ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny

Abstract

Nephron segmentation involves a concert of genetic and molecular signals that are not fully understood. Through a chemical screen, we discovered that alteration of peroxisome proliferator-activated receptor (PPAR) signaling disrupts nephron segmentation in the zebrafish embryonic kidney (Poureetezadi et al., 2016). Here, we show that the PPAR co-activator ppargc1a directs renal progenitor fate. ppargc1a mutants form a small distal late (DL) segment and an expanded proximal straight tubule (PST) segment. ppargc1a promotes DL fate by regulating the transcription factor tbx2b, and restricts expression of the transcription factor sim1a to inhibit PST fate. Interestingly, sim1a restricts ppargc1a expression to promote the PST, and PST development is fully restored in ppargc1a/sim1a deficient embryos, suggesting Ppargc1a and Sim1a counterbalance each other in an antagonistic fashion to delineate the PST segment boundary during nephrogenesis. Taken together, our data reveal new roles for Ppargc1a during development, which have implications for understanding renal birth defects.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joseph M Chambers

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Shahram Jevin Poureetezadi

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Amanda Addiego

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Manuela Lahne

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rebecca A Wingert

    Department of Biological Sciences, University of Notre Dame, Notre Dame, United States
    For correspondence
    rwingert@nd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3133-7549

Funding

National Institutes of Health (R01DK100237)

  • Rebecca A Wingert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tanya T. Whitfield, University of Sheffield, United Kingdom

Ethics

Animal experimentation: Zebrafish were maintained in the Center for Zebrafish Research at the University of Notre Dame. All studies were performed with approval of the University of Notre Dame Institutional Animal Care and Use Committee (IACUC), under protocol numbers 13-021 and 16-025.

Version history

  1. Received: July 25, 2018
  2. Accepted: November 23, 2018
  3. Accepted Manuscript published: November 26, 2018 (version 1)
  4. Version of Record published: December 4, 2018 (version 2)

Copyright

© 2018, Chambers et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,556
    views
  • 214
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph M Chambers
  2. Shahram Jevin Poureetezadi
  3. Amanda Addiego
  4. Manuela Lahne
  5. Rebecca A Wingert
(2018)
ppargc1a controls nephron segmentation during zebrafish embryonic kidney ontogeny
eLife 7:e40266.
https://doi.org/10.7554/eLife.40266

Share this article

https://doi.org/10.7554/eLife.40266

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Y Cheng
    Research Article Updated

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    2. Neuroscience
    Amy R Poe, Lucy Zhu ... Matthew S Kayser
    Research Article

    Sleep and feeding patterns lack strong daily rhythms during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. In Drosophila, circadian sleep patterns are initiated with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar larval period (L2), sleep and feeding are spread across the day; these behaviors become organized into daily patterns by the 3rd instar larval stage (L3). Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms trigger the formation of sleep-circadian circuits and behaviors.