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Abstract Human visual cortex is organized into multiple retinotopic maps. Characterizing the

arrangement of these maps on the cortical surface is essential to many visual neuroscience studies.

Typically, maps are obtained by voxel-wise analysis of fMRI data. This method, while useful, maps

only a portion of the visual field and is limited by measurement noise and subjective assessment of

boundaries. We developed a novel Bayesian mapping approach which combines observation–a

subject’s retinotopic measurements from small amounts of fMRI time–with a prior–a learned

retinotopic atlas. This process automatically draws areal boundaries, corrects discontinuities in the

measured maps, and predicts validation data more accurately than an atlas alone or independent

datasets alone. This new method can be used to improve the accuracy of retinotopic mapping, to

analyze large fMRI datasets automatically, and to quantify differences in map properties as a

function of health, development and natural variation between individuals.

DOI: https://doi.org/10.7554/eLife.40224.001

Introduction
Visual responses in a substantial part of the human brain are organized into retinotopic maps, in

which nearby positions on the brain represent adjacent locations in the image. Accurate measure-

ment of these maps using functional magnetic resonance imaging (fMRI) is essential to a wide range

of neuroscience and clinical applications (Wandell and Winawer, 2011), in which they often provide

a basis to compare measurements across individuals, groups, tasks, stimuli, and laboratories. In par-

ticular, maps are employed to study homology between species (Sereno and Tootell, 2005), cortical

plasticity (Wandell and Smirnakis, 2009), individual variation in cortical function (Dougherty et al.,

2003; Harvey and Dumoulin, 2011), and development (Van Essen, 1997; Conner et al., 2004).

Many studies of cortical visual function in human, whether in motion (Huk et al., 2001), color

(Engel et al., 1997a), object recognition (Grill-Spector et al., 1998), or attention (Martı́nez et al.,

1999), include retinotopic mapping as a first step. Finally, basic properties of the maps themselves,

such as the cortical magnification function (mm of cortex per degree of visual field), can be used to

understand visual performance (Duncan and Boynton, 2003).

Despite their broad importance to neuroscience research, no method currently exists to fit a reti-

notopic map to a subject’s cortical surface based on measurement, without human intervention.

Rather, most retinotopic analyses of fMRI data use a voxel-wise approach. The general method is (1)

to measure responses to mapping stimuli, (2) to derive retinotopic coordinates for each voxel or sur-

face vertex by analyzing traveling waves (Sereno et al., 1995; Engel et al., 1997b) or by solving a

population receptive field (pRF) model (Dumoulin and Wandell, 2008) for each voxel, and (3) to

identify areal boundaries by visual inspection. Aside from requiring significant time and effort, the

maps that result from this process retain many common sources of error including distortion of the

BOLD signal due to partial voluming (Dukart and Bertolino, 2014), vessel artifacts (Winawer et al.,

2010), other sources of physiological noise, and model fitting biases (Binda et al., 2013). Due to the

various sources of noise, the measured maps have discontinuities and often systematically miss por-

tions of the visual field, such as the vertical meridian (Silver et al., 2005; Larsson and Heeger,

2006; Swisher et al., 2007; Arcaro et al., 2009; Mackey et al., 2017). Further, the measured maps
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are limited by the available stimulus field of view in the scanner, often as little as 6–12˚ of eccentric-
ity, and have difficulty measuring the foveal representation (Schira et al., 2009), the portion of the

maps most important for many visual tasks including reading and object recognition (Malach et al.,

2002). These many shortcomings of the traditional retinotopic mapping process derive from the fact

that it is organized around optimizing the explanatory power of the retinotopy solutions from indi-

vidual voxels, rather than that of the entire visual field or cortical area. As a consequence, it yields

maps that are neither smooth nor complete—nor grounded in any context of how the visual field is

warped onto the cortical surface. Lacking these data, the comparison of maps between subjects is

difficult, and precise quantitative examination of individual differences is impossible. We refer to reti-

notopic maps predicted using voxel-wise methods as being derived from ‘Data Alone’ (Figure 1)

because the pRF parameters of the individual voxels come from empirical measurements but are not

contextualized in a model of retinotopic maps.

An alternative to voxel-wise modeling of fMRI data is to build a retinotopic atlas—a computa-

tional model of the mapping between visual field position and cortical structure. Atlases are typically

fit to a group-average description of function on the cortical surface after inter-subject cortical sur-

face co-registration (Dale et al., 1999; Fischl et al., 1999a). An example group-average description

of retinotopy from the Human Connectome Project (Uğurbil et al., 2013; Van Essen et al., 2013;

Benson et al., 2018) and the corresponding atlas description are shown in Figure 2A and B. Such

descriptions are useful despite large inter-subject variation because co-registration of the surface

anatomies between subjects improves the inter-subject alignment of cortical function as well. For

example, the surface area of V1 can vary by 2- to 3-fold across healthy adults (Dougherty et al.,

2003; Stensaas et al., 1974; Andrews et al., 1997), yet atlases of the mean anatomical locations

(Wang et al., 2015) and the mean functional organization (Benson et al., 2012; Benson et al.,

2014) of V1 can predict the functional organization of left-out subjects with high accuracy. The atlas,

after being fit to training data, is applied to an individual anatomical MR image without functional

data via anatomical alignment of the image to the atlas followed by interpolation (Figure 2C). These

atlases solve two of the problems of voxel-wise retinotopic maps: they represent the entire visual

Figure 1. We compare three different ways to predict a subject’s retinotopic maps. The first method is to perform a retinotopic mapping experiment.

The fMRI measurements are converted to retinotopic coordinates by a voxel-wise model and projected to the cortical surface. Although a model is

used to identify the coordinates for each vertex or voxel, we call this ‘Data Alone’ because no spatial template of retinotopy is used. The second

method is to apply a retinotopic atlas to an anatomical scan (typically a T1-weighted MRI) based on the brain’s pattern of sulcal curvature. This is called

‘Anatomy Alone’ because no functional MRI is measured for the individual. The third method combines the former two methods via Bayesian inference,

using the brain’s anatomical structure as a prior constraint on the retinotopic maps while using the functional MRI data as an observation.

DOI: https://doi.org/10.7554/eLife.40224.002
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Figure 2. The retinotopic prior and its use in predicting retinotopic maps. (A) The retinotopic prior is based on the Human Connectome Project (HCP)

group-average retinotopic maps (Benson et al., 2018), shown here on an orthographic projection of the V1-V3 region. OP indicates the occipital pole,

and CaS indicates the Calcarine sulcus. Projections are identical in each row throughout. (B) The retinotopic prior was designed to resemble the HCP

group-average retinotopy, and was further warped to minimize differences between the two according to the methods described by Benson et al.

(2014). (C) The measured (‘Data Alone’) retinotopic maps of subject S1201, all scans combined. Comparison of rows B and C demonstrates that the use

of the retinotopic prior to predict the retinotopic maps of an individual subject results in a reasonable prediction. (D) Combining the retinotopic prior

with the observed retinotopic maps from an individual subject yields Bayesian inferred maps.

DOI: https://doi.org/10.7554/eLife.40224.003
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field and are smooth, but they are limited by the quality of the anatomical alignment and provide

only a description of the mean—they cannot capture the idiosyncrasies of the maps in an individual

subject because they assume that once a correspondence is found between the sulcal pattern in two

subjects’ visual cortices, the function will match. Thus, if one were interested in individual variation in

cortical topography after anatomical registration, this method is uninformative: it assumes the

answer is 0. Accordingly, we refer to retinotopic maps predicted by atlases as being derived from

‘Anatomy Alone’ (Figure 1).

In this paper, we present a solution to the problems of both atlas- and voxel-based retinotopic

maps. We hypothesize that a Bayesian model of retinotopic maps, combining data (retinotopic

voxel- or vertex-wise measurements) with a prior (a full-field atlas derived from the anatomy), will

eliminate many of the issues with retinotopic mapping described above by optimizing the descrip-

tion of cortical retinotopic maps in the context of the full visual field and the corresponding cortex

(Figure 2D). We propose that such methods can describe cortical retinotopic maps in individual sub-

jects more accurately than an atlas alone or measurements alone. These hypotheses are motivated

by two factors. First, previous work employing functional data to supplement global anatomical

alignments between subjects has found an increase in the overlap of functional ROIs drawn from

independent localizers (Frost and Goebel, 2013). Thus, even when subjects are aligned anatomi-

cally, appreciable and systematic differences in the structure-function relationship remain. Allowing

the measurement from an individual subject to inform the alignment will, in part, capture these indi-

vidual differences. Secondly, we believe that the basic form of the atlas (the prior) is sufficiently accu-

rate that incorporating it will result in a more accurate estimate of the retinotopic map than the

measurements alone.

The method we employ is a Bayesian maximum-likelihood optimization that describes the retino-

topic maps in striate and extra striate cortex with previously infeasible precision. Unlike previous

work on functional alignment (Haxby et al., 2011), we perform alignment between each individual

subject’s retinotopic parameters and a model of retinotopy described on the (anatomically-aligned)

group-average cortical surface. This optimization builds on previous work using iterative approaches

to fit and interpolate smooth retinotopic maps in individual subjects (Dougherty et al., 2003) by

incorporating an explicit prior in the place of human intervention and adopting an explicitly Bayesian

formulation.

We publish with this paper a tool capable of implementing the method we describe as well as all

source code employed. We use these tools to characterize retinotopic maps from several subjects in

terms of the precise warping from visual field to visual cortex. Using these characterizations, we are

able to quantify the extent to which variations in retinotopic organization are due to anatomical dif-

ferences versus differences in the structure-function relationship. We show that, in fact, these two

sources of variability—differences in structure and differences in the structure-to-function mapping—

are roughly equal and orthogonal across subjects. This means that after warping individual cortical

surfaces to bring the anatomies into registration, an additional warping, equal in size, is needed to

bring the functional maps into alignment, thereby demonstrating substantial variability in an early,

sensory region of the human brain.

Results and discussion
Retinotopic mapping experiments were performed on eight subjects using fMRI. Twelve individual

retinotopy scans were performed on each subject then combined into 21 ‘training’ datasets and 1

‘validation’ dataset for cross-validation as well as one full dataset of all scans for detailed analysis

(Supplementary file 1; see also Materials and methods). Predicted maps were then generated using

the training datasets and compared to the validation dataset. The training and validation datasets

are largely independent in that they are derived from separate scans; however, some dependency

remains in that the different scans were obtained from the same scanning session, so that they share

anything common to the session (viewing conditions, scanner hardware, etc.). We compared three

methods for predicting retinotopic maps (Figure 1): (1) using the training data alone as a prediction

(the ‘observed’ maps); (2) using the subject’s anatomy alone to apply an anatomically-defined tem-

plate of retinotopy (the ‘prior’ maps); and (3) combining data with anatomy (observation with prior)

using Bayesian inference (the ‘inferred’ maps). We then leverage the differences between these

methods to characterize the pattern of individual differences in retinotopic maps across subjects.
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The prior map (Figure 2B), used for methods 2 and 3, was derived from fitting a template to a high-

quality dataset derived from 181 subjects in the Human Connectome Project (Uğurbil et al., 2013;

Van Essen et al., 2013; Benson et al., 2018) (Figure 2A).

Bayesian inference has the advantages of an anatomical atlas while also
respecting individual differences
The inferred retinotopic maps, predicted by Bayesian inference, provide high-quality descriptions of

the full retinotopic topology for each subject’s V1-V3 regions. These maps can be produced even in

the absence of observed retinotopic measurements (i.e., using the prior alone), or by combination

with retinotopic data. In this latter case, the inferred maps have all the advantages of the retinotopic

prior (topologically smooth maps, predictions beyond the stimulus aperture, etc.), while also

accounting for idiosyncrasies in individual maps. Three examples of maps that demonstrate this

advantage are shown in Figure 3. The first two columns show maps in which, relative to the valida-

tion maps, the predictions made from data alone have highly curved iso-eccentricity contours. These

contours reflect noise rather than true curvature in the iso-eccentricity contours, as shown by the val-

idation data. For these two columns, the predictions from the prior alone have iso-eccentric contours

that are too smooth (as compared to the validation data). The correct lines appear to lie between

the training data and the prior. Hence when data is combined with the prior (Figure 3, third column)

the iso-eccentric contours resemble those of the validation dataset. The third row of Figure 3 shows

an instance in which, even lacking a coherent polar angle reversal to define the ventral V1/V2

Figure 3. Inferred retinotopic maps accurately predict features of validation retinotopy. Twelve close-up plots of the retinotopic maps of three

hemispheres are shown with predictions made from Data alone, Prior alone, or Data +Prior. The right two columns show the validation dataset with the

right column indicating the context of the close-up patches. The first three columns show different methods of predicting the retinotopic maps, as in

Figure 1. Approximate iso-eccentricity or iso-angular contour lines for the validation dataset have been draw in white on all close-up plots. Black

contour lines show the same approximate contour lines for the three prediction methods. Flattened projections of cortex were created using an

orthographic projection (Supplementary file 2A).

DOI: https://doi.org/10.7554/eLife.40224.004
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boundary near the fovea in the predictions made from data alone, combination of the data with

prior more accurately predicts that boundary in the validation dataset than the prior alone.

In constructing the Bayesian-inferred retinotopic map for a single hemisphere, we perform two

deformations, detailed in Figure 4 (see also Materials and methods): (1) we first deform that hemi-

sphere’s inflated surface to register it to an average anatomical atlas using FreeSurfer (leftmost

arrow in Figure 4C); and (2) we then further deform the surface to register it to the retinotopic prior,

based on the hemisphere’s retinotopic measurements (second arrow in Figure 4C). These steps

together account for the individual differences in the organization of the subjects’ retinotopic maps.

In step 1, we account for structural differences across subjects—the deformation that occurs for this

registration is unique for each subject. This is where prior work ended (Benson et al., 2012;

Benson et al., 2014). In step 2, we account for the differences in the relationship between structure

Figure 4. Deriving retinotopic predictions. Three methods of predicting retinotopic maps (as in Figure 1) for an example subject. (A) Predicted

retinotopic maps based on training data alone are found by solving the pRF models for each voxel and projecting them to the cortical surface. The

training data (left) and prediction (right) are identical. (B) To predict a retinotopic map using the prior alone, the subject’s cortical surface is aligned to

FreeSurfer’s fsaverage anatomical atlas (represented by rectilinear checkerboards), bringing the subject’s anatomy into alignment with the anatomically-

based prior, which is represented by iso-eccentricity contour lines in the figure (see also Supplementary file 2C). The model of retinotopy is then used

to predict the retinotopic parameters of the vertices based on their anatomically-aligned positions. After the predictions have been made, the cortical

surface is relaxed. Maps are shown as checkerboards in order to demonstrate the warping (insets show original data and curvature). (C) Bayesian

inference of the retinotopic maps of the subject are made by combining retinotopic data with the retinotopic prior. This is achieved by first aligning the

subject’s vertices with the fsaverage anatomical atlas (as in B) then further warping the vertices to bring them into alignment with the data-driven model

of retinotopy (shown as iso-eccentricity contour lines). The warping was performed by minimizing a potential function that penalized both the deviation

from from the prior (second column) as well as deviations between the retinotopic observations and the retinotopic model.

DOI: https://doi.org/10.7554/eLife.40224.005
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and function across subjects. Although it is possible that deformations in step two partly compen-

sate for imperfections in the first two registrations, we propose that, to a first approximation, the

deformations applied in the last step indicate meaningful individual differences in the structure-func-

tion relationship.

Individual differences in the V1-V3 structure-function relationship
across subjects are substantial
The Bayesian model fitting allows us to parcellate two sources of variation between individuals: dif-

ferences in surface anatomy (sulcal patterns) and differences in structure-to-function mapping, that is

how retinotopic features map onto the surface anatomy. These two sources of variation map approx-

imately to the two deformations in our atlas fitting: differences in surface anatomy are reflected in

the deformation used for the surface alignment, and differences in structure-to-function mapping

are reflected in the deformation for retinotopic alignment (the Bayesian fit). Note that in our imple-

mentation, both alignments are achieved by warping the individual subject’s vertices, the former to

minimize error in surface curvature, the latter to minimize errors in retinotopic measures. (After the

process is complete, the alignments can be reversed, thereby bringing the retinotopic predictions

back into the native anatomical space.) Because both the anatomical alignment and retinotopic

alignment are computed as changes in the position of surface vertices, it is straightforward to com-

pare the two processes.

There are some subjects for whom there are large differences between the retinotopic atlas

defined by the prior and the atlas defined by the Bayesian fit (Figure 5A and B). In this example sub-

ject, the iso-eccentricity lines in the Bayesian atlas are substantially more compressed along the pos-

terior-anterior axis compared to the anatomical atlas, and the iso-angle lines in V2/V3 are more

dorsal compared to the anatomical atlas. Where there are discrepancies, the Bayesian inferred map

is more accurate. For example, the polar angles and the eccentricities in the validation data are

approximately constant where the Bayesian map predicts iso-angle and iso-eccentricity lines, but not

where the prior map predicts them (Figure 5B). This indicates that even after anatomical alignment,

the retinotopy in this subject differs systematically from the prior. For some other subjects, the two

atlases are in closer agreement such that the prior alone is a good fit to the retinotopic data

(Figure 5C).

To quantify the two types of deformations, we calculated the mean 3 � 3 distance matrix

between (1) a vertex’s native position, (2) its position in the anatomical alignment (fsaverage posi-

tion), and (3) its ‘retinotopic position’ after alignment to the retinotopic prior. All vertices in the V1-

V3 region within 12˚ of eccentricity, as predicted by the Bayesian inference on the full dataset (all ret-

inotopy scans combined), were used. We then performed 2D metric embedding to determine the

mean deformation steps and the mean angle between them (Figure 6A). Overall, the mean defor-

mation distance across vertices is 3.3˚ ± 0.6˚ (m ± s across subjects) of the cortical sphere for the ana-

tomical alignment and 3.4˚ ± 0.4˚ for the retinotopic alignment. The mean angle between these

deformations is 83.0˚ ± 9.6˚ (note that this last measurement is in terms of degrees of rotational

angle rather than degrees of the cortical sphere). The anatomical alignment corresponds to variation

in the surface topology and is accounted for in anatomical atlases (Benson et al., 2012;

Benson et al., 2014); the retinotopic alignment corresponds to variation in the structure-function

mapping and is accounted for in the Bayesian model. An additional summary measurement of these

deformations, the root-mean-square deviation (RMSD) distances across vertices near the occipital

pole in a particular retinotopy dataset, provides a metric of the total warping applied during each

step of the alignment process for each subject. A summary of this measurement, as well as various

other summary statistics is provided in Table 1.

The retinotopic deformation distances were not significantly different than the the anatomical

deformation distances, which were still substantial; this is true whether one calculates the mean

deformation distance over the entire patch of cortex immediately around the occipital pole (shown

in the maps in Figure 3) or over only the vertices that are predicted to be in V1-V3; Figure 6 is calcu-

lated over the latter of these two ROIs. Note that if the retinotopic deformation distances had been

much larger, the prior anatomical atlases would have been less accurate. Had they been close to 0,

then the anatomical atlas alone would have been as accurate as the Bayesian model.

We interpret the warping performed to align retinotopic data to the anatomical prior (the retino-

topic alignment) as evidence of individual differences in the way in which retinotopy maps to sulcal
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topology. An alternate possibility is that the retinotopic alignment corrects for incomplete or incor-

rect warping performed by FreeSurfer during alignment of each subject’s sulcal topology to that of

the fsaverage hemispheres (the anatomical alignment). We have found FreeSurfer to be a well-vetted

and reliable tool for functional alignment; however, no anatomical alignment process is optimal, and

more improvements to alignment algorithms, such as those being pursued using the HCP database

(Glasser et al., 2016), may reduce the length of our retinotopic alignment step. (Note, additionally,

that though we use the fsaverage here, our tools are compatible with other possible alignments.) It

is thus possible that we have overestimated the amount of functional variance remaining across sub-

jects after anatomical alignment. Two observations suggest that the functional variance due to

imperfect anatomical alignment is small, however. First, the angle between the alignments is roughly

orthogonal, meaning that there is very little movement along the axis of the first (structural) align-

ment during the second (retinotopic) alignment. Had the first alignment been in the correct direction

but too conservative, then we would have expected the retinotopic alignment to be in the same (or

similar) direction, rather than orthogonal. Second, if the retinotopic alignment served to correct an

Figure 5. Comparison of inferred and prior maps. (A) A subject whose maps were poorly predicted by the retinotopic prior and thus required major

deformation (S1205, RH, dataset 9). (B) To illustrate the differences between the Prior Alone (black lines in A) and the combination of Data +Prior (white

lines in A), traces of the polar angle (top) and eccentricity (bottom) values beneath the lines indicated by arrows are shown. The eccentricities traced by

the iso-angle lines and the polar angles traced by the iso-eccentricity lines of the Bayesian-inferred maps more closely match the angles/eccentricities

of their associated trace lines than do the polar angles/eccentricities beneath the lines of the Prior alone (C) A subject whose retinotopic maps were

well-predicted by the prior and thus required relatively minor deformation during the Bayesian inference step (subject S1202, LH, dataset 17). In both A

and C, black lines show the retinotopic prior and white lines show the maps inferred by Bayesian inference.

DOI: https://doi.org/10.7554/eLife.40224.006
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incomplete or incorrect anatomical warping, then anatomical metrics such as curvature would

become more uniform across subjects after retinotopic alignment compared to after only anatomical

alignment. Figure 6B demonstrates that this explanation is unlikely by showing the distribution

across surface vertices of the standard deviation of curvature across subjects. When curvature is

compared across subjects without retinotopic or anatomical alignment (‘Native’ alignment in

Figure 6B) the standard deviation is quite high. When subjects are compared after anatomical align-

ment, the standard deviations are much lower. After further alignment to the anatomical prior of

Figure 6. Individual differences between subjects in the structure-function relationship are substantial. (A) The mean deformation vectors, used to warp

a surface vertex from its Native to its Anatomical (fsaverage-aligned) position and from its Anatomical to its Retinotopic position, are shown relative to

each other. The wedges plotted beneath the mean arrows indicate ±1 standard deviation of the angle across subjects while the shaded regions at the

end of the wedges indicate ±1 standard deviation of the lengths of the vectors. Note that because registration steps are always performed on a

subject’s inflated spherical hemispheres, these distances were calculated in terms of degrees of the cortical sphere and are not directly equivalent to

mm of cortex. (B) The alignment of the V1-V3 region to the retinotopic prior increases the standard deviation of the surface curvature across subjects,

suggesting that retinotopic alignment is not simply an improvement on FreeSurfer’s curvature-based alignment. Histograms show the probability

density of the across-subject standard deviation of curvature values for all vertices in the V1-V3 region with a Bayesian-inferred eccentricity between 0

and 12˚. (C) Bayesian-inferred iso-eccentricity lines and V1/V2/V3 boundaries plotted for all subjects simultaneously on the fsaverage spherical atlas.

Lines are plotted with an opacity of 1/2 to visualize overlap. The left two plots and the right two plots share identical lines but have different colors. Iso-

eccentricity lines are colored in magenta (1.5˚), yellow (3˚), and cyan (6˚). Iso-angle lines are plotted in blue (upper vertical meridian), green (horizontal

meridian), and red (lower vertical meridian).

DOI: https://doi.org/10.7554/eLife.40224.007

Benson and Winawer. eLife 2018;7:e40224. DOI: https://doi.org/10.7554/eLife.40224 9 of 29

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.40224.007
https://doi.org/10.7554/eLife.40224


retinotopy (Retinotopic alignment), the standard deviation of curvature across subjects is between

these two extrema. This suggests that the retinotopic alignment is sacrificing some amount of struc-

tural uniformity across subjects in order to accommodate the individual differences in subjects’ struc-

ture-to-function mapping, and is consistent with our interpretation that there are substantial

individual differences in the mapping between retinotopy and surface topology.

The large individual differences that remain, even after structural co-registration (Figure 6C),

point to the importance of using at least some individual subject functional data when inferring the

maps, rather than assuming the atlas (prior) is correct. The specific nature of these deformations,

and whether, for example, they fall into a few basic patterns, is an important question about the nat-

ural variation of individual brains. Our new method, combined with large datasets such as the HCP

retinotopy data set (Benson et al., 2018) and new alignment tools such as MSMAll (Robinson et al.,

2014), could be used to address this question.

The inferred maps make highly accurate predictions with very little
data
To quantify the accuracy of our Bayesian-inferred retinotopic maps, and to compare the accuracy

against other predictions, we used a cross-validation scheme such that predictions from data alone,

the prior alone, or via Bayesian inference were compared against independent validation datasets

(Supplementary file 1). The validation datasets were derived from 6 of the 12 scans; the predictions

from data alone and from Bayesian inference were derived from training datasets, which were com-

prised of various combinations of 1–6 independent scans (between 3.2 and 19.2 min of data). The

predictions from the prior alone did not use training data.

To compare methods of predicting retinotopic maps (Figure 1), vertices of interest were identi-

fied using the maps inferred from the validation dataset. All vertices from the inner 12˚ of eccentric-
ity of these maps were compared to their counterparts in the predicted maps. Note that the inferred

Table 1. Summary statistics for each subject.

Subject Hemisphere V1 area (mm3)* V1 volume (mm3)* Anatomical RMSD† Retinotopic RMSD†

S1201 RH 1308 3733 2.88 3.15

S1201 LH 1315 4133 1.82 2.47

S1202 RH 2024 3706 1.21 2.73

S1202 LH 2085 4199 1.28 2.65

S1203 RH 1574 3152 2.13 3.27

S1203 LH 1489 2941 2.06 3.77

S1204 RH 1906 3325 2.29 3.00

S1204 LH 1645 3015 2.18 3.10

S1205 RH 1995 3926 1.99 2.91

S1205 LH 1884 3372 1.76 3.31

S1206 RH 1647 3116 2.12 2.73

S1206 LH 1632 2692 1.63 3.22

S1207 RH 1648 3402 1.84 2.41

S1207 LH 1421 2764 1.74 3.15

S1208 RH 1712 3509 1.50 2.58

S1208 LH 1494 3083 1.89 3.08

* The V1 boundary was determined from the Bayesian-inferred map constructed by combining the retinotopic prior with the full retinotopy dataset.

† Units of the RMSD values are degrees of the cortical sphere; these are approximately equivalent to mm, but exact measurements in mm are distorted

during inflation of the surface. ‘Anatomical’ RMSD refers to the deviation between the subject’s native anatomical sphere and the fsaverage-aligned sphere

while ‘Retinotopic’ RMSD refers to the deviation between the fsaverage-aligned sphere and the retinotopically aligned sphere. The RMSD values were

averaged over all vertices within the inner 12˚ of eccentricity of the V1-V3 region. Use of a larger patch of cortex (e.g., the flattened map projections in

Figure 4A) does not qualitatively change the relationship between anatomical and retinotopic RMSD values.
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maps from the validation dataset were used only to identify the vertices included in the comparison;

the retinotopic coordinates from the validation datasets themselves were taken as the ‘gold-stan-

dard’ measurements. In computing prediction accuracy, we weighted the vertices by the fraction of

variance explained for each vertex’s pRF solution in the validation dataset. For the three types of

training datasets (prior alone, data alone, Bayesian inference), we assume that each vertex makes a

prediction regardless of the variance explained. To prevent errors at high eccentricity from dominat-

ing the error metric, we calculated the scaled error for a vertex to be the angular distance in the

visual field between its retinotopic coordinates in the predicted map and the validation dataset,

divided by the eccentricity in the validation dataset. Figure 7 shows the scaled mean squared error

(MSE) for the various predicted maps in terms of the amount of time spent collecting retinotopic

data for the map.

The maps predicted via Bayesian inference were highly accurate irrespective of the amount of

data used to inform the fits (Figure 7). Between those inferred maps informed by 3.2 min of scan

time (one scan) and 19.2 min (six scans), the scaled MSE of the prediction remains in the range

of ~0.4–0.5. These scaled errors are larger near the fovea because the denominator used for scaling

the error metric (i.e., the eccentricity) could be very small; when the range is limited to 3 to 12 deg,

the MSE is much lower,~0.20–0.26. Expressed separately in units of polar angle and eccentricity, the

mean absolute polar angle error from a Bayesian map derived from a single 3.2 min scan is 25˚ ± 11˚
and the mean absolute eccentricity error is 0.76˚ ± 0.34˚ (m ± s across 96 datasets). For the prior

alone, these errors are substantially higher: 34˚ ± 12˚ for polar angle and 1.3˚ ± 0.17˚ for eccentricity.
Note that these errors are approximately 3 � higher than those reported for previous versions of the

anatomical prior (11˚ for polar angle and 0.37˚ for eccentricity) (Benson et al., 2014); however, these

discrepancies are due to differences in the metric used, the amount of data collected, the threshold-

ing applied, and the use of smoothing. Some of these factors we cannot reproduce exactly (amount

of data) or have deliberately abandoned (smoothing), but by using the same metric (median abso-

lute error across all vertices) and similar thresholding (1.25˚<predicted eccentricity<8.75˚), we obtain

errors very close to those previously reported: 5.9˚ of polar angle and 0.46˚ of eccentricity. In con-

trast to the inferred maps for which the accuracy is largely independent of scan time, the accuracy of

the predictions from data alone was highly influenced by scan time. The scaled MSE of the maps

predicted from the training datasets alone for the same range of scan times ranged from ~2.2 (3.2

minutes of training data) to ~0.3 (19.2 minutes of training data). With more than ~11 min of scan

time, the predictions made from the training datasets alone have a slightly lower scaled MSE than

Figure 7. Comparison of prediction errors for three methods of predicting retinotopic maps. Errors are shown in terms of the number of minutes spent

collecting retinotopic mapping scans (x-axis). The y-axis gives the mean squared eccentricity-scaled error. Each plotted point represents a different

number of minutes in the scanner, with error bars plotting ±1 standard error across subjects. For short scan times, errors are significantly higher for

predictions made with the data alone than for those made using Bayesian inference. An offset has been added to the x-values of each of the black

(�0.25) and red (+0.25) points to facilitate viewing.
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those made from Bayesian inference; although, notably, the improvements in scaled MSE for more

than 11 min of scan time are small.

The prediction accuracy from the prior alone (0 min. scan time) was generally intermediate in

accuracy between the predictions from the Bayesian model and the data alone. Predictions derived

from the anatomically-defined atlas alone are more accurate than predictions from 3.2 min of scan-

ning and only slightly less accurate than predictions from training datasets derived from 6.4 min of

scanning; this is in agreement with previous analyses of prediction error versus measurement error in

retinotopic mapping experiments (Benson et al., 2014). The predictions using the prior alone were

universally less accurate than the Bayesian predictions (Figure 7, cyan)—for all subjects and all train-

ing datasets, the combination of prior with data improved prediction accuracy compared to the ana-

tomical prior alone. These data demonstrate that the application of our new method to a small

amount of retinotopic mapping data yields a higher quality retinotopic map than can be derived

from other sources alone, with the possible exception of data derived from a long retinotopic map-

ping session.

The fact that the increased prediction accuracy from the Bayesian maps is almost independent of

the amount of scan time used for the observations suggests that much of the individual variability is

captured by a low dimensional warping from the template, which can be inferred from a modest

amount of data. This hypothesis is further supported by visual inspection of different datasets, such

as in Figure 8A. Although the amount of noise in the maps clearly varies between the validation

dataset (19.2 min. scan time, left column), training dataset 1 (3.2 min., second column), and training

dataset 10 (6.4 min., third column), the signal is clear enough that a human expert would likely draw

similar boundary lines for each map; our method does as well. Importantly, some warpings are not

permitted by the fitting algorithm. For example, the topology of the template is a hard constraint,

such that vertices cannot pass through one another. This puts an upper limit on the accuracy of the

template: the best predictors of left out data might require a change in topology, which is not per-

mitted. We discuss the significance of these issues in the section subsequent section, ’What is

ground truth’.

Another significant advantage of the method is that it eliminates the need for human intervention

in the process of delineating retinotopic maps and visual areas. In most studies that require retino-

topic mapping data, one or more experimenters hand-label the visual area boundaries. While human

raters are better able to understand atypical retinotopic boundaries than our method, they are none-

theless subject to inter-rater disagreement and human error. Furthermore, although expert human

raters have a much more nuanced prior about retinotopic map organization than our method, and

thus may sometimes draw boundaries better than our method, our method at least makes its prior

explicit and quantifiable, and, thus, comparable and replicable across studies.

What is ground truth?
The motivation for a Bayesian approach to retinotopic mapping can be found most clearly in the

measured retinotopic maps themselves. In all of our measured retinotopic maps, there are numerous

systematic imperfections (Figure 8A), and the literature contains many reports of similar errors

(Winawer et al., 2010; Press et al., 2001; Gardner, 2010; Boubela et al., 2015). These imperfec-

tions can arise from a variety of sources, including partial voluming (Huettel et al., 2014), negative

BOLD (Shmuel et al., 2002), and large, draining veins. Imperfections due to blood vessel artifacts

can have effects over large distances (Winawer et al., 2010), and most perniciously, they may lead

to large and reliable responses that nonetheless differ from the local neuronal activity in the voxel

(Boubela et al., 2015). Such artifacts can be difficult to track down and are often not eliminated by

typical methods of cleaning up maps such as smoothing, thresholding, or simply collecting larger

datasets.

Although with large datasets (>19 min of scan time), the prediction accuracy for the validation

dataset is highest using the data alone rather than the data and prior, we believe that even in these

cases the combination of data + prior is probably closest to ground truth. We defined accuracy

operationally as the difference from the validation set, as this provides a single set of independent

measures that can be used to assess the accuracy of all three types of models. The validation dataset

is defined by at least as many scans as any of the training datasets, and hence is our best measure-

ment. However, the validation dataset is not ground truth, as it is subject to errors from systematic

and random measurement noise. The inferred maps, unlike the maps from the validation and training
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datasets alone, produce a topologically smooth transformation into the visual field: they represent

the complete visual field with no holes, redundancies, or discontinuities. Hence, an enclosed region

in the visual field will project to an enclosed region in the inferred map on the cortical surface. This is

not the case for the maps predicted by the data alone without the use of an atlas (Figure 8B). We

consider this difference to be an advantage of the inferred maps, since it is generally accepted that

the cortical surface of V1 is a topological map of the visual field.

In short, since we do not correct for all of these potential sources of systematic error, we consider

our estimates of error from the Bayesian-inferred maps to be conservative, and the estimate from

the data-to-data predictions to be liberal.

The Bayesian model accurately predicts visual field positions not
included in the training data
One important advantage of using the method of Bayesian inference outlined in this paper is that it

provides predictions beyond the extent of the stimulus aperture in the retinotopy experiment. These

peripheral predictions extend to 90˚ of eccentricity, even though the data used to derive the prior

was based on stimuli that only extended to ~8˚ of eccentricity. Hence, it is important to ask whether

the model makes accurate predictions in the periphery. We demonstrate this in two ways. First,

B. Projection from Visual 

Field to Cortex

Validation Data      

Bayesian-Inferred Data

A. Common Validation Dataset Errors
Validation Data Training-1 Training-10 Bayesian-20

Visual Field      

S1203, LH

S1206, RH

S1205, LH

Figure 8. Systematic errors in training and validation datasets. (A) Many small inconsistencies in the retinotopic maps are duplicated in both the

validation dataset and the training datasets but not in the maps predicted by Bayesian inference. Maps for three example hemispheres are shown with

validation datasets as well as training dataset 1, training dataset 10, and the Bayesian-inferred maps from dataset 20. Ellipses highlight blips of noise in

the validation maps that are unlikely to represent the true underlying map, but that are correlated with the training maps. Such blips are significantly

different in the inferred and validation maps, likely inflating the error of the inferred maps. Black lines show the V1-V3 boundaries in the Bayesian-

inferred maps. (B) Discontinuity errors. If the validation data is used to project the disks shown in the visual field in the middle panel to the cortical

surface, the resulting map is messy and contains a number of inconsistencies due to measurement error. While the Bayesian inferred map may contain

errors of its own, it will always predict a topologically smooth retinotopic map with respect to the topology of the visual field.
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when our registration algorithm is run using only a subset of the eccentricity range (e.g., only data

within the first 3˚ or the first 6˚ of eccentricity), the predicted maps remain accurate to 12˚ of eccen-
tricity (Figure 9A). Second, we compared wide-field retinotopy data, collected out to 48˚ of eccen-
tricity from subject S1201 to the Bayesian-inferred map predictions made using our data with a 12˚-
aperture (Figure 9B). We find that in both cases, our method is highly accurate despite lacking train-

ing data for peripheral measurements (though note that in the latter case, the extrapolation was

only tested on one subject; in principle, subjects with poorer data quality or unstable fixation could

result in less accurate extrapolation). Because the extrapolations to untested eccentricities are gen-

erally accurate, we conclude that even if prediction accuracy within the measured regions were simi-

lar for the Bayesian model and the data-to-data predictions, the Bayesian model is advantageous

because it includes predictions for regions of the visual field beyond training data.

The Bayesian inferred maps accurately reproduce systematic properties
of the visual field maps
Another aspect in which our work here extends previous methods is the addition of the pRF size to

the retinotopic quantities predicted by the model in the inferred maps—previous work predicted

only the pRF centers (Benson et al., 2012; Benson et al., 2014). Here, we predict the pRF sizes for

the vertices based on the eccentricity inferred from the Bayesian map and the assumed linear rela-

tionship between eccentricity and pRF size. The inferred pRF size of a vertex is the best linear fit to

the measured pRF size versus the vertex’s inferred eccentricity (Figure 10A). While an approximately

linear relationship is reasonable given the literature, the absolute scale is likely dependent on variety

of measurement factors such as voxel size, stimulus spatial frequency, and subject fixation

(Alvarez et al., 2015). Hence, we do not attempt to infer the slope or intercept based on prior

measurements.

Another metric inversely related to pRF size is the cortical magnification, usually measured in

terms of mm2 of cortex representing one degree2 of the visual field. We summarize these measure-

ments in Figure 10B and C. Our measurements of cortical magnification are broadly in agreement

with previous work by Horton and Hoyt, 1991, shown by the dotted black line panels B-E of Fig-

ure 10. The cortical magnification of the inferred maps is quite similar to that of the observed retino-

topic maps. In both cases, V1 has slightly lower cortical magnification than V2 and V3 near the fovea,

but higher magnification in the periphery. This difference is slightly exaggerated in the inferred

maps relative to the observed maps; although this difference is slight and is in agreement with previ-

ous examinations of cortical magnification (Schira et al., 2009); however, note that in our maps, the

crossover between V1 cortical magnification and V2/V3 cortical magnification occurs at a higher

eccentricity (~3˚) than previously reported (~0.7–1˚). This is emphasized in Figure 10D and E, which

shows the curves from Figure 10C and D in terms of their difference from the prediction of

Horton and Hoyt, 1991 (the black dashed line in panels B-E). Note that in the inferred maps,

although the cortical magnification in V1 is lower than V2 below 3˚ of eccentricity, the difference

between them is small between 1.5˚ and 3˚.

The retinotopic prior and Bayesian-inferred maps include 12 visual
areas
Previous research on the retinotopic organization of visual cortex used a model of V1, V2, and V3

retinotopy described by Schira et al. (2010) to produce a template of retinotopy that included only

those visual areas. This ‘banded double-sech’ model accurately describes the anisotropic magnifica-

tion of the visual field on the cortical surface, particularly near the fovea. However, we have

observed, particularly in individual data, that retinotopic data from outside the V1-V3 region

described by the Schira model has a large impact on the quality of the inferred map. Accordingly, in

creating our retinotopic prior, we constructed a new model that includes nine additional visually

active regions: hV4, VO1, VO2, V3a, V3b, LO1, LO2, TO1, and TO2. This model employed a new

method of constructing 2D models of retinotopy that was specifically designed to accommodate the

distortions caused by anatomical alignment, inflation, and flattening of the cortical surface. The new

method is much simpler to extend to many more visual field maps, as it does not rely on an analytic

description of the flattened (2D) retinotopic maps, which are only available for V1-V3. Rather, it

requires as input a cortical map image on which estimates of the visual area boundaries have been
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Figure 9. The Bayesian-inferred maps accurately predict eccentricity beyond the range of the stimulus. (A) In order to examine how accurately the

retinotopic maps predicted using Bayesian inference describe the retinotopic arrangement outside of the range of the stimulus used to construct them

we constructed maps from all datasets using only the inner 3˚ or 6˚ of eccentricity then compared the predictions to the full validation dataset.

Eccentricity is well predicted out to 12˚ regardless of the eccentricity range used to construct the predicted map, indicating that our inferred maps are

Figure 9 continued on next page
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drawn manually and labeled as either a foveal boundary, a peripheral boundary, an upper vertical

meridian, a lower vertical meridian, or a horizontal meridian. A minimization technique is then used

to fill in the retinotopic coordinates between the drawn boundaries (see Models of Retinotopy in

Materials and methods). The new retinotopic prior, including all new areas can be seen in

Supplementary file 3. Although we consider the addition of 9 retinotopic areas to be an important

development, we consider these areas preliminary and do not analyze them in detail here. One rea-

son for this is that the organizations of many of these areas remain under dispute. Additionally, the

responses to our stimuli in these areas is of a considerably lower quality than in V1-V3; thus even

were we to analyze the accuracy of the predictions in these ares, our validation dataset would be a

particularly poor standard. We do, however, include these areas in the predictions made by the

Figure 9 continued

likely accurate beyond the range of the stimulus. In addition, we compared the wide-field retinotopic mapping data from subject S1201 to the inferred

retinotopic maps (B) and the anatomical prior (C) using only the 12˚ stimulus; the inferred eccentricity is shown in terms of the validation eccentricity.

The highest errors appear in the fovea (<3˚), while predictions made by the inferred maps are most accurate in the periphery, indicating that

eccentricity may be well-predicted far beyond the range of the stimulus (out to 48˚ of eccentricity in this case). Predictions of peripheral data are slightly

less accurate when made by the prior than by the inferred maps, which suggests that the extrapolation is improved by the Bayesian inference.

DOI: https://doi.org/10.7554/eLife.40224.011

Figure 10. Aggregate pRF size and cortical magnification measurements are in agreement with previous literature. (A) PRF sizes by eccentricity are

shown for V1, V2, and V3, as calculated from the full datasets; shaded regions show standard errors across subjects. (B) Cortical magnification is shown

in terms of eccentricity for V1-V3, as calculated from the full datasets. Again, the shaded regions show standard errors across subjects. The dashed

black line shows the equation for cortical magnification provided by Horton and Hoyt, 1991. (C) Cortical magnification as calculated using the pRF

coordinates inferred by the Bayesian inference. Note that in both A and B, eccentricity refers to measured eccentricity while in C, eccentricity refers to

Bayesian-inferred eccentricity. (D) The difference between the cortical magnification predicted by Horton and Hoyt, 1991 and the cortical

magnification of the (D) measured and (E) inferred maps; the data are the same as in B and C.
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Bayesian inference method so that interested researchers may analyze or use them. These areas are

included in the data provided with this paper, and predictions of these areas are included when

using the tools provided in the Data Availability Statement.

Making the Bayesian inference explicit
Our method has the advantage of allowing the retinotopic atlas to act as a prior constraint on new

observed data. This is a Bayesian model in the general sense of combining a prior belief with a mea-

surement in order to make an inference. The computation can be formulated in an explicit Bayesian

framework. We define a hypothesis H to be a particular warping of the cortical surface, and we

define the evidence E to be a particular set of retinotopic measurements. We then convert the cost

functions from Table 2 into probabilities by assuming an exponential relationship. Hence, the prior

probability of H is defined in terms of the deviation from the retinotopic prior:

PðHÞ ¼ exp ð�ðFeðxÞ þ F�ðxÞ þ FpðxÞÞÞ, and the likelihood of the evidence under a given hypothesis,

PðEjHÞ, is defined in terms of the fit between the retinotopic model and the retinotopic measure-

ments: PðEjHÞ ¼ exp ð�ðEeðxÞ þ F�ðxÞ þ FpðxÞÞÞ. During registration, we seek the hypothesis H that

maximizes the posterior probability PðHjEÞ ¼ PðEjHÞPðHÞ=PðEÞ. Because PðEÞ is a constant, we can

ignore it and instead maximize the function given in Equation 1, which is equivalent to minimizing

FðxÞ. This operation is performed during registration. Thus, to derive our cost function from Bayes’

rule, we write:

P HjEð Þ ¼ P EjHð ÞP Hð Þ=P Eð Þ

P HjEð Þ / P EjHð ÞP Hð Þ

P HjEð Þ / exp �F’ xð Þ
� �

exp � Fe xð ÞþF’ xð Þ þFp xð Þ
� �� �

P HjEð Þ / exp � F’ xð Þ þFe xð Þ þF’ xð Þ þFp xð Þ
� �� �

P HjEð Þ / exp �F xð Þð Þ

(1)

The explicit Bayesian formulation above clarifies several features of our model. First, the prior

Table 2. Components of the registration potential function

Term Description Form

1 Fe x; x0;Eð Þ Penalizes changes in the
distances between
neighboring vertices in the
mesh.

He x;x0 ;Eð ÞþGe x;x0 ;Eð Þ
jEj

2 F# x; x0;Qð Þ Penalizes the changes in t
he angles of the triangles
in the mesh.

H# x;x0 ;Qð ÞþG# x;x0 ;Qð Þ
jQj

3 Fp x; x0;Pð Þ Penalizes any change in
the positions of the
vertices on the perimeter
of the map.

1

2
u2P

X

xð Þu� x0ð Þ2u

4 F’ x;Fð Þ Decreases as a retinotopic
vertex u approaches its
anchor-point y in the
retinotopy model.

P

u;y;s;wð Þ2F
w exp �

xð Þu�y

2s2

� �

jFj

5 He x; x0;Eð Þ Harmonic component of
the edge-length deviation
penalty Fe x; x0;Eð Þ.

1

2
u;vð Þ2E

X

rx u; vð Þ � rx0 u; vð Þð Þ2

6 Ge x; x0;Eð Þ Infinite-well component of
the edge-length deviation
penalty Fe x; x0;Eð Þ.

1

2
u;vð Þ2E

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rx0 u;vð Þ�q0

rx u;vð Þ�q0

q

� 1

� �

2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1�rx0 u;vð Þ

q1�rx u;vð Þ

q

� 1

� �

2
 !

7 H# x; x0;Qð Þ Harmonic component of
the angle deviation
penalty F# x; x0;Qð Þ.Fp x; x0;Pð Þ

1

2
a;b;cð Þ2Q

X

ax a; b; cð Þ � ax0 a; b; cð Þð Þ2

8 G# x; x0;Qð Þ Infinite-well component of
the angle deviation
penalty F# x; x0;Qð Þ.

1

2
a;b;cð Þ2Q

X ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax0
a;b;cð Þ

ax a;b;cð Þ

q

� 1

� �2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p�ax0
a;b;cð Þ

p�ax a;b;cð Þ

q

� 1

� �2
 !
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probability distributions assumed for vertex lengths are the same for all vertices (rows 1, 5, and six in

Table 2; P(H) in Equation 1). If we had ground truth maps for a large population, we could, in princi-

ple, derive edge-specific probability distributions for Equation 1, and convert these to edge-edge-

specific cost functions (Table 1) for the minimization process. We can get a sense of how these distri-

butions might differ across occipital cortex by visualizing the warp fields from our data set

(Supplementary file 1). These fields show that our registration process causes some vertices to

move much more than others, at least in our small subject pool (n = 8). These warp fields are not suf-

ficient to derive edge-specific priors because the number of subjects is small, and because we

do not know the end-points of the registration reflect the ground truth maps. The use of a large

dataset, such as the 181 HCP subjects (Benson et al., 2018) might be helpful in future work to

derive edge-specific priors. A further challenge to incorporating realistic priors would be to capture

the dependencies across edges in the prior distribution (the joint probability distribution, which

would be a function of thousands of variables, one per edge, imposing an enormous computational

burden).

A second feature of our method made explicit by the Bayesian formulation is that the prior prob-

ability distributions are 0 for solutions that violate the atlas topology. This assumption is imple-

mented implicitly in the cost function, which rises to infinity as the length of an edge approaches 0

or the angle between edges approaches 0. This aspect of the cost function prevents vertices or

edges from crossing, thus preserving topology. Because we assume that the cost function is the neg-

ative logarithm of the prior probability distribution, the infinite cost indicates an assumed probability

of 0. If ground truth data contradicted this assumption (that is, if there were ground truth maps

which violated the topology of the model), the prior probability distributions and corresponding

cost functions could be changed accordingly.

A third feature of the method is that the likelihood functions depend on the data quality. In

Table 1, line 4, the weighting of each vertex (w) is proportional to the variance explained by the pRF

model. PRF solutions with high variance explained lead to a higher cost when the atlas vertex is far

from the corresponding data point. This part of the cost function shows up in the likelihood, F’(x), in

the Bayesian formulation (Equation 1). The interpretation is that there is a low likelihood of observ-

ing a high-variance-explained pRF solution in a location far from the template solution. A more real-

istic likelihood calculation (but one that is beyond the scope of our current knowledge and

computational resources) would require a noise model that allowed one to compute how likely a

pattern of pRF solutions was given a hypothesized map.

Individual differences in structure-function relationship
An important question in human neuroscience is the degree to which different brains, when brought

into anatomical registration, share the same functional mapping. There is no single, agreed-upon

method to register the brains of different individuals, but a general finding is that cortical function

shows better inter-observer agreement when the brains are aligned based on sulcal topology (sur-

face registration) rather than volume registration (Wang et al., 2015; Van Essen et al., 1998). Here,

using surface registration, we find that substantial individual differences in functional mapping

remains, for example as evidenced by the amount of additional warping needed to align individual

brains to retinotopic measurements (Figure 6). These results are consistent with studies showing dif-

ferences in structural and functional alignment of primate and human area MT (Large et al., 2016).

They are also consistent with studies combining structural and functional alignment in the absence

of a model or template of the underlying function (Frost and Goebel, 2013; Haxby et al., 2011).

Such studies show that the extra warping driven by functional alignment leads to better predictions

of functional responses in cross-validated data.

The anatomical atlas, described previously (Benson et al., 2014), was adapted into the first step

of our method (Figure 4C) and is equivalent to the prediction using the retinotopic prior alone that

we present here (Supplementary file 2B). Consistent with previous results, we find that the prior

alone produces reasonably good predictions for the retinotopic maps of most subjects (Figure 7).

Additionally, maps predicted using the prior alone contain many of the advantages described here

such as topological smoothness, complete coverage of the visual field, and prediction of peripheral

retinotopy. However, the idiosyncrasies of individual subjects’ retinotopic maps are often not well

predicted by the retinotopic prior alone (Figures 3, 5A and B). By combining both the retinotopic

prior and a small amount of measured data, we are able to produce higher-quality predictions that
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not only share these advantages but also improve the prediction accuracy of the maps beyond that

of the measurement error (Figure 7).

Limitations and biases of the inferred maps
We have shown in this paper that the application of Bayesian inference to retinotopic mapping data

can yield substantial rewards for basic researchers interested in quantitative retinotopic analysis.

However, a number of questions about the scope and limitations of the method remain. For one, it

is unclear how our method, developed using data from a small subset of the population (eight sub-

jects), would cope with subjects whose retinotopic organizations are much different than those that

are typically assumed in vision science. Such edge-case subjects could include members of clinical

populations, such as individuals lacking an optic chiasm (Hoffmann et al., 2012; Bao et al., 2015;

Olman et al., 2018), or healthy individuals whose retinotopic boundaries are merely unusual

(Van Essen and Glasser, 2018). We consider how our Bayesian models perform for edge-cases by

fitting the models to two subjects from the Human Connectome Project whose retinotopic maps

were recently noted for their peculiarity by Van Essen and Glasser (2018). The retinotopic maps for

these subjects as well as the inferred iso-angular and iso-eccentricity lines in V1-V3 are shown in

Supplementary file 5. Both of these subjects have atypical polar angle organization in their left

hemisphere dorsal V2 and V3 maps. Regarding the limitations of the method as applied to subjects

such as these, two things are clear: first, the method is unable to reproduce the precise topology of

the subjects’ unusual dorsal maps, and, second, it is nonetheless capturing most of the maps accu-

rately. In particular, the inferred eccentricity maps are highly accurate despite the mismatched polar

angle maps. The polar angle maps cannot be accurately captured by the Bayesian model, because

the Bayesian model assumes a prior probability of zero to any solutions that differ topologically from

the template, such as these.

In the case of more extreme departures from typical retinotopic organization, such as the overlap-

ping maps observed in achiasmic patients, we cannot be certain that our method would yield coher-

ent inferences. However, we note that this problem is not unique to our method; in fact, generic

voxel-wise pRF models also fail for subjects with highly unusual retinotopic organizations such as

achiasma. Typically, these model failures are identified, and updates to the model are proposed to

account for the relevant conditions. In the case of achiasmic patients, the usual assumption that a

pRF can be described as a single Gaussian fails, and new models were developed with two spatially

displaced Gaussians (Hoffmann et al., 2012). In the case of our method, one might use an alternate

formulation of our retinotopic prior in order to better model the maps of the subjects shown in

Supplementary file 5 or subjects from a particular clinical population.

A separate but equally critical question about the method we present is whether it encapsulates

any systematic biases about retinotopic organization. Given the field’s imperfect knowledge about

precise retinotopic organization across individuals, this can be a difficult question to answer; how-

ever we note a number of features and assumptions along these lines. With respect to the retino-

topic prior, one critical assumptions that was employed during its creation involves the structure of

the polar angle reversals at map boundaries (e.g. the V1/V2 boundary or the V3/hV4 boundary). Our

prior assumes that the polar angle at these boundaries lies on the vertical meridians (or horizontal

meridians in the case of the V2/V3 boundaries). In the group-average retinotopic maps from the 181

HCP subjects (Supplementary file 3), however, it is clear that many polar angle reversals occur sev-

eral degrees away from the vertical (or horizontal) meridian, differing from the prior. In these cases,

our Bayesian maps differ systematically from the data. Because the Bayesian computation allows the

vertex positions to change but does not allow the retinotopic quantities to change, all retinotopic

locations contained in the prior are assigned to some cortical location in the Bayesian map, differing

from the observed validation data, which is often missing representations of the vertical meridians.

In addition, ‘notches’ of missing representation of the lower vertical meridian can be seen in several

polar angle maps (for example, inSupplementary file 3A, black arrows). In both cases—maps that

do not quite reach the vertical meridian and maps that have large notches along the boundaries—it

is not yet known whether these properties reflect unusual features of the underlying neuronal maps

or limits of the fMRI acquisition or analysis.
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Method availability and usage
The method described in this paper has been made publicly available in a number of ways in order

to enable easy use by other researchers. The Bayesian inference method itself is implemented as

part of a free software library called Neuropythy; we have publicly archived the version of this library

used in the preparation of this manuscript at DOI: 10.5281/zenodo.1312983. Additionally, we have

created a universally executable Docker image and have publicly archived it at DOI: 10.5281/zen-

odo.1313859. Detailed instructions for the use of both the library and the universally executable

Docker image are available at the Open Science Foundation repository associated with this paper

(https://osf.io/knb5g/). In brief, the method may be run with only a few inputs: a FreeSurfer directory

for the subject (which can be generated from an anatomical image), and a set of files containing the

measured retinotopic parameters for the subject’s cortical surface. The outputs produced are a simi-

lar set of files describing the inferred retinotopic parameters of the subject’s cortical surface. Run-

time on a contemporary desktop computer is less than an hour per subject. Detailed instructions on

how to use the tools documented in this paper are included in the Open Science Foundation website

mentioned above.

Materials and methods

Scientific transparency
All source code and notebooks as well as all anonymized data employed in this Methods section and

the preparation of this manuscript have been made publicly available at the Open Science Founda-

tion: https://osf.io/knb5g/. Version 0.6.0 and later of the Neuropythy library can automatic download

these data and interpret them into Python data structures.

Subjects
This study was approved by the New York University Institutional Review Board, and all subjects pro-

vided written consent. A total of eight subjects (4 female, mean age 31, range 26–46) participated in

the experiment. All scan protocols are described below.

Magnetic resonance imaging
All MRI data were collected at the New York University Center for Brain Imaging using a 3T Siemens

Prisma scanner. Data were acquired with a 64-channel phased array receive coil. High resolution

whole-brain anatomical T1-weighted images (1 mm3 isotropic voxels) were acquired from each sub-

ject for registration and segmentation using a 3D rapid gradient echo sequence (MPRAGE). BOLD

fMRI data were collected using a T2*-sensitive echo planar imaging pulse sequence (1 s TR; 30 ms

echo time; 75˚ flip angle; 2.0 � 2.0 � 2.0 mm3 isotropic voxels, multiband acceleration 6). Two addi-

tional scans were collected with reversed phase-encoded blips, resulting in spatial distortions in

opposite directions. These scans were used to estimate and correct for spatial distortions in the EPI

runs using a method similar to (Andersson et al., 2003) as implemented in FSL (Smith et al., 2004).

Anatomical images were processed using the FreeSurfer image analysis suite, which is freely avail-

able online (http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl et al., 1999a;

Fischl et al., 1999b; Fischl and Dale, 2000). Subject brains were inflated and aligned to FreeSurfer’s

anatomical fsaverage atlas.

Stimulus protocols
Each subject participated in 12 retinotopic mapping scans using the same stimulus employed in the

Human Connectome Project (Benson et al., 2018). Briefly, bar apertures on a uniform gray back-

ground swept gradually across the visual field at four evenly-spaced orientations while the subject

maintained fixation. Bar apertures contained a grayscale pink noise background with randomly

placed objects, faces, words, and scenes. All stimuli were presented within a circular aperture

extending to 12.4˚ of eccentricity. The bars were a constant width (1.5˚) at all eccentricities. Subjects
performed a task in which they were required to attend to the fixation dot and indicate when its

color changed.

The 12 scans were split into several subsets and analyzed as independent datasets. Six of the

scans (two of each bar width) were allocated to the subject’s validation dataset, while the remaining
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three scans were used for 21 training datasets: 6 datasets with one scan each, 5 datasets with two

scans each, 4 datasets with three scans each, 3 datasets with four scans each, 2 datasets with five

scans each, and one dataset with all six training scans. Additionally, all 12 scans were included in a

full dataset which was used for all analyses not related to the accuracy of the Bayesian inference

method.

Additionally, one previously published retinotopy dataset for with a wide field of view (48˚ of
eccentricity) was re-analyzed (Wandell and Winawer, 2011) (their Figure 3). The subject for this

dataset was also included in the newly acquired data, S1201. The wide-field-of-view dataset was

used as a further validation set for models derived from the newly acquired data for S1201, as it

enabled us to test the accuracy of model predictions in the far periphery from models derived from

data with limited eccentricity.

FMRI processing
Spatial distortions due to inhomogeneities in the magnetic field were corrected using in-house soft-

ware from NYU’s Center for Brain Imaging (http://cbi.nyu.edu/software). The data were then

motion-corrected by co-registering all volumes of all scans to the first volume of the first scan in the

session. The fMRI slices were co-registered to the whole brain T1-weighted anatomy, and the time

series resampled via trilinear interpolation to the 1 mm3 voxels within the cortical ribbon (gray mat-

ter). Finally, the time series were averaged for each voxel across all scans with the same stimulus

within a given dataset.

PRF solutions
Retinotopic maps were produced by solving linear, circularly symmetric population receptive field

(pRF) models for each voxel using Vistasoft, as described previously (Dumoulin and Wandell, 2008).

pRF models were solved using a two-stage coarse-to-fine approach on the time series in the 1 mm3

gray matter voxels. The first stage of the model fit was a grid fit, solved on time series that were

temporally decimated (2�), spatially blurred on the cortical surface using a discrete heat kernel

(approximately equal to a Gaussian kernel of 5 mm width at half height), and subsampled by a factor

of 2. The decimation and blurring helps to find an approximate solution that is robust to local min-

ima. The parameters obtained from the grid fit were interpolated to all gray matter voxels and used

as seeds for the subsequent nonlinear optimization. Finally, the pRF parameters were projected

from the volume to the cortical surface vertices for white, mid-gray, and pial surfaces using nearest-

neighbor interpolation; values were then averaged across the three layers using a weighted-mean in

which the fraction of BOLD signal variance explained by the pRF model was used as a weight. All

vertices with a pRF variance explained fraction less than 0.1 were ignored.

Models of retinotopy
To generate our initial models of the retinotopic maps, we begin by hand-drawing boundaries for 12

retinotopic maps. These boundaries need only be drawn once for a single group-average retinotopic

map. The boundaries are projected onto the cortical surface, and the retinotopic coordinates for

each vertex on the surface are deduced via a minimization procedure. This minimization is motivated

by two principles: (1) the retinotopic fields (polar angle and eccentricity) should be as orthogonal to

each other as possible and (2) the retinotopic fields should be as smooth as possible. To this end,

the minimization routine simultaneously maximizes both the smoothness of the retinotopic fields

between vertices connected by edges in the mesh as well as the overall orthogonality between the

polar angle field and the eccentricity field. The hand-drawn boundary values are held constant dur-

ing the minimization. Equation 2 gives the function f that is minimized, where � and % represent vec-

tors of the polar angle and eccentricity values, respectively; E represents the set of edges between

vertices in the mesh; and x represents the matrix of vertex coordinates (i.e., xu represents the coordi-

nate vector of the vertex u). During minimization the values of the polar angle and eccentricity vec-

tors are scaled such that both fields ranged from �1 to 1 (e.g., polar angle boundary values of 0˚
and 180˚ were assigned values of �1 and 1, respectively) so that the fields could be evaluated easily

for orthogonality; after the minimization, the polar angle was linearly rescaled back to the range

0˚�180˚ while eccentricity was rescaled so as to have an exponential distribution that best fit the

group-average. We employed this model generation routine using boundaries drawn over the
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group-average data (see Anatomically-defined Atlas of Retinotopy: Group Average, below) as well

as the Wang et al. (2015) atlas and the Hinds et al. (2008) V1 boundary as rough guidelines.

f �;�ð Þ ¼ � � �ð Þ2þ
u;vð Þ2E

X

�u� �vð Þ2þ �u � �vð Þ2

2jj xð Þu� xð Þvjj
(2)

A full description of the model, including how it can be projected onto an fsaverage spherical sur-

face or an individual subject’s fsaverage-aligned spherical surface, is provided in the open source

Neuropythy library (https://github.com/noahbenson/neuropythy).

Anatomically-defined atlas of retinotopy
Construction of the anatomically-defined atlas of retinotopy is summarized in Supplementary file 2.

Previous work employed a mass-spring-damper system combined with a nonlinear gradient-descent

minimization in order to register group-average retinotopic data, averaged on FreeSurfer’s fsavera-

ge_sym hemisphere (Greve et al., 2013), with a model of V1, V2, and V3 retinotopy (Schira et al.,

2010). In this paper, we modify this technique slightly to bring it more in line with previous estab-

lished methods such as those used by FreeSurfer for surface-based anatomical registration

(Dale et al., 1999; Fischl et al., 1999a). In brief, retinotopy is measured in a group of subjects via

fMRI; the subjects’ cortical meshes are aligned to the fsaverage surface via FreeSurfer’s surface reg-

istration; the retinotopic coordinates are then averaged across subjects at each vertex on a single

atlas of the cortical surface; a 2D atlas of retinotopy is then placed on this cortical surface; and

finally, the cortical surface is warped to match the retinotopic atlas as best as possible given con-

straints on the warping. Each of these steps is described in more detail below.

Group-average Data. Group-average retinotopic maps (Supplementary file 2B) were obtained

from 181 subjects whose data were published and made freely available as part of the Human Con-

nectome Project (Benson et al., 2018). The resulting group-average retinotopic maps are shown in

Supplementary file 2B.

Cortical Map Projection. The cortical surfaces of the fsaverage left and right hemispheres, on

which the group-average data were constructed, were inflated both to a smooth hemisphere (Free-

Surfer’s ‘inflated’ surface) as well as to a sphere (FreeSurfer’s ‘sphere’ surface); the vertices on the

spherical surfaces were then flattened to 2D maps using an orthographic map projection. Precise

parameters of this projection and the source code used to generate it are included in the Data Avail-

ability Statement. We refer to the 2D vertex coordinates in this resulting map as the ‘initial vertex

coordinates’ because they precede the warping of the vertex coordinates that occurs during

registration.

Registration. The initial vertex coordinates of the map projections described above were warped

in order to bring the polar angle and eccentricity measurements of the vertices into alignment with

the 2D model’s predictions of retinotopy while maintaining topological constraints: that is prevent-

ing triangles in the triangle mesh representing the 2D cortical map from inverting and penalizing

excessive stretching or compression of the map. This process was achieved by minimizing a potential

function defined in terms of the edges of the triangle mesh, the angles of the triangle mesh, and the

positions of the vertices with polar angle and eccentricity measurements above the weight threshold

(see Group-Average Data, above). Equation 3 gives this potential function, FðxÞ, which is further

broken down into four components detailed in Table 2. Fundamentally, the potential function F is a

sum of two kinds of penalties: penalties for deviations from the reference mesh and penalties for

mismatches between the vertices with retinotopic coordinates and their positions in the retinotopic

model. In the case of the former, the reference mesh is gi x0; E; Q; P; andF and the potential of the

deviations are defined by fe, f�, and fp. The latter is described by f’. In these functions, x represents

the n � 2 matrix of the 2D-coordinates of each vertex while �0 represents the same coordinates in

the reference mesh; E represents the set of undirected edges (represented as ðu; vÞ pairs such that

ðu; vÞ and ðv; uÞ are not both in E) in the reference mesh; Q represents the set of angle triples (a, b,

c) such that the angle is between edge ða; bÞ and edge ða; cÞ; P is the set of vertices that lie on the

perimeter of the 2D map projection; rx(u,v) is the Euclidean distance between vectors ðxÞu and ðxÞv;

and axða; b; cÞ is the counter-clockwise angle between vectors ððxÞb� ðxÞaÞ and ððxÞc� ðxÞaÞ;F repre-

sents the set of anchors defined by the retinotopic model in which each anchor is represented by a

tuple ðu;y;s;wÞ where w is the weight of the anchor, u is the vertex drawn to the anchor, s is the
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standard deviation of the anchor’s Gaussian potential well, and yy is the 2D point to which the

anchor is attached; the constants q0 and q1 are the minimum and maximum allowable edge lengths,

respectively.

F x;x0;E;Q;F;Pð Þ ¼ Fe x;x0;Eð ÞþF# x;x0;Qð ÞþFp x;x0;Pð ÞþF’ x;x0;Fð Þ (3)

The term of the potential function devoted to the retinotopic model is given in F’ (Equation 3;

Table 2). This potential term is a set of inverted-Gaussian potential wells called anchors. Each anchor

represents the attraction of a single vertex u, with measured polar angle �, eccentricity %, and weight

w, to a 2D point y, at which the retinotopic model predicts a polar angle value of � and an eccentric-

ity value of %. Note that each visual area represents every point ð�;%Þ in the visual field, there are

multiple anchors per vertex with retinotopic data. In fact, the retinotopic model used in this paper

defines nine maps in addition to the V1-V3 maps (see Model of Retinotopy, above), bringing the

total number of anchors per retinotopic vertex to 12. The additional areas are intended partly to

prevent vertices immediately outside of V1-V3 from being drawn incorrectly into the V1-V3 section

of the model and are not analyzed in detail in this paper. Each anchor additionally defines a parame-

ter s; this value is the width (standard deviation) of the anchor’s Gaussian potential well; s is defined

as the minimum distance from the given anchor to any other anchor to which u is also attracted; this

value was given a maximum value of 20e where e is the mean edge-length in the projected map.

The potential function was minimized using a gradient descent algorithm sensitive to the singular-

ities in the terms Ge, and G� (Table 2); whenever the singularity is accidentally crossed, the minimizer

backtracks and chooses a smaller step-size. This approach prevents the inversion (from counter-

clockwise ordering to clockwise ordering) of any triangle in the mesh, as such an inversion would

require the minimization trajectory to pass through a singularity at the point where a = 0 or a = p.

The source code used to minimize the potential function as well as specifications of the gradients of

each term is provided in the open-source library included with the Neuropythy and Neurotica librar-

ies (https://github.com/noahbenson/nben).

Minimization was run for at least 2500 steps in which the step-size was constrained such that the

displacement of each vertex in each step was at most 1/50th of the average edge-length in the map

projection. A small amount of exponentially distributed random noise was added to the gradient at

each step with the constraint that the gradient direction at each vertex be conserved; this noise did

not affect the minimum obtained by the search but did speedup convergence significantly (see asso-

ciated libraries for further details). Convergence was generally observed within 1000–2000 steps.

The set of vertex coordinates that resulted from this minimization brings the retinotopic measure-

ments associated with the vertices in V1, V2, and V3 referred to as the registered vertex

coordinates.

Prediction. The registered vertex coordinates, once obtained, give the alignment of the subject’s

cortical surface to the model of retinotopy; accordingly, a prediction of any vertex’s associated pRF

and visual area label can be derived by comparing the the vertex’s registered coordinates with the

model. Every vertex whose registered coordinates fall within the model’s V1 boundary, for example,

is labeled as part of V1. Because only the vertex coordinates, and not the vertex identities, are

changed during the registration process, there is no need to invert the registration: visual area label,

polar angle, and eccentricity values assigned to each vertex apply as readily to the vertices whether

they are visualized in the registered vertex coordinates or in the coordinates that define the subject’s

white-matter surface, for example. The retinotopic map predictions for the group-average data is

shown in Supplementary file 2D (left column).

Because the group-average retinotopic data were used in the registration, the predicted map

that results provides a reasonable estimate of any subject’s expected retinotopic map, as shown pre-

viously (Benson et al., 2012; Benson et al., 2014); although the predicted map does not account

for further individual differences in the structure to function relationship, as we show in this paper.

Additionally, because the predicted map from the group-averaged data is defined on the fsaverage

subject’s cortical surfaces, a retinotopic map prediction for any new subject, for whom retinotopic

mapping measurements may not be available, can be easily obtained: one can use FreeSurfer to

align the new subject’s cortical surface with the fsaverage subject’s surface (anatomical structure

alignment) then to project the retinotopic maps from the fsaverage subject to the new subject based

on the anatomical similarity between them. Because of this, we refer to this group-average
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retinotopic prediction as the anatomically-defined atlas of retinotopy. This atlas is used as the prior

for the Bayesian model fit, described below. The atlas is similar but not identical to one presented

previously (Benson et al., 2014).

Bayesian retinotopic maps
The anatomically-defined atlas of retinotopy, while providing a good prediction for most subjects’

individual retinotopic maps, nonetheless does not account for individual differences in the mapping

between anatomical location and retinotopic coordinates. Accordingly, predicted retinotopic maps

for individual subjects were refined starting from the anatomically-defined atlas of retinotopy using a

similar method as was used to generate the atlas originally; this process is detailed in Figure 4C. For

each subject, their cortical surface was aligned based on anatomical structure to the fsaverage sub-

ject’s cortical surface using FreeSurfer, then their retinotopic data were projected to a map using

the identical map projection described above in the section on the anatomically-defined atlas of reti-

notopy. Note that, in this case, the anatomical alignment to the fsaverage subject serves to make

the map projections as similar as possible between individual subjects and the anatomically-defined

atlas of retinotopy. If we were not interested in incorporating information obtained from the anatom-

ically-defined atlas of retinotopy (which represents a prior belief of retinotopic organization based

on group-average data), this step would not be necessary.

The individual subject’s projected map is then arranged according to the registered vertex coor-

dinates from the anatomically-defined atlas of retinotopy; this step reflects the prior belief that the

group-average registration to the retinotopy model is generally accurate for an individual subject

when that subject’s anatomical structure has been aligned to the fsaverage subject’s. Critically, none

of the steps taken so far in processing the individual subject’s data relies on any measurements of

retinotopy that might be associated with that subject. Rather, these steps have relied only on ana-

tomical structure. If, for a subject, no retinotopic measurements are made, then there is no data with

which to modify this prior belief; accordingly, the prediction of retinotopy for that subject would be

identical to the prediction of retinotopy contained in the anatomically-defined atlas. In other words,

without observation, the prior remains the prediction.

The next step registers the individually measured retinotopy data to the anatomically-defined

atlas. Before registration, the individual subject’s data is resampled onto a uniform triangular mesh,

and each vertex whose retinotopic measurements are above threshold are given a weight, w, based

on the variance explained, !, of its pRF model solution. The mesh is resampled to the same uniform

triangle mesh used as the initial vertex coordinates in the registration of the anatomically-defined

atlas of retinotopy in order to speedup registration. Triangles that are tightly pinched (i.e., triangles

with internal angles near 0 or p) can drastically slow the registration progress by forcing the mini-

mizer to frequently backtrack steps; resampling makes such behavior much less likely during the ini-

tial minimization. Aside from the weight, other parameters tracked by the potential field, including

anchors parameters used by the function F’(x), are obtained identically as with the anatomically-

defined atlas of retinotopy. These anchors inherit the weight of the vertex to which they apply, but

are reduced when the field sign of the triangles adjacent to the vertex does not match the field sign

of the visual area to which it is tied by the anchor or when the pRF size predicted by the model does

not match that of the vertex’s measured pRF. Details regarding the weights on anchors are provided

in the neuropythy library.

For each training dataset of each subject, minimization was run for 2500 steps using the same

protocol that was used with the anatomically-defined atlas of retinotopy. Retinotopic map predic-

tion, based on the positions of the registered vertex coordinates in the retinotopy model, were also

computed identically to those in the anatomically-defined atlas. Identical minimization and predic-

tion methods were run for each test dataset as well, but these results were not used to measure the

accuracy or effectiveness of the prediction methods.

Cortical magnification
Cortical magnification was calculated using both the observed retinotopic maps and the inferred

maps that were produced by combining each subject’s full retinotopy dataset with the retinotopic

prior. This combination of data should, in theory, produce the highest-quality retinotopic map pre-

dictions of which we are capable (see Results and Discussion). Cortical magnification was calculated
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by first projecting all vertices in a single visual area (such as V1) into the visual field based on their

pRF centers. The cortical magnification of a particular polar angle and eccentricity is then the total

white vertex surface-area (as calculated by FreeSurfer) of all pRF centers within a disk of some radius

a, divided by the area of the disk (pa2). For an eccentricity �, we used a radius a = �/3.
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The checkerboard underlay illustrates the anatomical warping. (D) There is approximate agreement
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The template extends from 0˚ to 90˚ eccentricity, whereas the Wang et al atlas is limited to the field
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prior is shown from 0 to 12˚ of eccentricity with boundary lines between areas. All 12 retinotopic

areas included in the prior are shown.
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performs when provided with atypical retinotopic maps. In the polar angle maps (top), black lines

indicate V1/V2/V3 boundaries. In the eccentricity maps (bottom), black lines show the outer V3

boundaries and the 0.5˚, 1˚, 2˚, 4˚ and 8˚ iso-eccentricity curves. Black arrows indicate the sites of
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Data availability

All data generated or analyzed in this study have been made public on an Open Science Foundation

website: https://osf.io/knb5g/. Preprocessed MRI data as well as analyses and source code for repro-

ducing figures and performing additional analyses can be found on the Open Science Foundation

website https://osf.io/knb5g/. Performing Bayesian inference using your own retinotopic maps. To

perform Bayesian inference on a FreeSurfer subject, one can use the neuropythy Python library

(https://github.com/noahbenson/neuropythy). For convenience, this library has also been packaged

into a Docker container that is freely available on Docker Hub (https://hub.docker.com/r/nben/neu-

ropythy). The following command will provide an explanation of how to use the Docker: ’> docker

run -it –rm nben/neuropythy:v0.5.0 register_retinotopy –help’. Detailed instructions on how to use
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the tools documented in this paper are included in the Open Science Foundation website mentioned

above.
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