Bayesian analysis of retinotopic maps
Abstract
Human visual cortex is organized into multiple retinotopic maps. Characterizing the arrangement of these maps on the cortical surface is essential to many visual neuroscience studies. Typically, maps are obtained by voxel-wise analysis of fMRI data. This method, while useful, maps only a portion of the visual field and is limited by measurement noise and subjective assessment of boundaries. We developed a novel Bayesian mapping approach which combines observation-a subject's retinotopic measurements from small amounts of fMRI time-with a prior-a learned retinotopic atlas. This process automatically draws areal boundaries, corrects discontinuities in the measured maps, and predicts validation data more accurately than an atlas alone or independent datasets alone. This new method can be used to improve the accuracy of retinotopic mapping, to analyze large fMRI datasets automatically, and to quantify differences in map properties as a function of health, development and natural variation between individuals.
Data availability
All data generated or analyzed in this study have been made public on an Open Science Foundation website: https://osf.io/knb5g/Preprocessed MRI data as well as analyses and source code for reproducing figures and performing additional analyses can be found on the Open Science Foundation website https://osf.io/knb5g/.Performing Bayesian inference using your own retinotopic maps.To perform Bayesian inference on a FreeSurfer subject, one can use the neuropythy Python library (https://github.com/noahbenson/neuropythy). For convenience, this library has also been packaged into a Docker container that is freely available on Docker Hub (https://hub.docker.com/r/nben/neuropythy).The following command will provide an explanation of how to use the Docker:> docker run -it --rm nben/neuropythy:v0.5.0 register_retinotopy --helpDetailed instructions on how to use the tools documented in this paper are included in the Open Science Foundation website mentioned above.
-
Bayesian Models of Human Retinotopic OrganizationOpen Science Framework, osf.io/knb5g/.
Article and author information
Author details
Funding
National Eye Institute (R01 EY027401)
- Jonathan Winawer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: This study was conducted with the approval of the New York University Institutional Review Board (IRB-FY2016-363) and in accordance with the Declaration of Helsinki. Informed consent was obtained for all subjects.
Copyright
© 2018, Benson & Winawer
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,316
- views
-
- 539
- downloads
-
- 117
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.
-
- Neuroscience
Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.