accumulating before maturity (Dollé et al., 2000; Finette et al., 1994;

Giese et al., 2002; Horvath, 2013) and thus departing from the assumption of linear mutation accu-

mulation with age made by Armitage and Doll (Armitage and Doll, 1954) (but see also

Welch et al., 2012; Osorio et al., 2018; Blokzijl et al., 2016). It has been proposed that such a

departure should impact the timing of cancers (DeGregori, 2013; Rozhok and DeGregori, 2015).
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Figure 2. The simulation scheme and key parameters. (A) A tree of cell processes and cell fate decisions made by any given single cell within one

simulated model update. The indicated steps are used as guideposts in the Matlab code provided in Supplementary Materials. (B). Non-linear age-

dependent changes in the simulated SC pool size (upper chart, based on Abkowitz et al., 1996 and Abkowitz et al., 2002) and cell division rate

(lower chart, based on Bowie et al., 2006 and Sidorov et al., 2009); the initial number of cells is 300 in simulations where the adult pool size is 10,000

cells, and proportionally larger in simulations with larger adult pool sizes. (C). Age-dependent shift in selection (somatic fitness effects of somatic driver

mutations); somatic selection is explored within a range of general selection strengths (upper chart), a range of the ratio of the strength of early and

late-life selection, and a range age distribution of selection directionality and strength, assumed in the MMC-DS model to be a function of

physiological aging (reflecting evolved programs that determine longevity). The X-axis represents age from 0 to 100 years, as shown in panel B. The

Y-axis represents a range of driver mutation fitness effects from maximum negative (-Fmax) through 1 (fitness equal to non-mutant cells) to maximum

positive fitness (+Fmax). The top chart shows alteration in the general strength of selection (light blue:±Fmax = ±0.05%, dark blue:±Fmax = ±0.125%,

green:±Fmax = ±0.25%, red:±Fmax = ±0.5%). The middle chart shows the simulated range of the relative strength of early-life negative to late-life

positive selection (light blue: -Fmax/+Fmax = �0.5%/+0.5%, dark blue: -Fmax/+Fmax = �0.3%/+0.7%, green: -Fmax/+Fmax = �0.1%/+0.9%, red: -

Fmax/+Fmax = 0%/+1%). The bottom chart demonstrates age-dependent selection shifts imposed by different aging profiles (age of selection sign

switch in years: light blue – 10, dark blue – 30, green – 50, red – 70 years;±Fmax = ±0.5%).

DOI: https://doi.org/10.7554/eLife.39950.003

The following figure supplement is available for figure 2:

Figure supplement 1. An example of age-dependent clonal dynamics generated by the model.

DOI: https://doi.org/10.7554/eLife.39950.004
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We simulate both a dynamic cell division profile (resulting in more mutations occurring early in life)

and a stable cell division profile (which would lead to more linear mutation accumulation with age).

(b) a range of mutation rates, in order to test the MMC model behavior in tissues with presumably

differing mutation loads. Noteworthy, functional mutations in the model incorporate all somatically-

heritable phenotypic changes in the cell, not just nucleotide substitutions. Therefore, the simulated

mutation rate does not have to match the rates observed for DNA mutations.

(c)the effect of pool size in order to explore the MMC behavior relative to body mass increase (to

address Peto’s paradox). Estimates for the pool size for HSC range from about 10,000 to several

hundred thousand in humans (Abkowitz et al., 2002; Lee-Six et al., 2018). Notably, we are model-

ing pool sizes even more generally here, to encompass different animals;

(d) the strength (selective advantage) of driver mutations, which varies for different natural onco-

genic mutations. We simulate two different assumptions: (1) fixed fitness effects of mutations as uti-

lized in many modeling studies and by modern MMC theorists (Bozic et al., 2010; Tomasetti et al.,

2015; Vogelstein et al., 2013); and (2) age-dependent varying strength of selection acting on onco-

genic mutations, which is a theoretical extension of the MMC model with age-dependent Differential

Selection, so we designate it as MMC-DS. As we have argued earlier, one of the central paradigms

in evolutionary theory posits that selective advantage is not a fixed attribute of genetic change, but

is a dynamic property arising at the interface of the resulting phenotype and environment

(Rozhok and DeGregori, 2015). Tissue microenvironment, and thus the signaling that controls stem

cell fate decisions, change in an aging-dependent manner and thus should impact somatic selection

differentially as a function of physiological aging. Additional dynamical patterns of changing fitness

effects of mutations are certainly possible (such as reversal of positive selection), but those will not

be explored here. Cell intrinsic processes that lead to cell aging should also promote stronger posi-

tive selection processes by broadening the distribution of individual cell somatic fitness driven by

variations in the accumulation of cellular damage among cells. In combination with microenviron-

mental changes, these processes should lead to generally increased rates of directional selection in

large stem cell pools, such as for hematopoiesis.

Results

Cell division profiles
We first tested if early rapid cell division, unaccounted for by Armitage and Doll (Armitage and

Doll, 1954) and in most modern modeling studies, alters the pattern of somatic evolution. We

tested the MMC and MMC-DS behavior under a stable cell division rate over lifetime and one that

slows down post-maturation as shown in Figure 2B (lower chart). The dynamics of clones resulting

from accumulating a series of driver mutations can be seen in Figure 3A. The chart shows the gen-

eral age-dependent size of the total simulated cell pool (grey curve), as well as the dynamics of

clones (in absolute cell numbers), containing 1, 2, 3 or 4 somatic driver mutations (colored lines). As

we argue in the Materials and methods Model architecture section, the exact size of the adult HSC

pool is not critical for the model, as long as the pool is large enough to minimize drift. Each next

mutation either improves the affected cell’s somatic fitness (the standard MMC assumption) or has a

varied age-dependent effect on cellular somatic fitness as shown in Figure 2C (the MMC-DS

assumption). Plots in Figure 3A show simulation results for clones containing 1, 2, 3 or four driver

mutations, plotting clonal representation independent of subsequent driver mutation accumulation

(e.g. clonal expansions with two drivers will include sub-clones with additional driver events). The

clonal dynamics presented here and subsequently are averaged dynamics of 50 repeated runs. An

example showing the stochasticity and dynamics of all the 50 runs is shown in Figure 2—figure sup-

plement 1. The results shown in Figure 3A demonstrate that non-linear changes in cell division rates

early in life do not have a significant influence on the model’s capability to replicate an exponential

succession of clones driven by accumulating a series of driver mutations. Figure 3A also shows that

clones with different numbers of drivers have different timing of expansions. We can therefore con-

clude that even with rapidly decelerating stem cell division rates causing early accumulation of muta-

tions, under select assumptions for numbers of required driver mutations and mutation rate, the

current MMC model is still capable of replicating higher late-life rates of somatic evolution, perhaps

due to the waiting time necessary for initiated cells to expand into larger clones. MMC-DS also can
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Figure 3. The effect of cell division profile, adult cell division rate and mutation rate on clonal dynamics of cells carrying 1, 2, 3 or four somatic driver

mutations. Y-axis in all charts ranges zero to 10,000 cells (linear scale); X-axis in all charts ranges zero to 100 years of age (linear scale).(A). The effect of

dynamic (dark blue; the curve of cell division rates as shown in Figure 2B, lower chart) versus stable (light blue; cells division rate is stable at one

division ~20 weeks throughout lifespan) cell division profiles. Grey curve in all charts of this type represents the size of the total SC pool. Other

Figure 3 continued on next page
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reproduce late-life increases in somatic evolution rates due to the stronger late-life positive selec-

tion. The cell division profile, therefore, does not discriminate between MMC-DS and the standard

MMC, suggesting that both models, so far, appear plausible. Figure 3B also shows that the effects

of a range of adult cell division rates within the dynamic cell division profile is rather modest. As with

age-dependent cell division profiles, the noticeable difference is that the MMC-DS model delays

high rates of clonal evolution until the later portion of the simulated lifespan.

Mutation rate
Different tissues have different exposures to external factors. For example, the digestive system and

lungs are exposed to a variety of potential mutagens, while the skin is subjected to ultraviolet radia-

tion. Whether counted on a per cell division basis or as a function of time, effective mutation rates

should differ for different tissues. Rates also vary for different animals (Lynch, 2010). Higher muta-

tion rates should accelerate somatic evolution by increasing phenotypic variability. We therefore fur-

ther explored the effect of mutation rate, which is shown in Figure 3C. Expectedly, both MMC and

MMC-DS are sensitive to mutation rate. However, we observe clear differences in the predictions by

MMC and MMC-DS. The MMC-DS model, unlike MMC, prevents all clones from expanding through

youth (the period of likely reproduction). As in the tests of cell division rate effects (Figure 3A,B),

both models are sensitive to the number of driver mutations, with more drivers requiring more time

to accumulate and expand the recipient clones. Still, the number of drivers has much less of an effect

within the MMC-DS model, with expansion kinetics delayed until and compressed in old age.

Fitness advantage conferred by driver mutations
For simplicity and as a demonstration of the basic principle, we set the fitness advantage conferred

to cells by driver mutations to be the same for all drivers. Clones having more mutations are thus

more aggressive in their expansions. This assumption reasonably replicates the basic architecture of

the modern MMC. However, we know that real driver mutations vary considerably in their effects on

cells. For example, the translocation generating BCR-ABL can drive a myeloproliferative disease

(CML) apparently without other driver mutations (Mullighan et al., 2008). Other mutations require

many cooperating events to make the recipient clone somatically aggressive (Martincorena et al.,

2017). We therefore further tested the effect of different strengths of driver mutations, shown in

Figure 4A. As intuitively anticipated, a greater fitness advantage accelerates somatic evolution rates

in both models (Figure 4A; red is the greatest fitness advantage). However, as with mutation rate,

MMC-DS, unlike MMC, delays all clonal expansions until old age (independent of driver mutation

numbers). In a sense, the fitness advantage conferred by driver mutations acts on somatic evolution

similarly to mutation rate – higher values accelerate the emergence and expansion of clones. While

MMC has only one parameter for mutation fitness effects, MMC-DS has two: a) a general effect that

impacts both the strength of negative and positive selection, and b) the ratio of negative to positive

selection shown in Figure 4A as MMC-DS(a) and MMC-DS(b), correspondingly. These two parame-

ters are convenient ways to test the different aspects of aging-dependent selection shifts. The

Figure 3 continued

parameters as listed in Standard parameter sets, Supplementary Materials. (B). The effect of adult cell division rate under the dynamic age-dependent

cell division profile (as shown in Figure 2B, lower chart). Color coding: light blue – one division per cell in ~70, dark blue – one in ~60, green – one

in ~50, and red – one division ~40 weeks. Other parameters as listed in Standard parameter sets, Supplementary Materials. (C) The effect of mutation

rate (MR). Color coding: light blue - MR = 10�2, dark blue – MR = 10�3, green – MR = 10�4, and red – MR = 10�5. Other parameters as listed in

Standard parameter sets, Supplementary Materials. Notice that MR is not the usually understood mutation rate per cell division per base pair, but is the

probability of acquiring (per cell division) any genetic/epigenetic change that confers the incipient cell a change in somatic fitness.

DOI: https://doi.org/10.7554/eLife.39950.005

The following figure supplements are available for figure 3:

Figure supplement 1. Results of statistical comparisons related to testing the effect of dynamic age-dependent cell division profiles.

DOI: https://doi.org/10.7554/eLife.39950.006

Figure supplement 2. Results of statistical comparisons related to testing the effect of adult cell division rates.

DOI: https://doi.org/10.7554/eLife.39950.007

Figure supplement 3. Results of statistical comparisons related to testing the effect of mutation rates.

DOI: https://doi.org/10.7554/eLife.39950.008
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Figure 4. The influence of mutation somatic fitness effects, pool size, and physiological aging. Y-axis in all charts except panel B ranges zero to 10,000

cells (linear scale); X-axis in all charts ranges zero to 100 years of age (linear scale).(A). The effect of alterations in somatic cell fitness conferred by driver

mutations. Color coding for MMC: light blue – fitness advantage (FA) =+0.1%, dark blue – FA =+0.25%, green – FA =+0.5%, and red – FA =+1%.

MMC-DS(a) explores a range of the general strength of differential selection corresponding to and color-matched to Figure 2C, upper chart (absolute

Figure 4 continued on next page
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MMC-DS(b) modeling (Figure 4A) demonstrates that it is not necessary for early life selection acting

on somatic mutants to be negative. Even in the absence of negative selection (red lines, the early

life fitness value is the same as for non-mutant cells), the age-dependent character of clonal expan-

sions predicted by MMC-DS holds. This result demonstrates the general idea that whatever the

effects of driver mutations early and late in life, MMC-DS demonstrates clonal expansions approxi-

mating known cancer incidence if the driver potential of mutations early in life is sufficiently reduced

relative to old ages.

Pool size
One of the most interesting challenges to the current MMC discussed in a number of papers is the

question why larger animals do not suffer a proportionally higher risk of cancer, known as Peto’s par-

adox (Dang, 2015; Ducasse et al., 2015; Tollis et al., 2017). Larger animals, all other traits equal,

clearly present a larger target size (cell division numbers) for cancer mutations, increasing the likeli-

hood of their occurrence. However, incipient oncogenic cells and clones must compete with a larger

pool of cells in order to develop into a life-threatening tumor (a tumor of 1 cm in diameter will likely

kill a mouse, while hardly posing a tangible threat for a whale). Absolute cancer cell numbers, inde-

pendent of the proportion, are also important, as the number defines the likelihood of cancer pro-

gression through successively accumulated mutations, and thus it defines the likelihood of

developing advanced cancers. However, the ultimate mortality risk also depends on the proportion

of such cells relative to the affected tissue. Thus, the higher opportunity for mutations to occur in

larger bodies is counteracted by the longer path to a life-threatening cancer due to increased sup-

pression and larger tolerance of tumors exerted by larger tissues. We therefore further tested if

altering the simulated cell pool size will affect the proportions of mutant clones relative to pool size.

Figure 4B shows that the mentioned factors effectively counteract each other – increasing pool size

does not increase the relative presence of mutant clones in it, and this relationship largely holds for

both MMC and MMC-DS. However, MMC appears more sensitive to stem cell pool size (which

should increase for larger body size). This test demonstrates the effect of two opposing forces acting

on the frequencies of somatic mutant clones. A larger body provides more cells and cell divisions,

and thus a greater target for mutations. However, a mutant malignant cell will need a longer time

and a larger expansion to become a threat. Under the MMC-DS model, the process is further

affected by the fact that mutants emerging early in life are universally (mostly) purged from the pool.

Aging curve
The aging curve as a factor affecting the rates of somatic evolution is a trait unique to the MMC-DS

paradigm. We tested the response of clonal dynamics to aging profiles. This was done by shifting

the curve that determines age-dependent selection acting on mutation clones as shown in

Figure 2C, lower chart. Such shifts effectively imitate different lifespans under the assumption that

age-dependent somatic selection mirrors the aging curve (Rozhok and DeGregori, 2016). This can

Figure 4 continued

selection strength values are described in Figure 2C). MMC-DS(b) explores a range of early to late life selection strength ratios corresponding and

color-matched to Figure 2C, middle chart (absolute values are described in Figure 2C). Other parameters as listed in Standard parameter sets,

Supplementary Materials. (B). The effect of adult pool (AP) size. Color coding: light blue – AP = 10,000 cells, dark blue – AP = 25,000 cells, green –

AP = 50,000 cells, and red – AP = 100,000 cells. Starting pool size in all conditions is 300 cells. The Y-axis is relative and represents percent of AP

(AP = 100%, maximum size delineated by the black curve). Other parameters as listed in Standard parameter sets, Supplementary Materials. (C). The

effects of physiological aging in the MMC-DS model. The corresponding and color matched aging curve profiles (aging mirrors the shifts in somatic

selection in MMC-DS) are shown in Figure 2C, lower chart. Other parameters as listed in Standard parameter sets, Supplementary Materials.

DOI: https://doi.org/10.7554/eLife.39950.009

The following figure supplements are available for figure 4:

Figure supplement 1. Results of statistical comparisons related to testing the effect of somatic fitness effects conferred by driver mutations.

DOI: https://doi.org/10.7554/eLife.39950.010

Figure supplement 2. Results of statistical comparisons related to testing the effect of adult cell pool size.

DOI: https://doi.org/10.7554/eLife.39950.011

Figure supplement 3. Results of statistical comparisons related to testing the effect of physiological aging curve (a proxy for lifespan).

DOI: https://doi.org/10.7554/eLife.39950.012
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be extrapolated either on the lifespan differences between various animal species or various life-

styles or genetic factors among humans. Figure 4C shows, as expected, that earlier aging that pro-

duces earlier onset of positive selection on mutant cells leads to corresponding earlier expansions of

mutant clones accumulating a series of driver mutations.

Early life clonal expansions
As can be seen in results presented in Figure 3 and Figure 4, especially for the dynamics of clones

with one driver mutation, the MMC-DS model appears to differ from MMC in clonal dynamics very

early in the simulated lifespan, with the early appearance and disappearance of driver-containing

clones in MMC-DS. We therefore further simulated clonal evolution with a larger sample of simu-

lated individual lives. Figure 5A shows a total of 25,000 individual runs (not averaged as before)

under the MMC assumption. All clones demonstrate uninterrupted increases in clonal size until peak-

ing. However, the dynamics of clones under the MMC-DS assumptions notably differ. Figure 5B

shows that under the MMC-DS assumption of shifting selection, many clones demonstrate a minor

peak very early in life, but are later suppressed until the second half of the simulated lifespan. This

difference holds under a wide range of other parameters, apparently because of the negative selec-

tion that is needed to suppress mutant clones during the first half of lifespan. The reason why very

early clones are capable of forming small peaks is the larger presence of random drift imposed by

the smaller pool size relative to the adult pool, interacting with faster cell division rates (generating

more mutations). Smaller population sizes promote drift and weaken selection. If selection acting on

driver mutations is always positive, such an early peak is unlikely to form. As we have previously

shown (Rozhok et al., 2016), such clonal dynamics in HSC pools might provide an explanation for

the elevated rates of leukemia in early childhood. As can be seen in Figure 5B, even clones that

have accumulated four drivers show such a peak, with such clones becoming progressively fewer

and smaller as the number of accumulated drivers increases. Childhood leukemias are quite rare rel-

ative to late-life cancers. However, these results show that replication of the full pattern of leukemia

incidence requires the MMC-DS model assumption of differential selection, whereby early portions

of lifespan are characterized by a general suppression of somatic evolution by means of purifying

selection.

Discussion
Our results indicate that the general principle of successive cell transformations proposed by Nor-

dling, Armitage and Doll (Nordling, 1953; Armitage and Doll, 1954) and later developed into the

modern Multi-Stage Model of Carcinogenesis (MMC) recapitulates the late-life exponential increases

in the rates of somatic evolution regardless of the non-linear pre-maturity shifts in stem cell division

rates. The model, however, requires the incorporation of differential aging-dependent somatic selec-

tion acting on somatic cell variants, a principle earlier proposed as a key postulate of the Adaptive

Oncogenesis model (DeGregori, 2011), in order to universally postpone increased rates of somatic

evolution to late ages, independent of the number of driver mutations and the magnitude of the

somatic selective value of these mutations. This principle of aging-dependent somatic selection can

potentially explain the scaling of increased cancer incidence to the species-specific lifespan, such

that most cancers occur after 1.5 years for mice and 50 years for humans.

The current MMC does not explain a very puzzling phenomenon – that most cancers show strik-

ingly similar late life patterns of incidence, despite the fact that these cancers require very different

numbers of driver mutations and originate in very different sized/organized stem cell pools (whether

for different tissues or in different species). Previous attempts to explain the age-dependence of

multi-stage carcinogenesis have mostly used analytical modeling, with fixed effects of mutations on

cellular fitness (Calabrese and Shibata, 2010; Gerstung and Beerenwinkel, 2010; Michor et al.,

2004; Beerenwinkel et al., 2007; McFarland et al., 2014). However, fitness is a dynamic phenome-

non that arises at the interface of phenotype and environment and is determined by the mode of

selection acting on a phenotype, the latter being typically defined by environment (Wade and

Kalisz, 1990). While with analytical modeling parameters can be derived that fit the late-life curve

for a particular cancer, these studies do not explain what evolutionary process/mechanism fine-tuned

the occurrence of multiple cancers of vastly different etiology and harboring different numbers and

spectra of mutations.
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The MMC-DS model also demonstrates early life increases in the rates of somatic evolution, mir-

roring the risk of early childhood cancers, which does not arise from the standard MMC model. As

we have argued before (Rozhok et al., 2016), these early-life processes should be driven by drift

due to the small initial pool of stem cells in a fetus and right after birth. Such domination of drift has

also been shown experimentally for tissues in which stem cell compartments are fragmented into

Figure 5. Clonal dynamics promoted by somatic driver mutations in early developing HSC pools. (A) The MMC model demonstrates an uninterrupted

increase in mutant clone frequencies over time. Other parameters as listed in Standard parameter set MMC, Standard parameter sets, Supplementary

Materials. (B). The MMC-DS model demonstrates early peak frequencies of mutant clones which are later suppressed by purifying selection acting

throughout the early half of the simulated lifespan. Other parameters as listed in Standard parameter set MMC-DS, Standard parameter sets,

Supplementary Materials.

DOI: https://doi.org/10.7554/eLife.39950.013
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small local populations (Vermeulen et al., 2013). Later suppression of somatic evolution until older

ages can be explained by purifying somatic selection that acts in larger adult stem cell pools during

reproductive periods of life-spans. Consistent with this logic, early childhood cancers mostly com-

prise malignancies originating in large stem cell systems, such as hematopoietic, while childhood car-

cinomas, which originate in the small fragmented epithelial stem cell compartments where drift

dominates, are rare (www.seer.cancer.gov) (Rozhok et al., 2016). Unlike large pool SC systems, the

strong presence of drift should limit positive somatic selection in fragmented epithelial SC compart-

ments throughout lifespan. As modeled in the MMC-DS setup, oncogenic mutations that are nega-

tively selected in youth can be positively selected late in life, most likely due to alterations in

microenvironments which alter the adaptive value of mutations. Indeed, previous studies have dem-

onstrated how the somatic fitness effects of oncogenic mutations can be dramatically affected by

the age of the host (Henry et al., 2010; Henry et al., 2015; Parikh et al., 2018; Vas et al., 2012).

Nevertheless, the key question that arises from our results and within the general MMC model is

what mechanism underlies the temporal coincidence of the increased cancer rates among cancers of

vastly different etiology driven by different driver mutations and different numbers of driver muta-

tions? The general MMC-DS architecture resolves the problem of early postnatal elevated rates of

somatic evolution and the scaling of somatic evolution rates to lifespan, with increased rates of

somatic evolution delayed until late in life. However, the general MMC-DS principle is not sufficient

to overcome the problem of different numbers of driver mutations for different cancers with similar

age-dependent patterns. For example, and as shown in Figure 3A, the incidence curve for a 1-driver

cancer is significantly earlier than for a 4-driver cancer, while the same is not observed for actual can-

cer incidence curves (Figure 1C). While it is difficult to imagine what evolutionary forces could have

‘tuned’ the incidence of vastly discrepant cancers within the standard MMC paradigm, we propose a

theoretical generalization to explain this phenomenon, which integrates the current MMC theory,

the principle of aging-dependent shifts in somatic selection, and the group-specific evolution of cel-

lular machinery that depends on the evolution of life history traits. This generalized theory can also

explain the early childhood cancer incidence peaks and Peto’s paradox. We postulate that the fol-

lowing principles should operate in shaping the general character of somatic evolution in order to

resolve the current problems of the MMC:

The principle of a mutual feedback between germline and somatic
selection
Based on the above presented results, we propose that somatic selection in the body and germline

selection in a population are directly linked with mutual feedback acting on each other through

reproductive success as shown in Figure 6. Somatic selection, as the main determinant of somatic

evolution in a tissue, impacts age-dependent tissue and individual fitness, and thus provides the fuel

for germline selection operating on individual fitness. In this way, the effect of somatic mutations on

cell somatic fitness is subject to germline selection based on an individual’s fitness/health risks con-

ferred by particular somatic mutations. Reproductive success provides a quantitative effect whereby

the strength and directionality of germline selection acting on particular somatic cell alterations is

determined by the overall reduction in reproductive success of an individual. As demonstrated in

Figure 6, such cost diminishes with age proportionally to the likelihood that an individual of a partic-

ular species will die at a specific age of causes less unrelated to health (such as predation). There-

fore, germline selection acts on the effects of somatic mutations on cellular physiology depending

on a species-specific general age-dependent mortality profile.

Accordingly, the somatic fitness effects of different mutations should differ within a species. Prin-

ciple #1 can help explain the similar age-dependent incidence curves shown in Figure 1, despite the

fact that these cancers originate in very different sized stem cell pools and require very different

numbers of driver mutations. For example, in the MMC-DS(b) setup in Figure 4A, the expansion of

a 1-mutation clone (light blue curve in the leftmost chart) will approximate the expansion of a 4-

mutation clone (green curve in the rightmost chart), if germline selection ‘equalizes’ the effect of the

single mutation in the first case and the combined effects of the four mutations in the second based

on their overall health risk, following the logic presented in Figure 6. Basically, germline selection

acting to determine the fitness effects of each somatic mutations functions as the ‘invisible hand’

that pushes cancer risk to older ages where reproductive success is low.
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Figure 6. The principle proposed to underlie fundamental properties of somatic evolution in animal bodies. (A) The effect of somatic evolution on

germline evolution. Any particular somatic mutation can range on a scale from no health risk to a threat of early death. Green circles represent

individual animals; red, yellow and blue are somatic mutations. The red mutation confers high risk of carcinogenesis causing early death (dashed line

represents lethal threshold from somatic evolution). The red mutation thus has a profound effect on overall individual reproductive success. The yellow

and blue somatic mutations need to cooperate to cause a lethal effect, which delays somatic evolution driven by them, as shown by our modeling

results and earlier postulated by Armitage and Doll (Armitage and Doll, 1954). Therefore, the yellow and blue mutations have lower impact on

reproductive success. As reproductive success is the universal equalizer impacting organismal fitness, germline selection acts to buffer the cellular

effects of the red mutation differently than it acts on the effects of the yellow and blue mutation. (B). As a result of germline selection, based on the

impact of each mutation on reproductive success, stronger tumor suppressive mechanisms evolve to limit the negative impacts of the red mutation.

This effect is quantitative in that the differential amount of germline selection acting on a particular mutation depends on the degree of decrease in the

Figure 6 continued on next page
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The evolution of life history traits impacts the feedback between
germline and somatic selection
Germline selection acts on individual fitness during the period of population-specific likely survival in

nature. Based on the species’ ecological niche, such selection thus governs the evolution of longev-

ity, resulting in a species-specific aging curve (Medawar, 1952;

Hamilton, 1966; Williams, 1957; Tuljapurkar et al., 2007). It follows then that individual size, lon-

gevity and physiological aging profile determine the impact somatic mutations have on germline

selection. For example, the contribution to mortality and individual fitness of an oncogenic mutation

that requires 10 years to develop into a cancer will differ for two species with all traits equal, but dif-

ferent longevity. If a species does not survive in nature beyond 10 years for other reasons (such as

predation), such a mutation will not impact germline selection and thus, following principle #1,

germline selection will not act on cell fitness effects of such a mutation. Similarly, animals that

develop defensive mechanisms against their major causes of mortality, such as increasing body mass

to withstand predation, and extending thus their longevity, simultaneously increase the impact of

somatic cell alterations through later ages on their overall reproductive success. For example, the

risk of dying of cancer at the age of 10 for a cat will have much lower impact on the overall repro-

ductive success (of an affected individual relative to others) than such a risk at age 10 for an ele-

phant. In other words, the relative contribution of external mortality risks and health-related risks to

the overall reduction in reproductive success at a given chronological age is different for species

with different body size and longevity.

Somatic fitness effects of similar mutations should differ in different
species
Following principles #1 and #2, analogous cell phenotype-altering mutations should have different

effects on cell somatic fitness in species with different life history traits as a result of evolution driven

by different germline selective pressures on the effects of such somatic mutations on cell physiology.

For example, an analogous cancer driver mutation in a mouse and a human should have different

effects on the somatic cell fitness of the incipient cells and thus different cancer driving potential.

Experimental support of this idea already exists, as freshly isolated mouse fibroblasts, for example,

can be transformed into cancer-like cells in culture with only two oncogenic mutational hits, while

human cells require up to six (Rangarajan et al., 2004).

Embryonic and early postembryonic development provides a somatic
selection-independent ‘window of opportunity’ for increased rates of
somatic evolution driven by somatic drift
Based on the results shown in Figure 5 and earlier published results (Rozhok et al., 2016;

Vermeulen et al., 2013), even in the presence of purifying selection against somatic mutant cells, a

small self-renewing cell compartment should impose somatic drift that largely buffers selection. This

principle can help explain the incidence spikes of childhood cancers. However, actual cancer devel-

opment in children can be promoted by other factors as well. The initially drift-driven expansions

could later overcome the uniformly negative selection acting on driver mutations in youth (e.g. if the

third driver becomes positively selected in the presence of the first two drivers) or under the impact

of other factors, such as inflammation, that might lead to positive selection of drivers

(Greaves, 2006). However, it should be stressed that the fact that the incidence of such cancers

dwindles into early adulthood can be explained by purifying selection acting against somatic cell

mutants.

Figure 6 continued

overall reproductive success conferred by each mutation’s health risk. The resulting tumor suppression mechanisms delay cancer risk. However, such a

delay cannot extend significantly beyond the ages when most of the population would be dead for other reasons, as the cost of developing tumor

suppressor mechanisms is no longer compensated by the benefit of higher overall reproductive success at these later ages. Such a model implies that

germline selection for tumor suppressive mechanisms is somatic mutation-specific and species-specific.

DOI: https://doi.org/10.7554/eLife.39950.014
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Based on these principles and the mechanisms shown in Figure 6, we therefore argue that aging-

dependent differential selection regulated at the tissue level and being likely a mechanism common

across animal species should work in concert with additional inherited mechanisms of tumor suppres-

sion that are shaped by the evolution of life history traits of a particular species. These latter mecha-

nisms may be similar in different animal groups, based on similarities in the general architecture of

cell regulatory networks. However, significant differences that are specific to particular animal

groups should not be surprising from this standpoint, as evolution is also a game of chance and

opportunity. Evidence of such unique mechanisms already exists for multiple species

(Seluanov et al., 2018). A notable example is a specific type of hyaluronic acid in the naked mole

rat that is believed to underlie the species’ exceptional cancer protection capabilities (Tian et al.,

2013). Similarly, alterations in p53 genes in elephants represent a potential group-specific mecha-

nism to delay tumorigenesis till older ages (Abegglen et al., 2015; Sulak et al., 2016). Based on the

principle shown in Figure 6, tumor suppressive mechanisms tailored to limit the impact of classes of

cancer driver mutations (or particular pathways altered in cancers) could be either species-specific or

common across mammals or even animals. The general aging-dependent shift in somatic selection

and the evolved group-specific pathway-tailored tumor suppressor mechanisms can be viewed as

essentially two different dimensions of which the overall mechanism regulating tumor suppression in

animals is composed.

Alongside childhood cancers, a number of cancers deviate from the general late-life pattern and

occur at earlier ages. These cancers tend to be associated with infections (e.g. Burkitt’s lymphoma)

(Grywalska and Rolinski, 2015), to be very rare (e.g. testicular cancers; www.seer.cancer.gov), and/

or associated with modern lifestyles and conditions (e.g. breast cancer) (Layde et al., 1989;

Hochberg and Noble, 2017; Giraudeau et al., 2018). The incidence of cancers of such etiologies is

largely consistent with the proposed principles outlined above in the sense that their causes repre-

sent factors a) for which human fitness is in conflict with that of a pathogen, b) where selection is

weakened by the rare manifestation of the disease, and c) where the evolution of tumor suppression

did not have enough time to counteract modern changes in lifestyle, respectively. The evolution of

species/tissue/mutation-specific mechanisms has also, perhaps, encountered some restrictions char-

acteristic of cell types or cellular pathways in terms of the ability of evolution to prevent

carcinogenesis.

In conclusion, based on the proposed revision to MMC theory, alongside some general tumor

suppressive mechanisms, we should expect a multitude of species/group-specific cancer suppression

strategies developed by different animal species. The evolution of species-specific mechanisms

should foremost be driven by the evolution of species-specific longevity, body size and other life his-

tory traits that determine the relative contribution of health-related versus health-unrelated causes

of mortality to the overall reproductive success as a function of chronological age. In this way, the

overall age-dependent species-specific mortality curve impacts the contribution of somatic evolution

and cancer to the overall reduction in reproductive success and thus determines the specific mode

and strength of germline selection acting on the effects of particular somatic mutations on cellular

physiology. It should be mentioned also that the curve of physiological aging, by imposing body

frailty, is another major health-related contributor to age-dependent reduction in overall reproduc-

tive success. And like lethal cancers arising from somatic evolution, the species-specific physiological

decline profile is forged by the same evolutionary force – the overall species-specific age-dependent

mortality. It is therefore not surprising that increased cancer incidence in humans and captive animals

mirrors the species-specific aging profile and occurs after the ages most individuals of the species

survive in the wild (Albuquerque et al., 2018), as both processes are shaped largely by the same

germline selection forces.

We therefore propose that the above-described theoretical paradigm explains how evolution at

the population level shapes the impact of each specific driver mutation on particular tissues of partic-

ular species in order to explain the current body of knowledge on cancer incidence. We argue that

differential aging-dependent somatic selection in cooperation with the group-specific evolution of

particular genes, as well as cellular machinery in general, that depends on the evolution of life history

traits are sufficient to generalize the process of carcinogenesis such that even phenomena such as

early peaks in childhood cancer incidence of some cancers, Peto’s paradox, and the universal life-

span-dependent pattern of cancer incidence can be explained within one theoretical paradigm that

places the theory of somatic evolution within the framework of general evolutionary theory.
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Materials and methods

Software
All simulations were performed in the Matlab environment (MathWorks Inc., Natick, Massachusetts).

We built a Monte Carlo simulation model that operates with a pool of simulated cells recapitulating

the dynamics of stem cells (SC) in a competing self-renewing SC compartment.

Model architecture
The model is based on the previously published general model of the human HSC dynamics

(Rozhok et al., 2016; Rozhok et al., 2014). The simulated cells form one large competing popula-

tion within a limited SC niche space, which has been argued as a suitable model for HSCs shown to

migrate extensively and compete for bone marrow SC niches throughout the body (Abkowitz et al.,

1996; Abkowitz et al., 2000; Wright et al., 2001). The simulation starts with a small pool of 300

cells which grows by the simulated age of 18–20 years up to 10,000 cells, following estimates by

Catlin et al. (2011) and Abkowitz et al. (2002). Estimates for the number of human HSCs range

within ~104 to 3 � 105, however our model investigated relative clonal dynamics of somatic mutant

under different assumptions, therefore the exact adult size of the simulated pool is not critically

important. The beginning pool of 300 cells has also been argued for early postnatal human HSC

(Abkowitz et al., 1996; Abkowitz et al., 2002) (Figure 2B, upper chart). It is presently unknown

whether this size is an accurate estimate. Nevertheless, we reasoned that in total, the human HSC

pool does start from a small number of cells, even if the 300 estimate occurs pre-natally, leaving the

exact number largely irrelevant for the purpose of the present study. The general principle, however,

was held in the model that the HSC pool increases dramatically during body growth and maturation.

The simulation was updated each simulated ‘week’ (the basic model update step) and lasted through

5200 updates, simulating thus a lifespan of 100 years.

We simulated two principal age-dependent cell division profiles
The first one kept the average cell division rate stable throughout the entire simulation at ~1 division

in 20 weeks. This was done in order to test the assumptions made by Armitage and Doll

(Armitage and Doll, 1954) at the time when the MMC model was created and data on stem cell

behavior were not available. The second regimen in our simulation reflects modern data on HSC divi-

sion rates showing a dramatic slowdown of HSC division activity by maturity (Bowie et al., 2006;

Sidorov et al., 2009) (Figure 2B, lower chart), supported also by data demonstrating a similar slow-

down in the accumulation of epigenetic change (Horvath, 2013). Following this paradigm, the aver-

age simulated cell division rates started from ~1 division in 3 weeks and reached the adult rate of ~1

division in 40 weeks (Catlin et al., 2011). We tested the effect of adult cell division rate in a wider

range, from ~1 division in 40 weeks to ~1 in 70 weeks in order to explore other published estimates

for HSC. The two regimens were explored in order investigate if such a departure from the initial

MMC assumption of linear accumulation of damage can influence the modeled HSC clonal behavior.

Cell divisions occurred stochastically by comparing each cell’s time past the last division to the aver-

age division rate at any specific simulated age, following the general Gillespie algorithm (Gilles-

pie, 1977), whereby the time past division of a specific cell was compared to the time generated

from a normal distribution with the mean equal to the average cell division rate specific to the cur-

rent simulated age and a standard deviation equal to mean/8, as previously argued (Rozhok et al.,

2014).

Initial somatic fitness for all cells was set to 1. After each cell division, a driver mutation could

occur based on a probability referred to here as the phenotypic mutation rate. The phenotypic

mutation rate is higher than typically expected mutation rates for DNA base pair substitutions, as it

integrates all possible changes (including epigenetic) in a cell that can endow the cell with a signifi-

cant heritable alteration in somatic fitness. In the traditional MMC setup, such a driver mutation con-

fers the recipient cell a certain constant fitness advantage over the normal cells. Each successive

driver mutation increases fitness further, following the classic MMC paradigm (Bozic et al., 2010;

Tomasetti et al., 2015). Such fitness alterations are age-independent. For simplicity, we assigned

each driver mutation the same driving potential. An alternative model for the effect of somatic driver

mutations was based on the principle of altering somatic selection, stating that the somatic fitness
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value of somatic driver mutations depends on physiological aging (DeGregori, 2013; Rozhok and

DeGregori, 2015). Within the latter paradigm, driver mutations are negatively selected early in life

and positively selected during post-reproductive ages. This extension of MMC, designated as MMC-

DS, provides that the somatic fitness effects of somatic driver mutations dynamically change over

lifetime, as shown in Figure 2C, as a function of physiological aging. We tracked cell clones contain-

ing 1 through four driver mutations in order to investigate the relative timing and age-dependent

clonal size curves of clones that require a certain minimum number of drivers. As such, the 1-

through 4-mutation clones shown in the Results represent cell counts for clones that contain, respec-

tively, 1 + through 4 + driver mutations. Mutation effects are defined by the equation (current fit-

ness) = (initial fitness +mutation fitness effect)̂(number of mutations). Therefore, the combined effect

of multiple phenotype altering mutations is synergistic rather than additive. The fitness of cells that

did not acquire somatic driver mutations was left unaltered.

After division and mutation, all cells were subjected (at each ‘weekly’ simulated step) to a bino-

mial trial in which the probability of each cell’s survival in the simulated self-renewing pool depended

on the current pool capacity, the number of competing cells after all divisions, and the cell’s somatic

fitness relative to other cells. In this way, our modeled somatic fitness parameter reflected what it is

in natural stem cells - the ability of a cell to remain and proliferate in the self-renewing tissue com-

partment as opposed to leaving it by committing to differentiation, senescing or dying. A graphic

representation of all the processes during one model update is shown in Figure 2A. As a result of

the simulated cell division, mutation and competition, we observed the age-dependent changes in

the representation of different mutant clones in the simulated pool. The exact algorithm of the simu-

lation can be seen in Supplementary Materials section Model Matlab Code.

Definitions
Hereby we will use the term somatic evolution as changes in the clonal composition of self-renewing

tissue cell compartments of the body during an individual’s lifespan. Somatic selection is defined as

a process of differential maintenance of particular cell phenotypes within the self-renewing cell com-

partment of a tissue based on the particular somatic fitness. Somatic drift will be understood as the

process of differential survival and proliferation of particular cell phenotypes driven by stochastic

processes independent of cell somatic fitness in the self-renewing cell compartment of a tissue. Cel-

lular somatic fitness is defined as the ability of a particular cell phenotype to survive, proliferate and

self-renew in the self-renewing cell compartment of a tissue as a result of somatic selection. Germ-

line selection will be understood as selection at the organismal level, reflecting the process of differ-

ential survival of particular individual phenotypes in a population over generations based on

individual fitness. We propose to discriminate the term germline selection from the process of differ-

ential survival of particular germ cell phenotypes in the self-renewing germ cell compartment, as this

process represents a particular case of somatic selection acting on germ cells.

Statistical analysis
Statistical comparisons of the simulated clonal dynamics were performed using the Matlab Statistics

toolbox. We asked two principal questions: (1) within the same clone requiring the same minimum

number of driver mutations, does alteration of the tested parameter influence the timing and shape

of the age-dependent clonal dynamics? and 2) within the same value of the tested parameter, do

clones requiring different minimum numbers (1, 2, 3 or 4) of driver mutations show different time/

age-dependence? Each simulated condition (parameter values) were repeated with 50 independent

simulation runs (unless otherwise indicated). Therefore, the resulting age-dependent clonal dynamics

for each condition were represented with a pool of 50 time series (see Figure 2—figure supplement

1, top row for an example). In order to elucidate as much statistical information about the relative

behavior of clones as possible, we applied the following statistical procedure. At each timepoint (out

of the 5200 total simulation timepoints), we compared different conditions each represented by a

sample of 50 runs by the Kruskal-Wallis method, which is a non-parametric version of ANOVA. The

obtained p-values were plotted along the X-axis (simulation timepoints), with the Y-axis representing

p-values (see Figure 2—figure supplement 1, bottom row). This procedure allows visualizing the

temporal dynamics of the differences in clonal behavior. The general magnitude of the difference in

clonal behavior over time in this way can be visualized by the total sum of p-values (area under the
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p-value curve). We calculated this area and divided it by the total area of the chart, the latter being

1 � 5200. The total area represents a hypothetical scenario whereby p-values are equal to one dur-

ing an entire simulation, meaning that the compared behavior of clones was identical throughout

the simulation. Respectively, if the area under the p-value curve equals zero, it would mean that such

clonal behaviors are totally distinct throughout the simulation time. Realistically, however, p-values

always are within that range and never reach such extremes. Therefore, the above-mentioned ratio

shown in the top right corner of the chart in Figure 2—figure supplement 1, bottom row, and in

Figure 3—figure supplements 1–3 and Figure 4—figure supplements 1–3, reflects the overall rel-

ative magnitude of the difference in clonal behavior throughout the compared simulations. The

smaller the ratio, the greater the overall difference in clonal behavior. Following this statistical proce-

dure, thus, we can demonstrate both the significance of the difference at each timepoint (p-value

curve) and the overall magnitude of the difference throughout the simulation time.
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