ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny

Abstract

Nephron segmentation involves a concert of genetic and molecular signals that are not fully understood. Through a chemical screen, we discovered that alteration of peroxisome proliferator-activated receptor (PPAR) signaling disrupts nephron segmentation in the zebrafish embryonic kidney (Poureetezadi et al., 2016). Here, we show that the PPAR co-activator ppargc1a directs renal progenitor fate. ppargc1a mutants form a small distal late (DL) segment and an expanded proximal straight tubule (PST) segment. ppargc1a promotes DL fate by regulating the transcription factor tbx2b, and restricts expression of the transcription factor sim1a to inhibit PST fate. Interestingly, sim1a restricts ppargc1a expression to promote the PST, and PST development is fully restored in ppargc1a/sim1a deficient embryos, suggesting Ppargc1a and Sim1a counterbalance each other in an antagonistic fashion to delineate the PST segment boundary during nephrogenesis. Taken together, our data reveal new roles for Ppargc1a during development, which have implications for understanding renal birth defects.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joseph M Chambers

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shahram Jevin Poureetezadi

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amanda Addiego

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Manuela Lahne

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rebecca A Wingert

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    For correspondence
    rwingert@nd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3133-7549

Funding

National Institutes of Health (R01DK100237)

  • Rebecca A Wingert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Zebrafish were maintained in the Center for Zebrafish Research at the University of Notre Dame. All studies were performed with approval of the University of Notre Dame Institutional Animal Care and Use Committee (IACUC), under protocol numbers 13-021 and 16-025.

Copyright

© 2018, Chambers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,657
    views
  • 224
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph M Chambers
  2. Shahram Jevin Poureetezadi
  3. Amanda Addiego
  4. Manuela Lahne
  5. Rebecca A Wingert
(2018)
ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny
eLife 7:e40266.
https://doi.org/10.7554/eLife.40266

Share this article

https://doi.org/10.7554/eLife.40266