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Abstract Cell lineages provide the framework for understanding how cell fates are decided

during development. Describing cell lineages in most organisms is challenging; even a fruit fly larva

has ~50,000 cells and a small mammal has >1 billion cells. Recently, the idea of applying CRISPR to

induce mutations during development, to be used as heritable markers for lineage reconstruction,

has been proposed by several groups. While an attractive idea, its practical value depends on the

accuracy of the cell lineages that can be generated. Here, we use computer simulations to estimate

the performance of these approaches under different conditions. We incorporate empirical data on

CRISPR-induced mutation frequencies in Drosophila. We show significant impacts from multiple

biological and technical parameters - variable cell division rates, skewed mutational outcomes,

target dropouts and different sequencing strategies. Our approach reveals the limitations of

published CRISPR recorders, and indicates how future implementations can be optimised.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40292.001

Introduction
Starting from a single cell - the fertilised egg - multicellular organisms undergo repeated rounds of

cell division to produce the adult form. The divisions that generate these adult cells constitute a

genealogical tree with the fertilised egg at its root and each adult cell as a terminal branch. Knowing

the cell lineage that produces a fully developed organism from a single cell provides the framework

for understanding when, where and how cell fate decisions are made.

Obtaining high resolution (single-cell level) lineages is a challenging task that has been solved

only in animals with relatively few cells, such as the nematode Caenorhabditis elegans: its complete

lineage (~1000 cells) was deduced by painstaking observation of each cell division under the micro-

scope. This approach is impossible in larger animals, in which most cells are inaccessible to micros-

copy and their number becomes quickly unmanageable. The 16 rounds of cell division required to

produce a hatched Drosophila larva, for example, result in about 50,000 cells (Lehner et al., 2001)

and further rounds of division produce an adult with approximately 10
6 cells. The bodies of mice and

humans consist of 1010 to 1014 cells respectively (Sender et al., 2016).

Recently it was proposed that naturally occurring somatic mutations, which accumulate in cells

during the lifetime of an organism, could be used as lineage markers to reconstruct its entire cell

lineage (Frumkin et al., 2005; Salipante and Horwitz, 2006). This is directly analogous to the use

of heritable mutations, accumulating through time, to reconstruct a species phylogeny. While this
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approach is theoretically possible (Frumkin et al., 2005), it is nevertheless limited by the enormous

challenge of detecting these rare mutations within the genomes of individual cells.

As a solution to the problem of reading the mutations, several recent papers have explored the

idea of using CRISPR-induced somatic mutations, targeted to artificial sequences inserted as trans-

genes into the genome (termed ‘CRISPR recorders’) (McKenna et al., 2016; Frieda et al., 2017;

Junker et al., 2016; Kalhor et al., 2018; Perli et al., 2016; Alemany et al., 2018; Schmidt et al.,

2017; Raj et al., 2018; Attardi et al., 2018; Spanjaard et al., 2018; Junker et al., 2016). The

recorders consist of arrays of CRISPR target sites, targeted by their cognate sgRNAs and Cas9 dur-

ing development. Starting in early embryogenesis, CRISPR-induced mutations occur stochastically at

these target sites, in each cell of the body, and these mutations are stably inherited by the progeny

of these cells. In most cases, the mutation destroys the match between target and sgRNA meaning a

mutated target is immune to further change. At the end of development only the recorder sequence

has to be read rather than the whole genome; the accumulated mutations can then be used as phy-

logenetic characters allowing the reconstruction of a tree of relationships between all cells

(Figure 1).

The basic principle of recorder-based lineage tree reconstruction is easy to grasp. What is far less

clear is whether the lineages produced by these methods are accurate enough for us to draw mean-

ingful conclusions from them. Of course the required accuracy will depend on the intended use of

the lineage, but to date few studies have considered how accurate the lineages produced might be

(Frieda et al., 2017; Schmidt et al., 2017; Spanjaard et al., 2018).

The ideal way of assessing the accuracy of these techniques would be to compare the real cell

lineage of an organism against the lineage inferred by the recorder (Schmidt et al., 2017). This is

difficult to implement in practice, however, because in most cases the real cell lineages are

unknown.

We have taken the alternative approach of computationally simulating the processes of cell divi-

sion and accumulation of mutations in a recorder and then comparing the lineage inferred from the

recorder to the known in silico reference tree. We have used this approach to estimate the accuracy

of lineage reconstruction in different situations (type and complexity of recorder, mutation rates, cell

Figure 1. Reconstructing cell lineages using CRISPR-induced somatic mutations. Left: Development begins with a

zygote carrying in its genome a lineage recorder composed of a series of CRISPR targets (blue boxes). During

subsequent cell divisions, any target of the recorder can be cleaved by Cas9 in any cell, leaving a specific

mutational signature on the target which will be inherited by all the descendants of the cell. Numbers represent

the the cleaved target in the recorder and its mutational signature is represented by a colour. Middle: At the end

of development, the recorder of every cell is sequenced, recovering the pattern of accumulated mutations in each

of the targets (coloured boxes). Right: The pattern of mutations is used to reconstruct the cell lineage, in a similar

way to how a phylogenetic tree is inferred from the sequences of homologous genes.

DOI: https://doi.org/10.7554/eLife.40292.002
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lineage depth, etc.), taking into account empirical measures of mutation rates and frequencies of dif-

ferent mutational outcomes derived from in vivo experimental data from Drosophila melanogaster.

While some previous studies used simulations to evaluate the reconstruction of small cell lineages,

no study has attempted this on cell lineages of tens of thousands of cells (Frieda et al., 2017;

Schmidt et al., 2017).

Different designs of CRISPR recorders have been implemented, including recorders that register

point mutations on arrays of barcoded targets (GESTALT; McKenna et al., 2016; Raj et al., 2018),

ones that rely on ‘collapsing’ target arrays through deletions (MEMOIR; Frieda et al., 2017), record-

ers that target identical target sites located on separate transgenes (ScarTrace and LINNAEUS;

Junker et al., 2016; Schmidt et al., 2017; Attardi et al., 2018; Alemany et al., 2018;

Spanjaard et al., 2018) and ones that target the CRISPR sgRNA itself (Kalhor et al., 2018;

Perli et al., 2016). In this work we have simulated the behaviour of the first two types of recorders,

but the insights that we have gained should apply to all types of recorders. Ultimately, these simula-

tions will help us to establish a set of criteria for the optimal design of CRISPR-based lineage record-

ers, as well as to understand the limitations of these techniques when addressing real biological

questions.

To assess the power of CRISPR-based lineage recorders in cell lineage reconstruction, we focus

on the conditions required to reconstruct a cell lineage of ~ 65,000 cells. This roughly corresponds

to the size of the cell lineage of a Drosophila first instar larva, of a pharyngula stage zebrafish

embryo, or a stage E8.0 mouse embryo (Lehner et al., 2001; Kane, 1999; Kojima et al., 2014,

respectively).

Results

General description of the simulations
In our simulations, a cell is implemented as a vector of m targets. We begin each simulation with one

cell, representing the fertilised egg, that has all its targets in an unmutated state. The initial cell then

undergoes a series of cell divisions (d), growing into a population of N cells, where N ¼ 2
d. Following

each cell division, each unmutated target can mutate (with a given probability �d) to one of several

possible mutated states. Once a target is mutated, it can no longer change, either to revert to the

unmutated state or to transit to a new state (Figure 2A). We expect the frequency of reversions to

be negligible as even single nucleotide changes result in a large decrease in mutation rate.

A unique label was given to each cell during the simulation. The sequence of simulated cell divi-

sions were recorded in the form of a tree, whose topology describes the lineage relationships

between all cells (the ‘reference tree’). At the end of the simulation, we randomly sampled a number

of cells and used the pattern of mutations accumulated in those cells to infer their cell lineage (the

‘inferred tree’) using the Neighbor-Joining method (Saitou and Nei, 1987) (for a comparison with

parsimony see Figure 2—figure supplement 1).

The accuracy of lineage reconstruction of each simulation was determined by comparing the

inferred tree with the reference tree using a measure derived from the Robinson-Foulds algorithm

(Robinson and Foulds, 1981), which calculates the percentage of splits in the reference tree that

are precisely recovered in the inferred tree (Figure 2B). If the inferred tree is identical to the refer-

ence tree, the accuracy is 100%. This provides a strict measure of the global accuracy of the inferred

lineage tree. The accuracy of each lineage reconstruction was estimated as the mean accuracy of 10

subsamples of 1000 cells.

Impact of mutation rate on the accuracy of cell lineage reconstruction
We simulated a lineage with a depth of 16 cell divisions (d ¼ 16), yielding 65,536 cells (216). To deter-

mine the effect of varying the mutation rate on the accuracy of lineage reconstruction, we performed

simulations with a recorder carrying 100 targets (m ¼ 100) and a rate of mutation �d varying from

0.01 to 0.3 mutations per cell division per target. In parallel, we tested how the diversity of muta-

tional outcomes (number of distinct mutated states) at each target could influence the accuracy of

lineage reconstruction, by varying the number of possible mutational outcomes at each target

between 2 and 32. In each case the different mutational outcomes were considered to be

equiprobable.
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As expected, these simulations show that the mutation rate and the diversity of mutations have a

strong effect on the accuracy of cell lineage reconstruction (Figure 2C). A low diversity of possible

mutational outcomes gives poorer results than a higher diversity. Mutation rates show a broad opti-

mum between between 0.05 and 0.2 mutations per cell division per target; under these rates, 56–

97% of target sites are mutated after 16 cell divisions. Lower mutation rates lead to more targets

having no mutations, thus contributing no information for reconstructing the cell lineage. Higher

mutation rates lead to most targets being mutated during the early cell divisions, leaving few targets

available for recording later events.

Figure 2. Computational simulation of CRISPR recorders (A). In our simulations, an initial cell with multiple CRISPR

targets (m) yields N cells after a given number of cell divisions (d). The recorder accumulates independent CRISPR-

induced mutations with a probability, in each target, of �d per cell division; the mutations are inherited in

subsequent cell divisions. The pattern of mutations accumulated in each cell is used to infer the lineage tree. (B)

The accuracy of lineage reconstruction was determined by comparing the inferred tree with the reference tree

using using a measure related to the Robinson Foulds method. The unmutated state of the recorder was used to

root the tree. (C) Accuracy of lineage reconstruction with a recorder of 100 CRISPR targets after 16 cell divisions

(yielding 65,536 cells) over a range of mutation rates. Each line represents the mean accuracy (10 simulations) for

simulations resulting in different numbers of equiprobable mutated states. The optimal mutation rate for each

number of mutated states is indicated with an open circle. Vertical lines represent 95% confidence intervals. (D)

Accuracy of lineage reconstruction for different mutation rates and numbers of CRISPR targets. Mutations were set

to result in 16 equiprobable mutated states. Dashed lines represent different accuracy thresholds (levelplot) after a

LOESS regression. For each parameter combination, we plot the mean accuracy of 10 simulations after 16 cell

divisions.

DOI: https://doi.org/10.7554/eLife.40292.003

The following figure supplement is available for figure 2:

Figure supplement 1. Comparing the performance of Neighbor Joining and Maximum Parsimony in lineage

reconstruction.

DOI: https://doi.org/10.7554/eLife.40292.004
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In practice, CRISPR activity generates a range of mutations (mostly small deletions or insertions)

at varying frequencies. We have measured the actual rates and diversity of CRISPR-induced muta-

tions in vivo (see below) and used these empirical data in our subsequent simulations.

Tuning the mutation rate of a CRISPR recorder in vivo
Our simulations show that specific mutation rates must be achieved experimentally in order to opti-

mise cell lineage reconstruction. There are several ways to vary CRISPR mutation rates in vivo, includ-

ing the use of different sgRNA:target pairs, varying the expression levels of sgRNA and Cas9, and

using variants of sgRNA or Cas9 that influence their stability or activity. We chose to adjust the

mutation rate by altering the target sequence in order to introduce mismatches in the sgRNA:target

pairing (similar to the strategy used on cultured cells by McKenna et al., 2016); this is known to

reduce the targeting efficiency (Hsu et al., 2013; Fu et al., 2014). We have measured the mutation

rate of a series of different variants of a CRISPR target to find those with the optimum rates for cell

lineage reconstruction of the Drosophila embryo.

We took advantage of a previous study by Hsu et al. (2013) who analysed the effects of sgRNA:

target pairing mismatches on the efficiency of targeting a section of the human EMX1 gene. Based

on this study, we selected 32 variants of the Emx1.6 target (Hsu et al., 2013), including the wild-

type sequence and 31 variants with single- or double-nucleotide changes at different positions within

the target sequence (Supplementary file 1—Table 1). To compare the mutation rates of the 32 tar-

gets, we designed and synthesised a single construct that carries all 32 variants in tandem. In the

same construct, we incorporated a transgene constitutively expressing the Emx1.6 sgRNA under the

Drosophila U6.2 promoter (Port et al., 2014) (Figure 3A). We generated transgenic Drosophila lines

carrying a single copy of this construct at the 37B7 locus, using fC31-mediated integration

(Bateman et al., 2006).

Males carrying the Emx1.6 sgRNA and the target array were crossed with virgin females carrying

a constitutively expressed Cas9 transgene (Actin::Cas9, Port et al., 2014) to generate progeny car-

rying a single copy of the CRISPR target array, the sgRNA and the Cas9 transgene. We collected

these progeny at different developmental stages (end of embryogenesis, late L3 larvae, newly

Figure 3. Tuning the mutation rate of a CRISPR recorder in vivo. (A) CRISPR recorder designed to test the mutation rates of 32 variants of the Emx1.6

target in Drosophila. The recorder consists of two transgenic constructs brought together by genetic crosses. The first construct carries an array of the

32 target variants and a transgene expressing the Emx1.6 sgRNA under the constitutive Drosophila U6.2 promoter (Port et al., 2014). The second

construct expresses the Streptococcus pyogenes Cas9 gene under the constitutive Drosophila Act5C promoter (Port et al., 2014). (B) Double

heterozygotes carrying both constructs were collected at embryonic, late larval (L3) and adult stages and analysed for mutations in the target array by

PCR amplification and sequencing of the recorder. (C) Proportion of targets mutated at different stages, for the eight most efficient target variants.

‘Untargeted’ represents background mutations or sequencing errors observed in the absence of the Cas9 transgene. (D) Estimates of cell lineage

accuracy from computer simulations (as in Figure 2C) using the mutational outcomes observed in vivo on the FAST target.

DOI: https://doi.org/10.7554/eLife.40292.005
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eclosed adults) to assess the number of mutations that had accumulated in each of the 32 target var-

iants at these three stages (Figure 3B).

We pooled individuals collected at each of the three chosen developmental stages, performed

PCR on genomic DNA and used high throughput sequencing to characterise the mutated targets. In

individual animals, mutational frequencies are influenced both by the probability of each mutational

outcome of CRISPR and by the clonal expansion of cells that carry each mutation. Since we have ana-

lysed populations of individuals and expect no systematic clonal biases associated with specific

mutations in CRISPR recorders, we expect that our estimates of mutational frequencies largely

reflect the frequencies of CRISPR-induced mutations on our target.

Our results confirm that, by employing different target variants, we can achieve widely different

rates of mutation. As expected, the target that has perfect complementarity with the Emx1.6 sgRNA

(target 16, named the ‘FAST’ target) showed the highest mutation rate; having corrected for

sequencing errors ( ~ 1% of control targets have differences due to PCR or sequencing errors,

Supplementary file 1—Table 1) we observed that 87% of the targets carried a mutation at the end

of embryogenesis (Figure 3C). This corresponds to a mutation rate of �d = 0.1195 per cell division,

assuming a constant mutation rate per cell division (see later for consideration of uneven rates per

cell division). The other targets showed lower mutation rates: in the six variants with the highest

rates, �d ranged from 4 � 10�4 (target 15) to 6 � 10�2 (target 6) mutations per cell division

(Supplementary file 1—Table 2).

The mutation rate of the FAST target (�d = 0.1195) falls within the optimal range we had esti-

mated for reconstructing the lineage of 65,536 cell embryos, assuming a uniform rate of cell division

(see Figure 2C). Targets with slower mutation rates would be suited for lineaging past the embry-

onic stages. Conversely, faster mutation rates would be optimal for lineaging embryos at earlier

stages, following fewer cell divisions. Instances of rapid or unequal rates of cell division would also

require faster mutation rates (see below).

Simulating cell lineage reconstruction based on experimentally
observed mutational outcomes
Thus far, our simulations assumed that the targets can mutate to a certain number of character

states with equal probability. This assumption does not reflect the complexity of CRISPR mutagene-

sis observed in vivo. Our sequencing data for the 32 variants of the Emx1.6 target in Drosophila pro-

vide empirical measurements not only of the rate of mutation but also of the diversity of different

mutational outcomes and their relative frequencies in a CRISPR recorder in vivo. Using these data

we refined our simulations using the real set of mutational outcomes and their observed relative

frequencies.

We focused on the complexity of mutational outcomes affecting the FAST target. As reported in

previous studies (van Overbeek et al., 2016; Allen et al., 2018; Chen et al., 2018), we found that

most of the mutations were located close to the Cas9 editing site. This suggests that most of the

mutational information can be extracted by reading the nucleotides surrounding the editing site.

Focusing on the 9 bp adjacent to the PAM sequence (Figure 4B) we observed >200 mutated states.

The frequencies of mutations follow an exponential curve, with a few variants occurring at high fre-

quency (Figure 4C), in contrast to a naive assumption of equiprobable mutational outcomes.

Using the observed distribution of these 9mers and the estimated overall �d, we carried out 1000

simulations of the mutational process in a hypothetical construct carrying 32 identical FAST targets.

We used 32 targets because we have shown that synthesising and generating transgenic flies with

such a construct is feasible. For convenience, we considered 61 out of the ~200 observed states: 59

states representing the 59 most common mutations (which account for 95% of the total observed

mutations; see Figure 4C), a 60th state with a frequency of 5% that accounts for all other outcomes

combined, and the 61st state representing the unmutated target.

Using the experimentally measured distribution of mutational outcomes, the accuracy of cell line-

age reconstruction is 72% (see Figure 5B). Rarely occurring mutations are less likely to appear inde-

pendently in the same target in more than one branch of the lineage tree (an instance of

homoplasy), suggesting that rare mutations are better lineage markers than more frequent muta-

tions. To take advantage of this we introduced a weighting scheme whereby mutations are weighted

in inverse proportion to their frequency of occurrence (see Materials and methods). Following this
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approach, the accuracy of lineage reconstruction using the same 61 states improved from 72% to

82% (Figure 5B).

Impact of uneven rates of cell division on the accuracy of cell lineage
reconstruction
So far we have assumed that the probability of mutation per available target (�d) is the same in every

cell division. This would be a reasonable assumption if all cells have a similar rate of cell division and

if that rate remains constant during the course of development. In many species, however, the rate

of cell division in embryogenesis varies among cells and through time. Early Drosophila embryos, for

example, initially go through a series of 13 rapid and near-synchronous nuclear divisions to generate

a uniform syncytial blastoderm (Zalokar and Erk, 1976); during this phase the duration of each

mitotic cycle is very short (~10 min). After cellularisation at cell cycle 14, the rate of cell division in

the embryo slows considerably and becomes asynchronous (Foe, 1989; Hartenstein, 1993).

To estimate the impact of uneven rates of cell division on cell lineage reconstruction we modelled

the mutation events as a Poisson process dependent on time rather than on cell divisions. A Poisson

process assumes that a given event (in this case a CRISPR-induced mutation) occurs stochastically at

a given rate �t. We estimated that setting �t at 0.0014 mutations per site per minute would produce

the observed proportion of mutated FAST targets (87%) after 24 hr of embryonic development. We

set the cell division intervals to approximate those known from Drosophila development (see

Materials and methods) and we modelled the frequency and diversity of mutational outcomes on

those observed in the FAST target (see previous section). Under these conditions, we would expect

the accuracy of lineage reconstruction to be considerably worse, as there will be many fewer

Figure 4. Mutational outcomes of CRISPR in vivo. (A) Examples of two mutational outcomes after CRISPR

cleavage. The 9-nucleotide sequence located immediately upstream of the PAM (coloured box) captures most of

the variation resulting from CRISPR-induced mutations (Figure 4—figure supplement 1). The target sequence is

shown in blue, PAM sequence in pink, flanking sequence in grey. (B) Relative frequencies of the five most common

mutational outcomes in the FAST target. (C) Cumulative probability of the mutational outcomes. 59 mutations

account for 95% of the total number of mutations.

DOI: https://doi.org/10.7554/eLife.40292.006

The following figure supplement is available for figure 4:

Figure supplement 1. Accuracy of reconstruction varying the number of character states and nucleotides (Nmers)

used for reconstruction.

DOI: https://doi.org/10.7554/eLife.40292.007
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mutations accumulated in the rapid early cell cycles, and indeed the accuracy fell to just 9% (without

using the weighting scheme; see Figure 5B).

We hypothesized that the optimal value of �t would be different in this scenario of unequal cell

divisions: that a higher �t should improve the accuracy of the reconstructed lineage because it would

help to lineage the rapid early cell cycles. To test this hypothesis we performed simulations using dif-

ferent values of �t. The results show that the accuracy did indeed improve with increasing rates of

mutation (Figure 5—figure supplement 1), with a maximum accuracy of 73% at �t = 0.0154 (11

times higher than the optimal rate for embryos with a uniform rate of cell division; Figure 5B). These

results suggest that higher mutation rates are needed for high lineaging accuracy when the rates of

cell division are uneven.

Modelling the effects of target dropouts
Given the number of targets needed to reconstruct a cell lineage accurately (Figure 2D), lineage

recorders must include arrays of tens or hundreds of targets. CRISPR activity affecting multiple tar-

gets simultaneously, in the same cell, can result in deletions of the DNA between these targets (see

Figure 6). Such deletions could remove multiple targets, hampering accurate cell lineage reconstruc-

tion. We modelled the potential impact of these ‘dropouts’ on the accuracy of lineage reconstruc-

tion, by conducting simulations (with uniform cell divisions, �d = 0.1195 and m = 32, as before) under

a scenario in which every time two or more targets were mutated in a given cell at a given cell cycle,

we removed all the targets located between them (see Materials and methods). We find that drop-

outs have a major impact on the accuracy of lineage reconstruction (Figure 6B); after 16 cell divi-

sions, the accuracy dropped from 72% to 23% (or from 82% to 26% with weighted mutational

outcomes).

Figure 5. Effects of cell division rate on lineage reconstruction. (A) Scheme of the comparison between uniform

and actual cell division rates in Drosophila embryos. (B) Accuracy of lineage reconstruction under a uniform cell

division rate (left) compared to rates that approximate those actually observed during Drosophila development

(right) (Zalokar and Erk, 1976; Foe, 1989), using mutation rates calculated from real experiments for the FAST

target (�t = 0.0014), or optimised for accuracy of reconstruction (�t = 0.0154). Violin plots represent the distribution

of reconstruction accuracies of 1000 simulations after 16 cell divisions. The accuracy of reconstruction using 32

FAST targets, with or without weighting of mutations, is represented in orange and green respectively. In yellow is

the accuracy of 32 targets with an optimal �t (with no weighting).

DOI: https://doi.org/10.7554/eLife.40292.008

The following figure supplement is available for figure 5:

Figure supplement 1. Finding the optimal mutation rate for the real rates of cell division in Drosophila embryos.

DOI: https://doi.org/10.7554/eLife.40292.009
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Optimising cell lineage reconstruction for in situ sequencing with 2, 4
or 16 character states
Besides the biological constraints that influence our ability to reconstruct the cell lineage based on

CRISPR recorders (mutation rates, diversity of CRISPR mutations, rates of cell division, target drop-

outs), there are technical constraints that currently limit our ability to read the information contained

in these recorders. Thus far, our simulations have assumed that we can reliably read up to nine

nucleotides surrounding each target site over tens of targets, from individual cells. This can be

achieved in dissociated single cells using modern high-throughput sequencing technologies

(Spanjaard et al., 2018; Alemany et al., 2018; Raj et al., 2018).

Ideally, CRISPR-based lineage recorders could also be used in combination with spatially resolved

sequencing (in situ sequencing), so that lineage information of single cells could be recorded

together with their exact position in the developed embryo. Achieving accurate sequencing of multi-

ple nucleotides in tens of targets in cells in situ is currently impractical, however, less ambitious in

situ approaches have been proposed. The MEMOIR approach (Frieda et al., 2017) has addressed

this by employing single molecule in situ hybridization to distinguish mutated from unmutated

targets.

In MEMOIR, only two character states can be detected per target (‘scratchpad’), mutated versus

unmutated. Moreover, successive rounds of in situ hybridization are needed to interrogate many dis-

tinct targets, which places a constraint on the number of targets that can be read. (Frieda et al.,

2017) have shown that three targets can be read per hybridization and up to 9 rounds of hybridiza-

tion are feasible (Frieda et al., 2017); thus, reading two character states per target over ~ 30 targets

seems to be achievable by the MEMOIR approach.

We carried out simulations to test how MEMOIR would perform using 32 targets, a mutation rate

�d = 0.1195 and a readout of 2 character states (‘mutated’ or ‘unmutated’). We find that the accu-

racy is only 4%. Even with an optimal mutation rate resulting in 50% target saturation (Frieda et al.,

2017) the accuracy of lineage reconstruction would be only ~ 15% (data not shown).

In the future, in situ sequencing methods could be developed to interrogate the sequence of

each target. These methods would be subject to different technical constraints than MEMOIR. Thus

far, in situ sequencing efforts have mostly been based on sequencing by ligation and used the SOLiD

Figure 6. Effects of dropouts on lineage reconstruction. (A) Schematic representing how targets can be dropped

out by simultaneous CRISPR edits. (B) Accuracy of lineage reconstruction without dropouts (left) or with the

presence of dropouts (right), using a �d = 0.1195. Violin plots represent the distribution of reconstruction

accuracies of 1000 simulations after 16 cell divisions. The accuracy of reconstruction using 32 FAST targets, with or

without weighting of mutations, is represented in orange and green respectively. In black is the accuracy when

simulating the 10 targets of the Gestalt v7 construct (with no weighting; see Figure 6—figure supplement 1).

DOI: https://doi.org/10.7554/eLife.40292.010

The following figure supplement is available for figure 6:

Figure supplement 1. Simulating the mutational outcomes of the GESTALT v7 recorder.

DOI: https://doi.org/10.7554/eLife.40292.011
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sequencing technology (Lee et al., 2014; Ke et al., 2013), which uses consecutive ligations of fluo-

rescent oligonucleotides to interrogate pairs of dinucleotides in the target sequence sequentially

(Valouev et al., 2008)). The SOLiD colour code is degenerate, as four colours are used to represent

all 16 possible DNA dinucleotides.

As a first step we wanted to explore the SOLiD parameter space extensively, to determine how

the number of targets (m) and mutation rates (�d) affect the accuracy of lineage reconstruction when

reading each target with one SOLiD ligation/detection cycle (only four character states) (Figure 7A).

For this, we performed 10 simulations over a range of values for �d (from 0.01 to 0.3 mutations per

cell division) and m (from 10 to 300 targets). In these simulations we assumed that the four possible

mutated states were equiprobable and used the complete inferred tree to estimate the accuracy.

Our results show (Figure 7C) that the optimal mutation rate for lineage reconstruction by this

approach lies between 0.05 and 0.12 mutations per cell division, and that is possible to get up to

99% accuracy with 260 targets or more. Using alternative measures of reconstruction accuracy (see

below) gives us a very similar estimate of optimal mutation rate (Figure 7C)

In SOLiD sequencing, the number of ligation/detection cycles that can be performed is limited by

photodamage of the target amplicons and by the time required to perform this type of sequencing

(10 days for 30 ligation cycles; Lee et al., 2015). The practical upper limit on the number of SOLiD

cycles that can be performed is therefore currently in the order of 30–60 cycles. Given these con-

straints, it is important to optimise the sequencing strategy so as to maximise the amount of

sequence information obtained for a given number of SOLiD sequencing cycles. We can ask, for

example, whether it would be preferable to perform a single ligation/detection cycle on 64 targets

rather than two ligation/detection cycles on 32 targets. Given the experimentally measured spec-

trum of CRISPR-induced mutations on the targets, we can also determine which nucleotides of the

target we should interrogate in order to extract the most information.

We determined that positions 6–7 bp 5’ of the PAM sequence yield the most equiprobable colour

frequencies for the FAST target (Figure 7A), minimising homoplasy in the observed character states

(see Figure 5). The frequency of each mutated state was determined by the real frequency of muta-

tions observed (see above) and the overall frequency of mutation was set to �d = 0.1195 per cell

division. We note that the unmutated state (red) is indistinguishable from one of the four mutated

states. With 4-character states, homoplasy will arise frequently from convergent appearance of the

same colour (even arising from different mutated states) in independent cells. Our results show that,

with a single SOLiD read, using a recorder with 32 targets, the mean accuracy of reconstructed cell

lineages is 45% (Figure 7B).

Clearly, increasing the number of targets will improve performance, but we wanted to know

whether it would be better instead to read double the number of nucleotides per target, which rep-

resents the same sequencing effort. We found that the reconstruction accuracy obtained by per-

forming 1 SOLiD sequencing cycle on 64 FAST targets is higher (69%) than performing 2 SOLiD

cycles on 32 FAST targets (65%) (Figure 7B). For the second SOLiD cycle we used the positions 11–

12 bp 5’ from the PAM sequence, as, in SOLiD, the sequentially interrogated dinucleotide pairs are

typically separated by five nucleotides (Lee et al., 2015).

Assessing the accuracy of an existing recorder
Recently, a number of lineaging approaches using CRISPR recorders have been tested in the nema-

tode Caenorhabditis elegans and the zebrafish Danio rerio, as well as in cultured human cells

(McKenna et al., 2016; Schmidt et al., 2017; Frieda et al., 2017). We have used our simulation

approach to assess the accuracy of GESTALT, one of the first and most ambitious approaches, which

aimed to reconstruct the cell lineage of the tens of thousands of cells of the zebrafish embryo

(McKenna et al., 2016). It is important to note that in GESTALT the cell lineage is reconstructed at a

coarse-grained level, with clones (instead of cells) as nodes in the tree, whereas our measure of suc-

cess assesses the ability to reconstruct the complete cell lineage at a single-cell level.

GESTALT uses arrays of 10 different CRISPR targets, mutated by injecting fertilised eggs with 10

corresponding sgRNAs and Cas9. The mutated targets are then sequenced at different developmen-

tal stages. We based our simulations on the mutational outcomes derived from the GESTALT

recorder v7 at 30 hr post-fertilisation (downloaded from the Dryad repository). At this stage the

zebrafish embryo consists of approximately 25,000 cells, resulting from ~15 rounds of cell division.
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In our simulations, we assumed a constant mutation rate (per cell division), which, as we have

shown, will probably overestimate of the accuracy of the inferred lineage. For each of the 10 CRISPR

targets, we estimated the mutation rate (�d) necessary to obtain the fraction of mutated targets

observed after 15 cell divisions (Figure 6—figure supplement 1). The estimated mutation rate

ranges from ~0.01 (for target 10) to ~0.23 (for target 7) per cell division.

The v7 GESTALT construct shows a high incidence of target dropouts which were modelled as

previously described. The mutational process was modelled as a gamma distribution of 60 possible

mutated states (Figure 6—figure supplement 1), with frequencies closely approximating the

observed distribution of mutations reported in the GESTALT publication (see Materials and methods

for detail). We compared the number of different alleles (i.e., unique combinations of mutated tar-

gets) obtained in the simulated and the experimental results; the mutational complexity used in our

simulations generated a number of alleles that closely approximates the experimentally observed

number (see Materials and methods for more details).

SOLiD sequencing SOLiD sequencing

Primer

A
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...CGCGCCACCGGTTGATGTGATTGGAG... ...CGCGCCACCGGTTGATGTGATTGGAG...

...CGCGCCACCGGTT - - - - - GATTGGAG...

1 bp insertion

...CGCGCCACCGGTTGATTGGAG... ...CGCGCCACCGGTTGATGTTGATTGGAG...
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...CGCGCCACCGGTTGATGT-T-GATTGGAG...
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Figure 7. Combining CRISPR lineaging with in situ sequencing. (A) The most common mutational outcome of the

FAST target is shown. The coloured box highlights the most informative dinucleotide position to read by SOLiD

sequencing (6–7 bp from PAM after CRISPR cleavage) and its SOLiD colour code (see Figure 7—figure

supplement 1). Sequence colours as in Figure 4. (B) Accuracy of lineage reconstruction after sequencing with 2

SOLiD sequencing reads (left), 1 SOLiD read (center) and as in MEMOIR (right) using a �d = 0.1195. In blue and

pink are the accuracy of a construct with 32 and 64 FAST targets, respectively. (C) Accuracy of lineage

reconstruction using all cells after 16 cell divisions (N = 65,536) and in situ SOLiD sequencing, for different

mutation rates and numbers of CRISPR targets, using a �d = 0.1195 and assuming equiprobable colour

frequencies after 1 SOLiD read; accuracy (left), false positives (center) and false negatives (right). Dashed lines

represent different accuracy thresholds (levelplot) after a LOESS regression. For each parameter combination, we

used the mean accuracy of 10 simulations after 16 cell divisions. We found the global accuracy to be similar when

subsampling 1,000 cells (Figure 7—figure supplement 2).

DOI: https://doi.org/10.7554/eLife.40292.012

The following figure supplements are available for figure 7:

Figure supplement 1. Distribution of SOLiD sequencing outcomes on the FAST target, to identify the most

informative sites.

DOI: https://doi.org/10.7554/eLife.40292.013

Figure supplement 2. Accuracy of lineage reconstruction using a single-read of SOLiD sequencing.

DOI: https://doi.org/10.7554/eLife.40292.014
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We performed 1000 simulations and inferred the cell lineage of 1000 randomly sampled cells

from each simulation. We find that the mean accuracy of the GESTALT approach is just 14% after 16

cell divisions (Figure 6B). This means that this implementation of GESTALT is not suited for recon-

structing a complete, accurate cell lineage.

Measuring accuracy at different depths of the tree
To quantify the decay in number of targets available for mutation, we measured the accuracy (per-

centage of correct splits) when reconstructing the relationships between groups of four granddaugh-

ter cells derived from a single grandmother, sampled after different numbers of cell division (quartet

analysis). The only targets that vary amongst the daughters, and hence inform the tree reconstruc-

tion, are those mutated in the previous two cell divisions. This analysis allows us to visualise (Figure 8)

the effect of the decline in available targets as they are mutated, but excludes the effects of subse-

quent homoplasy or the later loss of targets through dropouts.

To see how this decay in information interacts with other factors, such as dropouts and homo-

plasy, we applied our Robinson-Foulds related accuracy measure to branches of increasing size (Fig-

ure 9). When comparing with the quartet analysis, in the simulation with FAST targets and no

dropouts, we can see a similar decline in accuracy in later branches of the tree. In simulations with

dropouts (with FAST targets and GESTALT) the earlier branches are, in contrast, less well recon-

structed than the later ones, presumably due to the loss of informative mutations through dropouts.

As an additional measure of tree accuracy, which could provide a more intuitive estimate of use-

fulness when thinking about the clonal composition of tissues, we estimated the proportion of false

positive (FP) and false negative (FN) assignments of cells to clones in the reconstructed cell lineage

(Figure 9 and Figure 9—figure supplement 1). False positives were defined as the proportion of

cells that are erroneously assigned to a given cell clone. Conversely, false negatives were defined as

the proportion of cells that are not assigned to a cell clone to which they belong. As before, our

measurements of false positives and false negatives were performed on trees subsampled from the

full simulated lineage and analysed monophyletic groups of cells (‘clones’) of variable size, as

described in the Materials and methods section.

Unsurprisingly, the FP and FN measures closely reflect the topology based accuracy measure.

Our results show, for example, that the clones of 33–64 cells reconstructed in simulations based on

our FAST construct without dropouts have a high accuracy of 90% and correspondingly low errors,

with less than 5% of both FP and FN.

Discussion
The use of CRISPR-induced somatic mutations is emerging as an attractive approach for reconstruct-

ing complex cell lineages. A variety of CRISPR-based lineage recorders has been developed to test

this approach (McKenna et al., 2016; Frieda et al., 2017; Kalhor et al., 2018; Perli et al., 2016;

Alemany et al., 2018; Schmidt et al., 2017; Raj et al., 2018; Attardi et al., 2018; Spanjaard et al.,

2018; Junker et al., 2016). If the results of these methods are to be useful for gaining biological

insights, however, it is essential that the inferred lineage trees are sufficiently reliable, that is that

they accurately reconstruct the real cell lineages of the organism. The required accuracy of a lineage

will depend on the application; for example, accurate trees will be necessary to detect stereotypic

divisions and cell fates such as those found in Drosophila sensory organ precursor and CNS neuro-

blast lineages, but less accurate trees may be sufficient to detect biases/trends reflecting major line-

age commitments. The potential accuracy of the trees inferred using these methods has not yet

been established, however.

We have used simulations of the process of cell division and the accumulation of mutations across

a lineage tree covering tens of thousands of cells, to examine the effects of different factors on the

accuracy of a reconstructed tree. Our simulations allowed us to look at the influence of different

rates of mutation on the CRISPR targets, of different designs of lineage recorders and of how muta-

tions could be read experimentally. We have also investigated the effects of irregular cell divisions,

target deletions following simultaneous double-stranded cuts and the variable mutational outcomes

of the CRISPR process itself.

Unsurprisingly, the accuracy of lineage reconstruction largely rests on the quantity and quality of

lineage information carried by the recorders, which is influenced by several factors. Although it is
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obvious that the accuracy of the lineage tree depends on the number of CRISPR targets in the

recorder, our results serve to place strict upper limits on the level of accuracy that we can expect

from CRISPR recorders. Under ideal conditions (optimized mutation rates, uniform cell divisions, fully

sequenced targets), 30 targets are sufficient to reach an overall tree accuracy of ~70% for a lineage

of ~65,000 cells; 100 targets would yield trees that have an accuracy above 90% (Figure 2D). If we

were only able to take a single 4-colour SOLiD read per target, more than 200 targets would be

required to get a highly accurate (>95%) tree (Figure 7C).

A second important requirement is to match the mutation rate to the rate of cell division; muta-

tion rates that are too low will leave many cell divisions unmarked, while mutations that accumulate

too rapidly will quickly saturate the targets and leave very few available to record later cell divisions.

The range of mutation rates that can produce accurate lineage reconstructions fortunately proves to

be quite broad for a given tree size; 0.05 to 0.25 mutations per cell division can yield reasonably

high levels of accuracy for trees of ~65,000 cells, if the division rates are relatively even (Figure 2C,

D). This flexibility will be beneficial in cases where the cell division rates are poorly characterised.

Alongside the number of targets, mutation rates are an attribute of the experiment that can be

adjusted. Rates can potentially be increased by increasing the expression levels of the CRISPR effec-

tors, or decreased by introducing mismatches between the sgRNA and the CRISPR targets, as we

have shown experimentally (Figure 3C).

The information carried by CRISPR recorders is also influenced by the diversity of the experimen-

tally observed mutations accumulating at each CRISPR target. Our observations of CRISPR mutations

32x FAST (Unweighted)                    32x FAST (dropouts)  

A
c
c
u

ra
c
y
 o

f 
q

u
a

rt
e

t 
tr

e
e

s

Number of cell divisions

  32x FAST (MEMOIR)                             10x GESTALT

100

80

60

40

20

0

100

80

60

40

20

0

2 3 4 5 6 7 8 9
1

0
1
1

1
2

1
3

1
4

1
5

1
6 2 3 4 5 6 7 8 9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

100

80

60

40

20

0

2 3 4 5 6 7 8 9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

100

80

60

40

20

0

2 3 4 5 6 7 8 9
1

0
1
1

1
2

1
3

1
4

1
5

1
6

Figure 8. Quartet analysis. Boxplots showing the percentage of correct splits in quartet trees measured at cell

divisions 2 to 16. Red diamonds represent the average of up to 250 randomly sampled groups of quartet trees

from the different simulations. The black dashed line indicates the average percentage of correct splits observed

in 100,000 random quartet trees.

DOI: https://doi.org/10.7554/eLife.40292.015
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in Drosophila show that these are biased towards a small number of frequently observed outcomes.

Simulations show how targets that accumulate a broad set of more equiprobable mutations gener-

ate more reliable trees (Figure 2C). If, as expected, the diversity of mutations and their relative fre-

quencies vary depending on the target sequence and its local environment (van Overbeek et al.,
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Figure 9. Assessing reconstruction accuracy at different tree depths. Three different measures of reconstruction accuracy (rows) are shown for four set

of simulations (columns). The x-axis in each plot indicates the size of the clade of cells that is being assessed. In the False Positives and Negatives plots,

black crosses show the average values of 1000 random trees.

DOI: https://doi.org/10.7554/eLife.40292.016

The following figure supplement is available for figure 9:

Figure supplement 1. Method to estimate false positives and false negatives.

DOI: https://doi.org/10.7554/eLife.40292.017
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2016; Vu et al., 2017; Allen et al., 2018; Chen et al., 2018; Shen et al., 2018) sampling different

targets to approach this optimum would be worthwhile.

Some factors affecting tree reconstruction accuracy are outside of experimental control, but simu-

lating their effects can nevertheless show which responses can successfully mitigate them. We have

shown, for example, that uneven rates of cell division across the tree require faster mutation rates

and/or larger numbers of targets, to provide sufficient coverage during the fastest divisions. In an

extreme case, such as the Drosophila embryonic lineage where 13 of the 16 cell divisions take place

at a very high rate (1 cell division every ~10 min), the optimum mutation rate proves to be >10 times

higher than in an equivalent tree with uniform division rates. Even with this optimised mutation rate,

the potential accuracy of lineage reconstruction with a given number of targets is much lower

(Figure 5A).

Besides the intrinsic limitations imposed by CRISPR mutagenesis, the information that we can

obtain from each CRISPR target is further constrained by our ability to read and to discriminate

between the mutational outcomes. As an obvious goal would be to sequence the mutated targets in

individual cells in situ, we have explored the specific case of obtaining a single 4-colour SOLiD

sequencing read per target. It is encouraging to find that accurate lineage reconstruction is still pos-

sible given a sufficient number of targets (Figure 7C).

Finally, we show the degree to which the accuracy of lineage reconstruction is sensitive to loss of

information caused by the loss of targets through deletion resulting from simultaneous cleavage at

two sites (Figure 6B). While we have used the most pessimistic estimate of the frequency of drop-

outs - assuming that every pair of targets cleaved in the same cell would lead to a deletion of the

intervening targets in the array - data from GESTALT suggest that target dropouts are frequent

when mutation rates are high (McKenna et al., 2016). The strong deleterious effect of dropouts that

we observe in simulations highlights the need to address this issue. The problem of dropouts could

be reduced by opting for the lower end of the optimal range of mutation rates; or eliminated by tar-

geting separate loci in the genome rather than arrays of targets.

Available implementations of CRISPR type recorders are based on different conceptual designs:

barcoded arrays recording point mutations (McKenna et al., 2016; Raj et al., 2018), ‘collapsing’

arrays (Frieda et al., 2017), targets distributed in different genomic locations (Junker et al., 2016;

Schmidt et al., 2017; Attardi et al., 2018; Alemany et al., 2018; Spanjaard et al., 2018) and muta-

tions induced by self-targeting guide RNAs (Kalhor et al., 2018; Perli et al., 2016). Here we have

simulated the first two types of recorders, but we expect that the insights that we have gained on

the importance of optimising mutation rates, target numbers and the complexity of character states

will apply to all types of recorders.

Our analysis suggests that most of the CRISPR recorders published to date, which rely on at most

10 CRISPR targets (McKenna et al., 2016; Raj et al., 2018; Frieda et al., 2017; Junker et al., 2016;

Schmidt et al., 2017; Alemany et al., 2018), yield trees of very low overall accuracy and lineage res-

olution. While these recorders must, nevertheless, carry lineage information of lower resolution, it is

sensible to interpret the results from these recorders in the light of this expected low level of

accuracy.

A simulation-guided design of lineage recorders, taking into account the specific parameters of

each experimental system, is essential. We hope our study will encourage the general use of simula-

tions of lineage recorders, with the aim of testing their limits, adjusting their design and improving

their performance. This approach should stimulate the development of a new generation of CRISPR

recorders whose performance will be assessed explicitly and adapted to match the biological ques-

tions at hand. Our study predicts that optimised recorders will ultimately allow the reconstruction of

accurate cell lineages of complex multicellular organisms at the level of a single cell.

Materials and methods

CRISPR recorder and sequencing
Design and synthesis
We designed a DNA construct containing an array of 32 targets of the human Emx1.6 sgRNA

(Hsu et al., 2013), including the wild-type Emx1.6 target sequence and 31 variants carrying 1 or 2

mismatches and/or an alternative PAM sequence (see Supplementary file 1—Table1). To facilitate
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synthesis of this construct, between each pair of targets we introduced 80 bp spacers, harbouring

unique sequences which would be recognised by specific primers (Supplementary file 1—Table 3).

We optimised these spacer sequences in silico to minimise the presence of repetitive sequences.

Unique KpnI and NotI cloning sites were included at either end of the array to help with subsequent

cloning steps.

We designed a second plasmid carrying the KpnI and NotI restriction sites and the Drosophila

U6.2 promoter driving expression of the Emx1.6 sgRNA (Hsu et al., 2013) using a standard

sgRNA scaffold: GUUUUAGAGCUAGAAAUAGCAAGUUAAAAUAAGGCUAGUCCGUUAUCAAC

UUGAAAAAGUGGCACCGAG (Hsu et al., 2013; Port et al., 2014). This DNA sequence was flanked

by two attB sites. The Drosophila U6.2 promoter has been shown by previous studies to produce

lower levels of CRISPR activity when compared to the U6.1 and U6.3 promoters (Port et al., 2014).

Both constructs were synthesised by Biomatik (Ontario, Canada) using standard gene synthesis

techniques. The CRISPR target array was excised from the first construct by KpnI-NotI digestion and

subcloned into the KpnI and NotI sites of the second plasmid.

Fly transgenesis, genetics and strains
The construct carrying the CRISPR target array and U6.2::Emx1.6 sgRNA was inserted via recombi-

nase-mediated cassette exchange (Bateman et al., 2006) into the second chromosome of Drosoph-

ila melanogaster (acceptor strain # 27387) using a commercially available service (BestGene Inc,

USA).

Homozygous Act-5C-Cas9 females (Bloomington stock # 54590) were crossed with homozygous

males carrying the CRISPR target array, set to lay eggs over 30 min intervals in order to obtain

synchronised egg collections, and the progeny were collected at different developmental stages (24

hr embryos, third instar larvae, recently hatched adults). As negative controls, to account for

sequencing errors, we used adults carrying the CRISPR target array (in heterozygous condition), but

lacking the Cas9 transgene.

DNA extraction, generation of libraries and sequencing
For DNA extraction and sequencing, we pooled approximately 100 embryos, 10 larvae or 20 adults

(10 males and 10 females). We extracted genomic DNA by phenol chloroform extraction followed

by alcohol precipitation, and generated libraries by PCR using primers harbouring adapter sequen-

ces (‘fusion PCR’) barcoded by condition (see Supplementary file 1—Table 3) for sequencing on Ion

Torrent Personal Genome Machine (PGM, Life Technologies): as the maximum PGM read length is

400 bp and each target repeat in our construct is 100 bp long, we amplified the repeats in 10 groups

of 3 units (amplicons 1–10), plus a group of 2 units (amplicon 11). PCRs were performed using the

Phusion High Fidelity Polymerase (New England Biolabs), according to the manufacturer’s instruc-

tions. Amplicons were run on a gel, excised and purified to eliminate primer dimers. Purified ampli-

cons were then mixed in equimolar amounts and the final pooled mix was sequenced on the PGM

sequencer with a 318 v2 chip, as well as a calibration standard to enhance the read quality.

Filtering of sequencing data
The 7,347,400 reads obtained were de-multiplexed by condition and trimmed to meet quality stand-

ards using the Phred software included in the seqtk_trimfq package of the Galaxy software

(Afgan et al., 2016). We next eliminated sequencing reads that were shorter than 100 bp, lacked

the 5’ primer sequence, or lacked a target-specific sequence of 11–20 bp downstream of the target

(including the PAM) using a custom Python script. In each sequencing read, we used the 9 bp adja-

cent to the PAM sequence (9mer) to determine whether a target was mutated (the results are shown

in Supplementary file 1—Table 1).

We quantified sequencing errors (with a custom Python script) by analysing the target sequences

of adult flies carrying the CRISPR recorder and the sgRNA but not carrying Act-Cas9 (‘untargeted’

condition): in these animals we expect any differences from the unmutated state to reflect sequenc-

ing errors. In target 16 (FAST target) we found two frequent sequencing errors (single nucleotide

deletions) downstream of the target; we decided to include the reads carrying these errors. Targets

17 and 18 did not yield a sufficient number of good quality reads, and targets 13, 21, and 23 showed

a high proportion of sequencing errors (Supplementary file 1—Table 1).
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Estimating mutation rate and mutational complexity
FAST target
We estimated the mutation rate of the FAST target based on the proportion of targets that were

mutated at the end of embryonic development (86.95%) using a custom Python script based on the

geometric cumulative distribution function. The mutation rate of �d = 0.1195 mutations per cell divi-

sion produces the observed saturation of 86.95% after 16 cell divisions.

We modelled the mutational outcomes of the FAST target based on the mutational outcomes

observed at the end of embryonic development (>200 distinct 9mers with frequencies following an

exponential curve; see Figure 4C). We considered that a mutation would result in a change to one

of 59 states with a probability reflecting the observed occurrence of the 59 most frequent real muta-

tions (95% of the total; see Figure 4C and Figure 4—figure supplement 1) or to a 60th state with a

probability of 0.05. For the simulation of SOLiD sequencing we used the real distribution of the dinu-

cleotides observed at positions 6–7 and 11–12 upstream of the PAM. We translated each dinucleo-

tide into one of four different colour states according to the SOLiD protocol (Figure 7—figure

supplement 1).

Gestalt
To analyse the accuracy of GESTALT, we used data from the v7 construct at the 30 hr post-fertilisa-

tion stage (available at https://datadryad.org/resource/doi:10.5061/dryad.478t9). These consist of

six biological replicates. The v7 construct contains 10 different CRISPR targets that were targeted

with 10 different sgRNAs.

For each biological replicate we quantified the frequency of mutations and dropouts in each tar-

get (Figure 6—figure supplement 1) using a custom Perl script. We considered any deletion greater

than 26 bp to be a dropout, as this would affect more than one target (each target is 23 bp). For

each target, we quantified saturation as the proportion of reads of the target that were mutated.

For each target, we estimated the mutation rate per cell division (�d) necessary to produce the level

of saturation (proportion of mutated targets) observed after 15 cell divisions, assuming that muta-

tions follow a geometric distribution. The estimated mutation rate ranges from ~0.01 (target 10) to

~0.23 (target 7) (Figure 6—figure supplement 1).

The mutational complexity varied between targets and replicates, from ~25 to ~200 different

mutations per target. In all cases, however, their frequencies followed an exponential curve, with

one mutation usually accounting for 20–30% of the total reads and with the majority of the mutations

observed only rarely. For each target we modelled the mutational outcome as 60 different mutations

with frequencies sampled from a random gamma distribution, with shape parameter k = 0.1 and

scale parameter � = 2, which approximate the observed distribution (see Figure 6—figure supple-

ment 1D).

Computer simulations
Computer simulations were performed using MATLAB v2017a (Mathworks, 2017) and are available

at a Github repository (Salvador-Martı́nez, 2018; copy archived at https://github.com/elifesciences-

publications/CRISPR_recorders_sims). CRISPR mutations were simulated following a geometric or a

poisson distribution.

Simulating mutation events using a geometric distribution
To simulate mutations using a geometric distribution, the probability of mutation was the same for

all targets per cell division. Given a mutation rate �d (per cell division), the probability that a site

remains unmutated after d cell divisions is ð1� �dÞ
d. Thus, we can determine the mutation rate �d

from the proportion of targets that are mutated after a given number of cell divisions.

Simulating mutation events using a poisson distribution
Under the Poisson model, given a mutation rate �t (per minute), the probability that a site remains

unmutated after t minutes is: e�ð�t tÞ. Thus, we can determine the mutation rate �t from the propor-

tion of targets that are mutated after a given amount of time. The time interval for each cell division

was set to approximate the rates of cell division in early Drosophila embryos: for the first 13 cell
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divisions the interval was set to 10 min, and to 130 min per division for the last three divisions

(Zalokar and Erk, 1976; Foe, 1989).

Simulation of target dropouts
For the dropouts simulations, if any two targets were hit during a given cell division, all the targets

between them were removed. When three or more targets were hit during the same cell division,

two were selected randomly and the intervening targets were removed. In subsequent phylogenetic

analyses, dropouts were treated as missing data.

Simulations of GESTALT
We performed 1000 simulations with the estimated �d for each target over 16 cell divisions. We

accounted for dropouts as described previously. To test whether our simulations match the experi-

mental results in terms of mutational complexity, we compared the number of ‘alleles’ (unique com-

binations of mutated targets) found in the experimental and in the simulated data.

Our simulations encompassed 15 cell divisions, yielding 32,768 cells, which approximates the 30

hpf zebrafish embryo (~ 25,000 cells). For each simulation, we took 100 random samples of 10,000

cells and counted the number of alleles in each sample. Our simulated samples produced an average

of 3022 alleles (s.d. = 877 alleles; see Figure 6—figure supplement 1), compared to the 1,000–

2,500 alleles found in the experimental data (McKenna et al., 2016).

Analysis of simulated targets
The main outcome of each simulation was a T matrix of size N � m, for N cells and m targets. This

matrix is equivalent to a DNA alignment with species as rows and DNA positions as columns. For

most simulations, 10 random samples of 1,000 cells were chosen for lineage reconstruction and for

assessing the accuracy of the reconstructed cell lineage. A ‘root’ taxon with unmutated character

states was added to the alignment prior to the lineage inference. For some simulations, we inferred

cell lineages using all cells after 16 cell divisions (N ¼ 65,536) and found that their global accuracy

was similar to that when subsampling 1,000 cells (Figure 7—figure supplement 2).

For the target dropouts simulations we added to the T matrix an extra character for each distinct

dropout of one or more targets that was shared between �32 cells (character state ‘1’ if present, ‘0’

if absent). This was done to take advantage of the information coming from shared target dropouts.

Cell lineage inference
Reconstructing lineage trees using neighbor joining (PAUP*)
Most cell lineages were inferred using the Neighbor-Joining method (NJ). We used the Neighbor

joining algorithm as implemented in the PAUP* software (version 4.0a build 158; (Swofford, 2017)).

In PAUP*, up to 64 character states can be specified, with the possibility of giving different weights

to the occurrence of specific mutations. We used a substitution matrix based on the frequency of

each mutation. The matrix has size s� s for s number of states, where the distance from state i to

state j is weighted according to the natural logarithm of the inverse of their frequencies (Felsen-

stein, 1981) with the equation:

dði; jÞ ¼

0; if i¼ j

logð 1

Freqj
Þ; if i¼ unmutated

logð 1

Freqi
Þ; if j¼ unmutated

logð 1

Freqi
Þþ logð 1

Freqj
Þ; otherwise

8

>

>

>

<

>

>

>

:

where Freqi and Freqj are the frequencies of states i and j respectively.

In simulations where we modelled dropouts, an extra character state was assigned to each cell

containing a dropout that was shared by �32 cells. For these simulations, the distance matrix was

applied to the m original targets and for the extra characters the following distance was applied:

dði; jÞ ¼
0; if i¼ j

100; otherwise

�

For samples of up to 180 cells we compared the accuracy achieved using Neighbor Joining with
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an alternative approach using a parsimony method. We show that, while accuracy is consistently

slightly higher using parsimony, the average time taken to reconstruct a tree of only 180 cells is on

average ~52 hr compared to less than 1 s using Neighbor Joining (see Figure 2—figure supplement

1).

Reconstructing lineage trees using FastTree
When inferring complete cell lineage trees in the simulations of SOLiD sequencing data (N = 65,536

cells), we used an heuristic method that approximates the Maximum Likelihood approach, imple-

mented by the FastTree software (Price et al., 2010). FastTree was chosen for its ability to infer

trees from large alignments, consisting of tens of thousands of sequences, and for doing so very

efficiently.

Reconstructing lineage trees using maximum parsimony (PAUP*)
The use of parsimony for the cell lineage reconstruction of our simulations was not practical for the

thousands of cells/taxa we consider. Nevertheless, to assess the relative performance of NJ and

Maximum Parsimony in the context of lineage data, we compared the two methods using trees of

variable size of randomly sampled cells, from 10 to 180 (Figure 2—figure supplement 1). We calcu-

lated the accuracy of lineage reconstruction with NJ and parsimony methods on 10 separate simula-

tions, based on the mutational frequencies of FAST targets, four character states and a mutation

rate of 0.1195 over 16 cell divisions. For the parsimony analysis, we used the Camin-Sokal model (i.

e., irreversible mutated states) and a substitution matrix based on character states frequencies (as

used in GESTALT).

Tree accuracy estimation
Robinson-Foulds related measure of accuracy
The accuracy of each cell-lineage reconstruction was determined by calculating a measure related to

the Robinson-Foulds distance between the reference and the inferred trees. We counted the per-

centage of splits (sets of cells separated into two groups by a node in the tree) in the reference tree

that were also found in the inferred tree. For this task we used the CompareTree software (Compar-

eTree.pl is available at http://www.microbesonline.org/fasttree/treecmp.html).

Calculating false positives and false negatives
False positives (FP) and false negatives (FN) were calculated by comparing the reference tree (R)

with the inferred tree (I) using the newick-tools software (Flouri et al., 2018) using the –difftree

command, which analyses the split differences between two trees. The options –filter_eq and –fil-

ter_gt were used to specify the number of cells n (or a given range) to be analysed (see the newick-

tools reference for details).

False positives were measured by counting the proportion of cells that need to be pruned from a

branch of the inferred tree to match a given branch of n cells in the reference tree. More formally,

the false positives were estimated as follows (see Figure 9—figure supplement 1):

1. We extracted the x number of subtrees in R that contained n cells (subtrees R0
ð1�xÞ)

2. Then for each R0 subtree we find the subtree from I (I 0 subtree) that includes all the cells pres-
ent in R0. The FP is then calculated with the following equation:

FPðR;IÞ ¼
1

x

X

x

i¼1

½I 0i � � ½R0
i�

½I 0i �
(1)

where [R0
i] and [I 0i ] are the number of cells in trees R0

i and I 0i respectively.

False negatives were measured by counting the proportion of cells that need to be pruned from

a branch of the reference tree to match a given branch of n cells in the inferred lineage tree. More

formally, the false negatives were estimated as follows (see Figure 9—figure supplement 1):

1. We extracted the x number of subtrees from I that contained n cells (subtrees I 0ð1�xÞ).

2. Then for each I 0 subtree we extracted the subtree from R (R0 subtree) that included all cells
from the I 0 tree. The FN is calculated then with the following equation:
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FNðR;IÞ ¼
1

x

X

x

i¼1

½R0
i�� ½I 0i �

½R0
i�

(2)

where [R0
i] and [I 0i ] are the number of cells in trees R0

i and I 0i respectively.

Quartet analysis
We measured the accuracy (percentage of correct splits) when reconstructing the relationships

between groups of four granddaughter cells derived from a single grandmother, sampled after dif-

ferent numbers of cell division. We considered sets of 4 granddaughter cells (each cell represented

as the array of targets with accumulated mutations) derived from their single most recent common

ancestor. We reconstructed a tree using NJ, rooting the tree with an outgroup, represented by an

array of unmutated targets. We calculated the percentage of splits from the reference tree also pres-

ent in the inferred tree. In cases when a simulation had fewer than 1,000 cells (divisions 2–9) we con-

sidered all possible quartets. When there are more than 1,000 cells (divisions 10–16) we extracted

250 random 4 cell trees (total cells = 1000).
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