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Abstract Protein palmitoylation and depalmitoylation alter protein function. This post-

translational modification is critical for synaptic transmission and plasticity. Mutation of the

depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) causes infantile neuronal ceroid

lipofuscinosis (CLN1), a pediatric neurodegenerative disease. However, the role of protein

depalmitoylation in synaptic maturation is unknown. Therefore, we studied synapse development in

Ppt1-/- mouse visual cortex. We demonstrate that the developmental N-methyl-D-aspartate

receptor (NMDAR) subunit switch from GluN2B to GluN2A is stagnated in Ppt1-/- mice.

Correspondingly, Ppt1-/- neurons exhibit immature evoked NMDAR currents and dendritic spine

morphology in vivo. Further, dissociated Ppt1-/- cultured neurons show extrasynaptic, diffuse

calcium influxes and enhanced vulnerability to NMDA-induced excitotoxicity, reflecting the

predominance of GluN2B-containing receptors. Remarkably, Ppt1-/- neurons demonstrate

hyperpalmitoylation of GluN2B as well as Fyn kinase, which regulates surface retention of GluN2B.

Thus, PPT1 plays a critical role in postsynapse maturation by facilitating the GluN2 subunit switch

and proteostasis of palmitoylated proteins.

DOI: https://doi.org/10.7554/eLife.40316.001

Introduction
The neuronal ceroid lipofuscinoses (NCLs) are a class of individually rare, primarily autosomal reces-

sive, neurodegenerative diseases occurring in an estimated 2 to 4 of 100,000 live births (Nita et al.,

2016). Collectively, NCLs represent the most prevalent class of hereditary pediatric neurodegenera-

tive disease (Haltia, 2006). The NCLs are characterized by progressive neurodegeneration, blind-

ness, cognitive and motor deterioration, seizures, and premature death. The cardinal feature of all

NCLs is the intracellular accumulation of proteolipid material, termed lipofuscin (Jalanko and

Braulke, 2009; Nita et al., 2016). While lipofuscin accumulates in all cells of affected individuals, it

deposits most robustly in neurons. This accumulation is concurrent with rapid and progressive neuro-

degeneration, particularly of thalamic and primary sensory cortical areas (Bible et al., 2004;

Kielar et al., 2007). The NCLs are categorized into CLN1-14 based on the age of onset and the

causative gene mutated. The products of CLN genes are lysosomal and endosomal proteins, there-

fore NCLs are also classified as lysosomal storage disorders (LSDs) (Bennett and Hofmann, 1999;

Jalanko and Braulke, 2009). The infantile form of disease, CLN1, presents as early as 6 months of

age with progressive psychomotor deterioration, seizure, and death at approximately 5 years of age

(Haltia, 2006; Jalanko and Braulke, 2009; Nita et al., 2016). CLN1 disease is caused by mutations

in the gene CLN1, which encodes the enzyme palmitoyl-protein thioesterase 1 (PPT1)(Camp and
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Hofmann, 1993; Camp et al., 1994; Vesa et al., 1995; Jalanko and Braulke, 2009). PPT1 is a

depalmitoylating enzyme responsible for the removal of palmitic acid from modified proteins

(Camp and Hofmann, 1993; Lu and Hofmann, 2006).

Protein palmitoylation, the addition of a 16-carbon fatty acid (palmitic acid) to cysteine residues,

is a crucial regulator of protein trafficking and function, particularly in neurons (Hayashi et al., 2005;

Hayashi et al., 2009; Fukata et al., 2006; Kang et al., 2008; Fukata and Fukata, 2010; Han et al.,

2015). This post-translational modification is mediated by palmitoyl acyltransferases (PATs) of the

DHHC enzyme family (Fukata et al., 2006; Fukata and Fukata, 2010). In contrast to other types of

protein acylation, palmitoylation occurs via a reversible thioester bond (s-palmitoylation), permitting

dynamic control over target protein interactions and function. Further, palmitoylated proteins

require depalmitoylation prior to lysosomal degradation (Lu et al., 1996; Lu and Hofmann, 2006).

Consequently, protein palmitoylation and depalmitoylation contribute significantly to mechanisms

underlying synaptic plasticity and endosomal-lysosomal trafficking of proteins (Hayashi et al., 2005;

Hayashi et al., 2009; Kang et al., 2008; Lin et al., 2009; Noritake et al., 2009; Fukata and Fukata,

2010; Mattison et al., 2012; Thomas et al., 2012; Thomas et al., 2013; Fukata et al., 2013;

Han et al., 2015). Indeed, PPT1 is a lysosomal depalmitoylating enzyme that localizes to the axonal

and synaptic compartments (Verkruyse and Hofmann, 1996; Ahtiainen et al., 2003; Kim et al.,

2008). The synaptic association of PPT1 and prominence of palmitoylated synaptic proteins suggests

that PPT1 influences synaptic functions through, at least, protein turnover. Many synaptic proteins

undergo palmitoylation, including, but not limited to postsynaptic density protein 95 (PSD-95), all

GluA subunits of AMPARs, and the GluN2A/2B subunits of NMDARs (Kang et al., 2008). However,

the role of depalmitoylation in regulating synaptic protein function remains less clear.

N-methyl-D-aspartate receptors (NMDARs) are voltage-dependent, glutamate-gated ion channels

consisting of two obligatory GluN1 subunits and two GluN2 subunits that undergo a developmental

change (Cull-Candy et al., 2001; van Zundert et al., 2004; Lau and Zukin, 2007; Paoletti et al.,

2013). NMDARs play a crucial role in synaptic transmission, postsynaptic signal integration, synaptic

plasticity, and have been implicated in various neurodevelopmental and psychiatric disorders

(Lau and Zukin, 2007; Lakhan et al., 2013; Paoletti et al., 2013; Yamamoto et al., 2015). NMDAR

subunit composition, receptor localization, and downstream signaling mechanism undergo develop-

mental regulation (Watanabe et al., 1992; Monyer et al., 1994; Sheng et al., 1994; Li et al., 1998;

Stocca and Vicini, 1998; Tovar and Westbrook, 1999; Losi et al., 2003; van Zundert et al., 2004;

Paoletti et al., 2013; Wyllie et al., 2013). Specifically, GluN2B-containing NMDARs are expressed

neonatally and display prolonged decay kinetics, which allows comparatively increased calcium influx

thought to facilitate forms of synaptic plasticity critical for neurodevelopment (Sobczyk et al., 2005;

Zhao et al., 2005; Zhao et al., 2013; Zhang et al., 2008; Evans et al., 2012; Shipton and Paulsen,

2014). These GluN2B-containing receptors are supplanted at the synapse by diheteromeric GluN1/

GluN2A NMDARs or triheteromeric (GluN1/GluN2A/GluN2B) receptors in response to experience-

dependent neuronal activity (Quinlan et al., 1999b; Quinlan et al., 1999a; Tovar and Westbrook,

1999; Philpot et al., 2001; Liu et al., 2004; Paoletti et al., 2013; Tovar et al., 2013). This develop-

mental switch of GluN2B- to GluN2A-containing NMDARs during brain maturation is mediated by

the postsynaptic scaffolding receptors, SAP102 and PSD-95, respectively; SAP102-GluN2B-NMDAR

complexes are replaced by PSD-95-GluN2A-NMDAR complexes in response to developmental,

experience-dependent activity (Sans et al., 2000; van Zundert et al., 2004; Elias et al., 2008).

While PSD-95, GluN2B, and GluN2A all undergo palmitoylation, how depalmitoylation regulates the

turnover of these proteins, let alone during the GluN2B to GluN2A subunit switch, is unclear.

In the current study, we investigated the cellular and synaptic effects of PPT1-deficiency using the

Ppt1-/- mouse model of CLN1 disease. We focused on the visual system in Ppt1-/- animals for two

reasons. First, cortical blindness is a characteristic feature of CLN1 disease. Second, the rodent visual

system is a well-studied model of cortical development and synaptic plasticity/maturation and it

therefore serves as an optimal experimental model to examine the role of PPT1-mediated depalmi-

toylation during development. We found that lipofuscin accumulated in the Ppt1-/- visual cortex

shortly after eye-opening at postnatal day (P) 14, a timing earlier than previously documented

(Gupta et al., 2001). Using biochemistry and electrophysiology, we found impeded developmental

NMDAR subunit switch from GluN2B to GluN2A in Ppt1-/- mice compared to wild-type (WT). This

NMDAR disruption is associated with disrupted dendritic spine morphology in vivo. To gain further

mechanistic insight into neurodegeneration in CLN1, we used cultured cortical neurons and found
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that Ppt1-/- cells recapitulate the disrupted dendritic spine phenotype and GluN2B to GluN2A

switch, leading to excessive extrasynaptic calcium transients and enhanced vulnerability to NMDA-

mediated excitotoxicity. We directly examined protein palmitoylation state and found hyperpalmi-

toylation of GluN2B as well as Fyn kinase, which facilitates GluN2B surface retention, in Ppt1-/- neu-

rons. Finally, we demonstrate that chronic treatment of Ppt1-/- neurons with palmitoylation inhibitors

normalized GluN2B and Fyn kinase hyperpalmitoylation and rescued the enhanced susceptibility to

excitotoxicity. Our results indicate that PPT1 plays a critical role in the developmental GluN2B to

GluN2A subunit switch and synaptic maturation. Further, our results indicate that these dysregulated

mechanisms contribute to CLN1 pathophysiology and may be shared features of common adult-

onset neurodegenerative diseases.

Results
To understand synaptic dysregulation in CLN1 disease, we utilized the visual cortex of Ppt1-/- animals

as a model system. The rodent visual cortex undergoes timed, experience-dependent plasticity,

which has been well-characterized at the systemic, cellular, and molecular levels (Bear et al., 1990;

Gordon and Stryker, 1996; Hensch et al., 1998; Quinlan et al., 1999a; Fagiolini and Hensch,

2000; Mataga et al., 2001; Mataga et al., 2004; Philpot et al., 2001; Desai et al., 2002;

Yoshii et al., 2003; Hensch, 2005; Cooke and Bear, 2010). We examined WT and Ppt1-/- litter-

mates at the following ages: P11, P14, P28, P33, P42, P60, P78, P120, which correspond to particular

developmental events in visual cortex. In mice, P11 and P14 are prior to and just after eye opening

(EO), respectively. Further, the critical period in the visual cortex peaks at P28 and closes from P33

to P42. We chose postnatal day 60, P78, and P120 were selected as adult time points. We deter-

mined whether experience-dependent synaptic maturation is altered during the progression of

CLN1 pathology.

Lipofuscin deposits immediately following eye opening in visual cortex
of Ppt1-/- mice
Although it remains controversial whether lipofuscin is toxic to neurons or an adaptive, neuroprotec-

tive mechanism, its accumulation correlates with disease progression. Therefore, we examined lipo-

fuscin deposition in the visual cortex as a marker of pathology onset and progression. Lipofuscin

aggregates are readily detectable as autofluorescent lipopigments (ALs) without staining under a

confocal microscope. To examine the temporal and spatial accumulation of ALs in Ppt1-/- mice, we

performed quantitative histology on the visual cortex (area V1) of WT and Ppt1-/- mice during early

development. Visual cortical sections were imaged at the above-mentioned developmental time

points, and ALs were quantified in a laminar-specific manner. We found that ALs are detectable first

at P14 in Ppt1-/- visual cortex, earlier than previously reported at 3 or 6 months (Figure 1A–C)

(Gupta et al., 2001; Blom et al., 2013). Further, ALs accumulated rapidly through the critical period

(Berardi et al., 2000; Hensch, 2005; Maffei and Turrigiano, 2008) and plateaued by adulthood

(P60) (Figure 1A–C). This result suggests that neuronal AL load is saturable, and that this saturation

occurs early on in disease, as Ppt1-/- animals do not perish until around 10 months of age.

Whether lipofuscin accumulation is directly neurotoxic or not, profiling the temporospatial and

sub-regional pattern of AL deposition will be valuable for assessing therapeutic interventions in

future studies. The pattern of deposition revealed herein suggests a correlation between systemic

neuronal activation and AL accumulation, as we found that AL deposition started immediately fol-

lowing EO, the onset of patterned visual activity, and accumulated rapidly during development

(Figure 1A,C, Supplementary file 1). These findings suggest that neuronal activity or experience-

dependent plasticity may be linked to lipofuscin deposition.

NMDAR subunit composition is biased toward immaturity in Ppt1-/-

visual cortex
To examine the role of PPT1 in excitatory synapse function, we focused on the NMDAR subunits,

GluN2B and GluN2A, which are both palmitoylated (Hayashi et al., 2009). The developmental

GluN2B to GluN2A subunit change (Paoletti et al., 2013) is critical for NMDAR function and matura-

tion, which facilitates refinement of neural circuits and a higher tolerance to glutamate-mediated

excitotoxicity (Hardingham and Bading, 2002; Hardingham and Bading, 2010; Hardingham et al.,
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Figure 1. ALs deposit immediately following eye opening in visual cortex of Ppt1-/- mice. (A) Representative composite confocal images through area

V1 of visual cortex in WT (top) and Ppt1-/- mice (bottom) during development and into adulthood. DAPI nuclear stain (blue, 405 nm excitation) and AL

signals (red, 561 nm excitation) are visualized. Cortical layers are marked (left). Scale = 50 mm. Note that scale bars for P11 and P14 images are enlarged

to account for reduced cortical thickness at these ages. (B) Quantification of the mean percent area occupied by ALs through all cortical layers (see

Figure 1 continued on next page

Koster et al. eLife 2019;8:e40316. DOI: https://doi.org/10.7554/eLife.40316 4 of 42

Research article Neuroscience

https://doi.org/10.7554/eLife.40316


2002). Furthermore, previous work shows evidence for NMDA-induced excitotoxicity in the patho-

genesis of CLN1 (Finn et al., 2012). We biochemically analyzed WT and Ppt1-/- visual cortices from

P11 to P60 and measured levels of GluN2B and GluN2A subunits in synaptosomes and whole lysates

of WT and Ppt1-/- visual cortices. Although GluN2B levels were comparable between WT and Ppt1-/-

at all ages, GluN2A levels in synaptosomes were significantly lower in Ppt1-/- than WT (Figure 2A).

This decrease was present at time points during, and just following, the critical period in visual corti-

cal development (P33, P42, and P60). When analyzed as a ratio of GluN2A/GluN2B, a robust and

persistent decrease is observed in Ppt1-/- visual cortex (Figure 2B). GluN1 levels were unchanged

between WT and Ppt1-/- in synaptosomes (Figure 2C), indicating the selective obstruction of

GluN2A incorporation into NMDARs.

The developmental shift from GluN2B-containing NMDARs to synaptic GluN2A-containing

NMDARs is mediated by the postsynaptic scaffolding proteins, SAP102 and PSD-95

(Townsend et al., 2003; van Zundert et al., 2004; Elias et al., 2008). SAP102 preferentially inter-

acts with GluN2B-containing NMDARs, which are enriched neonatally (Sans et al., 2000;

van Zundert et al., 2004; Zheng et al., 2010; Chen et al., 2011). In contrast, PSD-95 has greater

affinity to GluN2A-containing NMDARs, particularly in the mature brain (Sans et al., 2000;

van Zundert et al., 2004; Dongen, 2009; Yan et al., 2014). Thus, we examined the expression of

these scaffolding proteins in WT and Ppt1-/- visual cortex. While SAP102 levels remained unchanged,

PSD-95 levels reduced at P33-P60, the same developmental time points where GluN2A expression

also decreased (Figure 2D). Together, these results suggest reduced incorporation and scaffolding

of GluN2A-containing NMDARs in Ppt1-/- synapses, indicating immature or dysfunctional synaptic

composition.

Next, we measured PPT1 protein level across the same time points in WT animals to examine

whether the expression profile of PPT1, and presumably its cellular activity, temporally correlated

with the observed reductions in mature synaptic components in Ppt1-/- animals. Indeed, PPT1

expression in synaptosomes is low at P11 and P14 and increases with age, reaching peak levels

between P33 and P60 (Figure 2E). This expression profile correlates with the time course of AL accu-

mulation (Figure 1B and C) and fits with the notion that PPT1 activity at the synapse plays a role in

neurodevelopmental processes.

To examine whether the reduction in GluN2A is due to selective exclusion from the postsynaptic

site or alterations in the total protein amount, we also measured NMDAR subunit levels in whole

lysates. These findings closely match our findings in synaptosomes. Namely, GluN2A levels showed

reductions in Ppt1-/- lysates beginning at the same time point (P33) (Figure 2—figure supplement

1A), while GluN2B levels were stable (Figure 2—figure supplement 1B). The GluN2A/2B ratios in

Ppt1-/- whole lysates were also lower than those in WT lysates and the reduction was comparable to

that observed in synaptosomes (Figure 2—figure supplement 1C). GluN1 levels, however, were

unaltered between genotypes (Figure 2—figure supplement 1D), again indicating a selective

reduction in the expression of GluN2A. Interestingly, while PPT1 levels in whole lysates were, simi-

larly to synaptosomes, low at P11 and P14, expression subsequently peaked at P28 and P33 before

declining at P60 (Figure 2—figure supplement 1E). Together, these results indicate a selective

decrease in the total amount of mature synaptic components in Ppt1-/- brains that temporally corre-

lates with the cellular PPT1 expression profile in developing WT neurons. Furthermore, our findings

in whole lysates suggest that synaptosomal reductions in GluN2A and PSD-95 may result from

altered transcription or translation of these proteins instead of direct depalmitoylation by PPT1.

Figure 1 continued

Materials and methods). Ppt1-/- and WT were compared (n = 4–6 animals/group) at each age using t-test and the significance was indicated as follows:

*p<0.05, **p<0.01, and ***p<0.001. Differences between two consecutive ages (e.g. Ppt1-/- P14 vs. (P11) is denoted: *p<0.05 and **p<0.01 where

indicated. Error bars represent s.e.m. (C) Cortical layer-specific quantification of area occupied by ALs separated by each cortical layer (x-axis) and age

(z-axis). Averaged values, s.e.m., and n for each condition are represented in Supplementary file 1.

DOI: https://doi.org/10.7554/eLife.40316.002
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Figure 2. NMDAR subunit composition is biased toward immaturity in Ppt1-/- visual cortex. (A) Representative immunoblots from synaptosomes of

GluN2 subunits, GluN2A and GluN2B across age (P11–P60) and genotype as indicated (top) and quantification of band density (bottom) normalized to

b-actin loading control within lane. (B) Representative immunoblots from synaptosomes of GluN2A and GluN2B (top) and quantification of the ratio of

GluN2A/GluN2B band density within animal normalized to b-actin loading control within lane (bottom). (C) Representative immunoblot of GluN1 from

Figure 2 continued on next page
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NMDAR-mediated EPSCs are altered in Ppt1-/- visual cortex
Next, we sought to correlate our biochemical findings with electrophysiological changes in NMDAR

functionality (Figure 2). While human CLN1 patients present with retinal degeneration and the

Ppt1-/- mouse model of CLN1 phenocopies the human disease, the electroretinogram (ERG) is effec-

tively unaltered at 4 months in the mouse model (Lei et al., 2006), allowing for detailed study of the

electrophysiological changes in the visual cortex associated with early disease states. We recorded

evoked, NMDAR-mediated excitatory postsynaptic currents (EPSCs) in layer II/III cortical neurons in

visual cortical slices of WT and Ppt1-/- mice at P42. The NMDAR-EPSCs were pharmacologically iso-

lated (see Materials and methods section) and were recorded in whole cell patch mode clamped at

+50 mV. As GluN2A- and GluN2B-containing NMDARs exhibit differential receptor kinetics, with

GluN2A displaying fast (~50 ms) and GluN2B displaying slow decay kinetics (~300 ms), their relative

contribution is reliably interpolated by fitting the EPSC decay phase with a double exponential func-

tion (Stocca and Vicini, 1998; Vicini et al., 1998). From the fitting of absolute amplitude-normal-

ized, WT and Ppt1-/- NMDAR-EPSCs (Figure 3A), we measured the following parameters: the ratios

of the amplitudes (A) of the fast, Af/Af + As, and slow, As/Af + As components, and the weighted

decay time constants (tw). The fast component (Af/Af +As) of NMDAR-ESPC amplitudes decreased in

Ppt1-/- mice as compared to WT, while the slow component (As/Af +As) increased (Figure 3B). Fur-

ther, Ppt1-/- neurons showed a significant increase in weighted decay time tw as compared to WT

(Figure 3C). Remarkably, the rise time (time to peak amplitude) of Ppt1-/- NMDAR-EPSCs was

slightly but significantly longer than WT (Figure 3D), suggesting that the response involves the

receptors more distant from the presynaptic release site. Indeed, previous studies documented simi-

lar observations and postulated that a longer rise time is characteristic of GluN2B-containing

NMDARs that are preferentially localized on the extrasynaptic membrane (Townsend et al., 2003;

van Zundert et al., 2004; Sanz-Clemente et al., 2013).

Next, we treated cortical slices with Ro 25–6981, a potent and selective inhibitor of GluN2B-con-

taining NMDARs (Fischer et al., 1997) and asked if these receptors are overrepresented in Ppt1-/-

neurons. We recorded NMDAR-EPSCs at baseline and during bath infusion of Ro 25–6981 (30 min,

3mM), then compared the percent inhibition (tw percent of baseline) between WT and Ppt1-/- groups.

Ro 25–6981 treatment significantly decreased the tw of NMDAR-EPSCs from the baseline in both

WT and Ppt1-/- cells at P42 (Figure 3E). To our surprise, no significant effects were present between

the two genotypes after Ro 25–6981 treatment by two-way ANOVA, suggesting that NMDARs are

inhibited to the same degree in WT and Ppt1-/- cortices.

At first glance, the above result did not fulfill the anticipation that NMDA-EPSCs in Ppt1-/- neu-

rons would respond to Ro 25–6981 treatment to a greater degree than in WT, due to an overrepre-

sentation of GluN2B-containing receptors. However, cortical neurons predominantly express

NMDARs consisting of two GluN1, one GluN2A and one GluN2B subunits (Sheng et al., 1994;

Luo et al., 1997; Tovar and Westbrook, 1999). These triheteromeric NMDARs display prolonged

decay kinetics compared to GluN2A-diheteromeric NMDARs, while being largely insensitive to

GluN2B-specific antagonists (Stroebel et al., 2018). Indeed, the fast component of the amplitude is

reduced in Ppt1-/- neurons (Figure 3B), indicating a functional decrease in the contribution of

GluN2A to NMDAR-mediated EPSCs in these cells. Moreover, analysis of the weighted decay time

constant (Figure 3C) suggests a larger contribution of GluN2B to the overall NMDAR-EPSC in

Figure 2 continued

synaptosomes across age and genotype as indicated (top) and quantification of band density (bottom) normalized to b-actin loading control within

lane. (D) Representative immunoblots from synaptosomes of the scaffolding molecules PSD-95 and SAP102 across age and genotype as indicated (top)

and quantification of band density (bottom) normalized to b-actin loading control within lane. (E) Representative immunoblot from synaptosomes of

PPT1 across age and genotype as indicated (top) and protein expression level (bottom) normalized to b-actin. For experiments in Figure 2A–D, Ppt1-/-

and WT were compared (n = 4 independent experiments/animals with two repetitions/group) at each age using t-test and the significance was

indicated as follows: *p<0.05, and **p<0.01. In Figure 2E, WT expression levels at each age were compared (n = 4 independent experiments/animals

with two repetitions/group) by ANOVA followed by Tukey’s post-hoc test. Significance between ages is indicated: *p<0.05. Error bars represent s.e.m.

DOI: https://doi.org/10.7554/eLife.40316.003

The following figure supplement is available for figure 2:

Figure supplement 1. NMDAR subunit composition is immature in whole lysates from Ppt1-/- visual cortex.

DOI: https://doi.org/10.7554/eLife.40316.004
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Ppt1-/- cells (Stocca and Vicini, 1998; Vicini et al., 1998). Thus, our findings suggest an enhanced

incorporation of triheteromeric NMDARs at Ppt1-/- synapse, and corroborate our biochemical find-

ings (see Discussion). Collectively, our data indicate a functionally immature NMDAR phenotype in

Ppt1-/- layer II/III visual cortical neurons.

Dendritic spine morphology is immature in Ppt1-/- visual cortex
The morphology of dendritic spines is dynamic and modified by synaptic plasticity (Engert and Bon-

hoeffer, 1999; Parnass et al., 2000; Yuste and Bonhoeffer, 2001; Matsuzaki et al., 2004). During

visual cortical development that is concomitant with the GluN2B to GluN2A switch, dendritic spine

morphology undergoes robust structural plasticity at excitatory synapses. Dendritic spines contribute
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Figure 3. NMDAR-mediated EPSCs are altered in Ppt1-/- visual cortex. (A) Representative traces of amplitude-scaled NMDAR-EPSCs recorded from

pyramidal neurons in layer II/III of the visual cortex (V1) of WT and Ppt1-/- mice. Black and red arrows above traces indicate EPSC rise time for WT and

Ppt1-/- responses, respectively. Red arrow below traces indicates onset of evoked stimulus. Neurons were voltage clamped at +50 mV and NMDAR-

EPSCs evoked in layer IV. Neurons were voltage clamped at +50 mV and NMDAR-EPSCs evoked in layer IV. (B) Quantification of the ratio of the

amplitude (A) of the fast component, Af/Af +As, and As/Af +As derived from fitting the decay phase of the evoked NMDAR-EPSCs with the double

exponential function: Y(t) = Af*e
–t/t

fast + As*e
-t/t

slow. (C) Quantification of the weighted decay constant, tw derived from fitting the decay phase of the

amplitude-scaled evoked NMDAR-EPSCs with the double exponential function: Y(t) = Af*e
–t/t

fast + As*e
-t/t

slow. (D) Quantification of the NMDAR-EPSC

time to peak amplitude. (E) Percent change in tw following bath application of Ro 25–6981 (3 mM, 30 min) for each cell in WT and Ppt1-/- neurons. For

experiments in Figure 3A–D, Ppt1-/- and WT were compared (n = 8 cells, four mice (WT); n = 8 cells, five mice (Ppt1-/-)) using t-test and the significance

was indicated as follows: *p<0.05, and **p<0.01. For experiments in Figure 3E, the change in tw from baseline induced by Ro 25–6981 were compared

in WT and Ppt1-/- neurons (n = 7 cells, four mice (WT); n = 6 cells, four mice (Ppt1-/-)) using repeated measures two-way ANOVA followed by Tukey’s

post-hoc test and significance was indicated as follows: *p<0.05, and **p<0.01 vs. baseline. Error bars represent s.e.m.
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to experience-dependent synaptic plasticity via the generation, maturation, and long-term stabiliza-

tion of spines, ultimately giving rise to established synaptic circuits. Typically, by P33, dendritic

spines begin to demonstrate a reduction in turnover and an increase in mushroom-type spines, indi-

cating synaptic maturity. Importantly, dendritic spines are morphologically disrupted in many neuro-

developmental disorders, typically skewing toward an immature phenotype (Purpura, 1979;

Irwin et al., 2001; Penzes et al., 2011).

We hypothesized that dendritic spine morphology is immature or disrupted in Ppt1-/- neurons,

particularly given that GluN2A subunit incorporation is disrupted in vivo. Thus, we used in utero

electroporation to sparsely label layer II/III cortical neurons in the visual cortex using a GFP construct

(Matsuda and Cepko, 2004). GFP-expressing cells from WT and Ppt1-/- animals were imaged for

detailed analysis of dendritic spine morphology (spine length, spine volume, and spine head volume)

at P33, a time point when dendritic spine morphology is typically considered mature and GluN2A is

reduced at Ppt1-/- synapses.

We analyzed dendritic spine characteristics of GFP-expressing cells (procedure schematized in

Figure 4A) from WT and Ppt1-/- visual cortex (Figure 4B) using the Imaris software (Bitplane). While

WT neurons exhibited mushroom-type spine morphology with high-volume spine heads (Figure 4C,

arrows), Ppt1-/- neurons showed longer, filopodial protrusions or stubby spines (Figure 4C, arrow-

heads). Quantification of spine length and spine volume demonstrated that Ppt1-/- spines were lon-

ger and less voluminous compared to WT (Figure 4D–E). Further, the volume of dendritic spine

heads was reduced in Ppt1-/- neurons (Figure 4E, inset). Interestingly, dendritic spine density was

significantly increased in Ppt1-/- neurons, signifying dysregulated synapse formation or refinement in

the Ppt1-/- brain (Figure 4F). These data indicate that dendritic spine morphology is disrupted in the

developing CLN1 visual cortex, corresponding with the finding that NMDAR composition is imma-

ture at P33 and suggesting a reduced ability to compartmentalize calcium and other localized bio-

chemical signals in CLN1.

NMDAR subunit composition and dendritic spine morphology are also
immature in Ppt1-/- primary cortical neurons
The GluN2B to GluN2A switch and maturation of dendritic spine characteristics in WT primary neu-

rons has been previously demonstrated (Williams et al., 1993; Zhong et al., 1994; Papa et al.,

1995). We established that the developmental switch from GluN2B- to GluN2A-containing NMDARs

and dendritic spine morphology are impaired in the Ppt1-/- mouse brain. To understand these mech-

anisms more comprehensively and examine protein palmitoylation more directly, we used dissoci-

ated neuronal cultures. First, we analyzed these developmental events in WT and Ppt1-/- primary

cortical neurons to determine whether the biochemical and structural features of disease are recapit-

ulated in vitro.

We collected lysates from cultured cortical neurons for 7, 10, or 18 days in vitro (DIV 7, 10, or 18)

harvested and performed immunoblot analyses for markers of immature (GluN2B) or mature

(GluN2A, PSD-95) excitatory synapses. Expression of GluN2B clearly preceded that of mature synap-

tic markers, peaking in both WT and Ppt1-/- neurons at DIV10 and decreasing slightly thereafter

(Figure 5A). In contrast, levels of both GluN2A and PSD-95 remained low until DIV18, at which point

expression was robust (Figure 5B,C). Importantly, GluN2A, PSD-95, and GluN2A/GluN2B ratio levels

showed reductions in Ppt1-/- neurons compared to WT at DIV18, indicating that the biochemical

phenotype is recapitulated to an extent in vitro (Figure 5B–D).

To analyze dendritic spine morphology, we transfected primary cortical neurons from fetal WT

and Ppt1-/- mice with the GFP construct as above (Matsuda and Cepko, 2004) and cultured until

DIV 15 or 20, then performed live cell imaging (Figure 6A). We measured dendritic spine length and

volume in transfected cells using the Imaris software (Bitplane). At both DIV 15 and 20, we observed

a significant alterations in the dendritic spine length (Figure 6B–E). The distribution of spine length

in Ppt1-/- neurons at DIV15 significantly shifted toward longer protrusions as compared to WT cells

(Figure 6B). The averaged spine length was also robustly increased in Ppt1-/- neurons (Figure 6C).

Similar changes were also present at DIV20 (Figure 6D–E). Next, we analyzed differences in den-

dritic spine volume (Figure 6F–I). Ppt1-/- neurons exhibit a significant reduction in the percentage of

spines with volumes greater than ~0.2 mm3 at both DIV15 (Figure 6F) and DIV20 (Figure 6H). The

averaged spine volume was also reduced in Ppt1-/- neurons at both DIV15 (Figure 6G) and DIV20

(Figure 6I). As observed in vivo, Ppt1-/- neurons showed an increase in the dendritic spine density at
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Figure 4. Dendritic spine morphology is immature in Ppt1-/- layer II/III visual cortical neurons. (A) Schematic of in utero electroporation procedure and

timeline (bottom) (B) coronal diagram from Paxinos’ mouse brain atlas demonstrating areas of visual cortex (left) and representative low-magnification

(10x) confocal image of a successfully transfected group of layer II/III neurons in visual cortex (right). Scale bar = 100 mm. (C) Representative confocal

images of GFP-transfected dendritic segments from WT and Ppt1-/- neurons at P33. Arrows mark mature, mushroom-type spines; arrowheads mark thin,

filopodial spines or stubby, headless spines. Scale bar = 10 mm. (D) Semi-automated quantification of dendritic spine length in WT and Ppt1-/- visual

cortical neurons at P33. (E) Semi-automated quantification of dendritic spine volume and spine head volume (inset) in WT and Ppt1-/- visual cortical

neurons at P33. (F) Semi-automated quantification of dendritic spine density per 10 mm of dendrite in WT and Ppt1-/- visual cortical neurons at P33. For

experiments in Figure 4, WT and Ppt1-/- were compared (n = 3–4 cells/animal, three animals/group) using t-test and the significance was indicated as

follows: *p<0.05, **p<0.01, ***p<0.001, Ppt1-/- vs. WT. Error bars represent s.e.m.
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DIV15 (Figure 6J) and DIV20 (Figure 6K), again suggesting aberrant synapse formation, a failure of

synaptic pruning, or both in Ppt1-/- neurons. Together, these data demonstrate that Ppt1-/- neurons

in culture give rise to morphologically immature dendritic spines and corroborate our in vivo

findings.
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Figure 5. GluN2B to GluN2A NMDAR switch and Ppt1-/--induced synaptic deficits are recapitulated in primary cortical neurons. (A) Representative

immunoblot (top) and quantification of GluN2B levels in WT and Ppt1-/- neurons at DIV7, 10, and 18. (B) Representative immunoblot (top) and

quantification of GluN2A levels (bottom) in WT and Ppt1-/- neurons at DIV7, 10, and 18. (C) Representative immunoblot (top) and quantification of PSD-

95 levels (bottom) in WT and Ppt1-/- neurons at DIV7, 10, and 18. (D) Representative immunoblot (top) and quantification of the GluN2A/2B ratio

(bottom) in WT and Ppt1-/- neurons at DIV7, 10, and 18. For all experiments in Figure 5, Ppt1-/- and WT were compared (n = 2 independent

experiments with two repetitions/group) at each time point using t-test and the significance indicated as follows: *p<0.05 where indicated. Error bars

represent s.e.m.
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Figure 6. Dendritic spine morphology is immature in Ppt1-/- neurons in vitro. (A) Representative composite confocal images of live DIV15 (left) and

DIV20 (right) GFP-transfected, cultured WT and Ppt1-/- neurons. Insets represent dendrite segments within dotted line. Scale bar = 10 mm. (B)

Quantification of dendritic spine length in WT and Ppt1-/- neurons at DIV15. Spine length is binned into 19 discrete groups from 0 - > 4 mm. (C) Mean

length of all spines in cultured WT and Ppt1-/- neurons at DIV15. (D) Quantification of dendritic spine length in WT and Ppt1-/- neurons at DIV20. Spine

Figure 6 continued on next page
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Calcium imaging reveals extrasynaptic calcium dynamics in Ppt1-/-

neurons
Intracellular calcium dynamics, compartmentalization, and signaling play a critical role in synaptic

transmission and plasticity. These properties are altered by glutamate receptor composition and

location (Lau and Zukin, 2007; Hardingham and Bading, 2010; Paoletti et al., 2013). GluN2B-con-

taining NMDARs maintain a prolonged open conformation compared to GluN2A-containing recep-

tors, allowing increased calcium entry per synaptic event (Sobczyk et al., 2005). Moreover, previous

studies indicate that GluN2A-containing NMDARs are generally inserted in the PSD, whereas

GluN2B-containing NMDARs are localized extrasynaptically and associated with SAP102 (Tovar and

Westbrook, 1999; Townsend et al., 2003; van Zundert et al., 2004; Washbourne et al., 2004;

Groc et al., 2007; Elias et al., 2008; Martel et al., 2009). To determine more directly the effects of

our biochemical and electrophysiological findings on calcium dynamics, we analyzed calcium signals

in WT and Ppt1-/- neurons transfected with the genetically encoded calcium sensor, GCaMP3

(Tian et al., 2009).

While WT neurons exhibited primarily compartmentalized calcium signals that were restricted to

individual spines (Figure 7A–C, left, see Video 1), Ppt1-/- neurons demonstrated diffuse calcium

influxes that spread through the dendritic shaft (Figure 7A–C, right, see Video 2). These extrasynap-

tic transients appear rarely in WT cells (Figure 7, see Videos). To analyze the calcium dynamics in

more detail, measurements of DF/F0 were made for each dendritic segment, from each cell over the

course of the captured videos (see Materials and methods). Multiple transients from the same synap-

tic site are shown as a heat map of DF/F0 measurements and they are largely consistent across time

in both WT and Ppt1-/- neurons (Figure 7B). Further, plotting of the averaged DF/F0 transients at an

individual synaptic site demonstrates that local fluorescence increases in WT cells are confined to a

short distance from the peak DF/F0 at synaptic sites (Figure 7B and C, left), while those of Ppt1-/-

neurons diffuse longer distances within the dendrite (Figure 7B and C, right). To quantitatively com-

pare these properties, we performed measurements of area under the curve (AUC) and calcium dif-

fusion distance (see shaded region in Figure 7C) for each synaptic site from WT and Ppt1-/- neurons.

These analyses revealed a robust increase in both the AUC (Figure 7D) and the calcium diffusion dis-

tance (Figure 7E) in Ppt1-/- neurons compared to WT. Furthermore, performing correlation analysis

of calcium events across time (see Materials and methods) within a given neuron demonstrates that

calcium influxes are more synchronous (increased correlation coefficient) in Ppt1-/- neurons com-

pared to WT (Figure 7F). This result may involve mechanisms underlying synaptic cluster plasticity,

including synaptic integration via translational activation influenced by excessive Ca2+ entry

(Govindarajan et al., 2006), enhanced biochemical crosstalk between synapses by, for example,

small GTPases (which are generally palmitoylated proteins) (Harvey et al., 2008), or direct coopera-

tive multi-synaptic Ca2+ signaling (Weber et al., 2016) in Ppt1-/- neurons. Together, these data indi-

cate that calcium entry and dispersion are enhanced at Ppt1-/- synapses in vitro.

These data are in line with our biochemical and electrophysiological findings and suggest that

GluN2B-containing NMDARs mediate the observed calcium signals. To further test this possibility,

we next treated WT and Ppt1-/- neurons with Ro 25–6981 (1 mM, added in imaging medium follow-

ing 2.5 min imaging at baseline) and performed calcium imaging. Ro 25–6981 had virtually no effect

on calcium signals recorded from WT cells (Figure 7G–I, see Video 3). In contrast, Ppt1-/- neurons

Figure 6 continued

length is binned into 19 discrete groups from 0 - > 4 mm. (E) Mean length of all spines in cultured WT and Ppt1-/- neurons at DIV20. (F) Semi-automated

quantification of dendritic spine volume in WT and Ppt1-/- cultured neurons at DIV15. Spine volume is binned into 27 discrete groups form 0 - > 1 mm3.

(G) Mean volume of all spines in cultured WT and Ppt1-/- neurons at DIV15. (H) Semi-automated quantification of dendritic spine volume in WT and

Ppt1-/- cultured neurons at DIV20. Spine volume is binned into 27 discrete groups form 0 - > 1 mm3. (I) Mean volume of all spines in cultured WT and

Ppt1-/- neurons at DIV20. (J) Semi-automated quantification of dendritic spine density per 10 mm of dendrite in WT and Ppt1-/- cultured neurons at

DIV15. (K) Semi-automated quantification of dendritic spine density per 10 mm of dendrite in WT and Ppt1-/- cultured neurons at DIV20. For

experiments in Figure 6, Ppt1-/- and WT were compared (For DIV15: n = 4–5 neurons/group, three-independent experiments, WT = 21,514 spines;

Ppt1-/- = 18,013 spines. For DIV20: n = 3 neurons/group, two-independent experiments, WT = 11,335 spines; Ppt1-/- = 9958 spines) using t-test (within

bin in the case of distribution graphs) and the significance was indicated as follows: *p<0.05, **p<0.05, ***p<0.001 where indicated. Error bars

represent s.e.m.
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Figure 7. Calcium imaging reveals extrasynaptic calcium dynamics in Ppt1-/- neurons. DIV16-18, WT and Ppt1-/- cortical neurons transfected with

GCaMP3 and imaged in the absence of Mg2+ for 5 min. (A) Single frames from Videos 1 and 2 of WT (left, note that cell is rotated 90˚ from Video 1)

and Ppt1-/- (right) cultured neurons. Dendritic segments within the dotted-lines represent zoomed-in images of a single spine (left, WT) or dendritic

shaft segment (right, Ppt1-/-) at baseline (top) and active (bottom) states. Scale = 10 mm. (B) Representative heat maps of DF/F0 values at one synaptic

Figure 7 continued on next page
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treated with Ro 25–6981 showed a reduction in dendritic calcium influxes within shafts, while few

residual, compartmentalized transients persisted (Figure 7G–I, see Video 4). Quantitatively, both

AUC (Figure 7H) and calcium diffusion (Figure 7I) distance were rescued to WT levels following Ro

25–6981 treatment of Ppt1-/- neurons. Together, these data suggest that Ppt1-/- neurons have extra-

synaptic calcium signaling compared to WT that is sensitive to GluN2B-NMDAR blockade.

Ppt1-/- cultured neurons show enhanced vulnerability to NMDA-
mediated excitotoxicity
GluN2B-predominant NMDARs are implicated in enhanced neuronal susceptibility to NMDA-medi-

ated neuronal death (Martel et al., 2009; Martel et al., 2012). Our results from biochemical,

electrophysiological, and live-imaging analyses indicate decreased GluN2A/2B ratio suggesting an

intriguing possibility that Ppt1-/- neurons are more vulnerable to excitotoxicity (Finn et al., 2012).

Therefore, we treated WT and Ppt1-/- cultured neurons with NMDA (varying doses, 10–300 mm) and

glycine (1–30 mm, always in 1:10 ratio with NMDA) for 2 hr and assayed cell viability 24 hr later using

the PrestoBlue reagent (ThermoFisher Scientific) (Figure 8A). As expected, both WT and Ppt1-/- neu-

rons demonstrated dose-dependent reductions in cell viability in response to increasing concentra-

tions of NMDA/glycine (Figure 8B). Importantly, Ppt1-/- neurons were more vulnerable to NMDA

insult, as exposure to 10 mM NMDA was sufficient to reduce cell viability significantly in Ppt1-/- neu-

rons but not WT cells (WT = 93 ± 4.1%; Ppt1-/- = 76 ± 3.5%; *p=0.046; Figure 8B). Further, at 100

mM NMDA, WT neuron viability decreased by 35%, while Ppt1-/- neuron viability was reduced signifi-

cantly further, by 58% (WT = 65 ± 1.8%; Ppt1-/- = 42 ± 4.5%; **p=0.0043; Figure 8B). At 300 mM

NMDA treatment this effect plateaued, as cell viability between WT and Ppt1-/- neurons was compa-

rable (Figure 8B). These results indicate Ppt1-/- neurons are more vulnerable to excitotoxicity and

are consistent with our calcium imaging data

that demonstrated the predominance of extrasy-

naptic, GluN2B-mediated NMDAR activity.

Palmitoylation inhibitors rescue
enhanced vulnerability to NMDA-
mediated excitotoxicity in Ppt1-/-

cultured neurons
We next asked whether this enhanced vulnerabil-

ity to excitotoxicity results from hyperpalmitoyla-

tion of neuronal substrates, and if it can be

corrected by balancing the level of synaptic pro-

tein palmitoylation/depalmitoylation. First, we

found that 77% of cultured Ppt1-/- neurons accu-

mulate ALs spontaneously at DIV18-20

(Figure 9A and B). In agreement, an

Figure 7 continued

site from WT (left) and Ppt1-/- (right) dendrite segments during a portion the imaging session (350 frames, 50 s). (C) Representative averaged DF/F0
responses at one synaptic site from WT (left) and Ppt1-/- (right) neurons. Area under the curve represents calcium influx and is shaded in red. (D)

Quantification of calcium transient area under the curve WT and Ppt1-/- neurons. (E) Quantification of calcium transient diffusion distance from WT and

Ppt1-/- neurons. (F) Quantification of average correlation coefficient (synaptic synchrony) across time between sites of synaptic activity in WT and Ppt1-/-

neurons. (G) Representative heat maps of DF/F0 values at one synaptic site from WT (left) and Ppt1-/- (right) dendrite segments before (top) and after

(bottom) treatment with Ro 25–6981 (130 frames, 18 s). (H) Quantification of calcium transient area under the curve WT and Ppt1-/- neurons before and

after treatment with Ro 25–6981. (I) Quantification of calcium transient diffusion distance from WT and Ppt1-/- neurons before and after treatment with

Ro 25–6981. For experiments in Figure 7D–E, Ppt1-/- and WT were compared (n = 185 synaptic sites (WT), n = 131 synaptic sites (Ppt1-/-), three

neurons/group, three individual experiments) by t-test and the significance was indicated as follows: ***p<0.001 vs. WT by t-test. For experiments in

Figure 7F, Ppt1-/- and WT were compared (n = 100 synaptic sites (WT), n = 100 synaptic sites (Ppt1-/-); three neurons/group, two individual

experiments) by t-test and the significance was indicated as follows: ***p<0.001 vs. WT by t-test. For experiments in Figure 7H–I, Ppt1-/- and WT were

compared (n = 25 synaptic sites (WT), n = 28 synaptic sites (Ppt1-/-); three neurons/group, two individual experiments) by t-test and the significance was

indicated as follows: ***p<0.001 vs. WT by t-test. 65 pixels is representative of 10 mm. Error bars represent s.e.m.

DOI: https://doi.org/10.7554/eLife.40316.009

Video 1. Spontaneous calcium activity in DIV16-18 WT

neuron. Representative video of spontaneous neuronal

calcium activity in a WT cultured neuron at DIV16-18.

DOI: https://doi.org/10.7554/eLife.40316.010
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immunostaining for lysosomal-associated mem-

brane protein-2 (LAMP-2) showed colocalization

of the lysosomal marker with ALs in Ppt1-/- but

not WT neurons (vehicle treatment in Figure 9B, Figure 9—figure supplement 1). Further, lyso-

somes appeared swollen in vehicle-treated Ppt1-/- neurons (see arrows in Figure 9B, Figure 9—fig-

ure supplement 1D–F). Treatment with the palmitoylation inhibitors, 2-bromopalmitate (2 BP, 1 mM,

7 day treatment) and cerulenin (1 mM, 7 day treatment) reduced the percentage of AL-positive neu-

rons (Figure 9C) and the area occupied with ALs per neuron (Figure 9D). Further, the mean lyso-

somal size also normalized in Ppt1-/- neurons when these cells were treated with 2 BP or cerulenin

(Figure 9E).

To examine the efficacy of these compounds in preventing NMDA-mediated toxicity, we pre-

treated a subset of neurons with the same palmitoylation inhibitors, 2 BP (1 mM, DIV12-18) and ceru-

lenin (1 mM, DIV12-18) prior to treatment with NMDA and glycine. Notably, pretreatment with both

2 BP and cerulenin improved cell viability of Ppt1-/- neurons to that of WT following excitotoxicity

induction, while the chronic low-dose treatment alone had no effect on neuronal viability

(Figure 9F). These results indicate at least two features of Ppt1-/- neurons, accumulation of proteoli-

pid materials and a higher vulnerability to excitotoxicity, can be mitigated by correcting a balance

between palmitoylation and depalmitoylation.

Palmitoylation inhibitor treatment improves pathological calcium
dynamics in Ppt1-/- neurons
To determine whether palmitoylation inhibitor

treatment had a functional effect on the calcium

dynamics in Ppt1-/- neurons, we treated a subset

of Ppt1-/- cells from DIV12-18 with 2 BP (1 mM)

or cerulenin (1 mM) before imaging under the

same conditions described for Figure 7 (see Vid-

eos 5 and 6). Notably, treatment with both 2 BP

and cerulenin decreased the AUCs of specified

synapses compared to untreated Ppt1-/- cells

(see Video 7), nearly to WT levels (Figure 10A),

indicating more compartmentalized calcium

influx. In fact, the morphology of treated Ppt1-/-

neurites appeared more mature (see Videos 5–

7). However, the AUC of cerulenin-treated

Ppt1-/- neurons was still significantly increased

compared to WT, indicating a partial rescue of

phenotype (Figure 10A). We also observed simi-

lar changes for the calcium diffusion distance at

Video 2. Spontaneous calcium activity in DIV16-18

Ppt1-/- neuron. Representative video of spontaneous

neuronal calcium activity in a Ppt1-/- cultured neuron at

DIV16-18.

DOI: https://doi.org/10.7554/eLife.40316.011

Video 3. Spontaneous calcium activity in DIV16-18 WT

neuron before and after treatment with Ro 25–6981.

Representative video of spontaneous neuronal calcium

activity in a WT cultured neuron at DIV16-18 prior to,

and following, bath application of Ro 25–6981 (1 mM,

after 30 s).

DOI: https://doi.org/10.7554/eLife.40316.012

Video 4. Spontaneous calcium activity in DIV16-18

Ppt1-/- neuron before and after treatment with Ro 25–

6981. Representative video of spontaneous neuronal

calcium activity in a Ppt1-/- cultured neuron at DIV16-18

prior to, and following, bath application of Ro 25–6981

(1 mM, after 31 s).

DOI: https://doi.org/10.7554/eLife.40316.013
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synaptic sites, as groups followed the order: Ppt1-/- > Ppt1-/- + cerulenin � Ppt1-/- + 2 BP=WT.

These results further confirm the efficacy of palmitoylation inhibitor treatment (Figure 10B). Further,

calcium transient frequency was higher in Ppt1-/- cells than in WT but was lowest in Ppt1-/- neurons

treated with 2 BP or cerulenin (Figure 10C and D). It is plausible that chronic palmitoylation inhibitor

treatment caused dissipation of synaptic proteins, including NMDARs (El-Husseini et al., 2002;

Li et al., 2003), thereby reducing transient frequency.

Palmitoylation inhibitors rescue Fyn kinase and GluN2B
hyperpalmitoylation in Ppt1-/- neurons
Finally, we directly examined the palmitoylation state of neuronal proteins to gain insight into the

mechanisms by which hyperpalmitoylation of neuronal substrates may lead to NMDA-mediated exci-

totoxicity in Ppt1-/- neurons. We also asked whether palmitoylation inhibitors can correct these

abnormalities. We employed a modified acyl-biotin exchange procedure (Drisdel and Green, 2004),

termed the APEGS assay (acyl-PEGyl exchange gel-shift) (Yokoi et al., 2016). The APEGS assay

effectively tags the palmitoylation sites of neuronal substrates with a 5 kDa polyethylene glycol

(PEG) polymer, causing a molecular weight-dependent gel shift in immunoblot analyses. Thus, we

quantitatively analyzed the palmitoylated fraction of synaptic proteins and palmitoylated signaling

molecules that may influence NMDAR function.

To test the feasibility of the APEGS assay in our primary cortical neuronal cultures, we collected

lysates at DIV18 from WT, Ppt1-/-, and palmitoylation inhibitor-treated (2 BP or cerulenin, DIV12-18,

1 mm) neurons and examined two palmitoylated proteins, PSD-95 and Fyn, which have been success-

fully quantified using this method (Yokoi et al., 2016).

We examined the palmitoylation state of PSD-95 at baseline and in response to palmitoylation

inhibitor treatment (Figure 11A). As we found in our initial immunoblotting analyses of the homoge-

nates derived from cortical tissues (Figure 2) and neuronal cultures (Figure 5), Ppt1-/- neurons had

lower amounts of total PSD-95 protein than WT, as evidenced by decreased overall band density
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Figure 8. Ppt1-/- cultured neurons show enhanced vulnerability to NMDA-mediated excitotoxicity. (A) Schematic of cellular toxicity experimental

design. Briefly, neurons were grown to DIV11, treated with vehicle of palmitoylation inhibitors for 7 days (every 48 hr) and neuronal viability was

measured by PrestoBlue cellular viability assay following exposure (2 hr exposure, 22 hr incubation in medium) to NMDA and glycine. (B) Quantification

of cellular viability in WT and Ppt1-/- neurons at DIV19 treated with increasing concentrations of NMDA and glycine (10/1, 100/10, and 300/30 mM).

Ppt1-/- and WT were compared (n = 4 independent experiments, in duplicate) by two-way ANOVA followed by Tukey’s post hoc test and significance

was indicated as follows: *p<0.05 and ***p<0.001 where indicated. Error bars represent s.e.m.
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Figure 9. Palmitoylation inhibitors rescue enhanced vulnerability to NMDA-mediated excitotoxicity in Ppt1-/- cultured neurons. (A) 3D reconstructions of

a WT and Ppt1-/- neuron at DIV20. Arrows point to AL deposits. Scale bar = 5 mm (B) Representative collapsed z-stacks of WT and Ppt1-/- DIV20

neurons, demonstrating accumulations of ALs (arrows) within the soma, particularly within LAMP2-positive vesicles, of Ppt1-/- neurons. Note the

enlarged lysosomes in Ppt1-/-, vehicle-treated neurons (see Figure 9—figure supplement 1). Scale bar = 10 mm (C) Quantification of the percentage of

Figure 9 continued on next page
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(Figure 11B). Remarkably, the palmitoylation states of PSD-95 were comparable between Ppt1-/-

and WT neurons (Figure 11C), suggesting that PSD-95 may not be a PPT1 substrate. This finding is

consistent with previous results showing that PSD-95 is not depalmitoylated by PPT1 (Yokoi et al.,

2016). Further, in line with previous data (El-Husseini et al., 2002; Fukata et al., 2013), 2 BP treat-

ment decreased the relative palmitoylation level (ratio of palm/non-palm) of PSD-95 by nearly 50%

in WT neurons (Figure 11C). However, we did not observe this effect in Ppt1-/- neurons. Also, cerule-

nin treatment had no consistent effects on PSD-95 levels or palmitoylation state in WT or Ppt1-/- cells

(Figure 11B and C). However, the specificity of palmitoylation inhibitors is incompletely understood

and compensatory mechanisms may restore PSD-95 palmitoylation due to chronic low-dose inhibitor

treatment.

We performed the same analysis on another well-studied palmitoylated protein, Fyn kinase

(Figure 11D). Fyn is a prominent member of the Src family kinases that phosphorylates and thereby

stabilizes GluN2B at the synaptic surface (Prybylowski et al., 2005; Trepanier et al., 2012). Further,

Fyn palmitoylation is important for its localization to the plasma membrane, where it may interact

with GluN2B (Sato et al., 2009). Hence, Fyn hyperpalmitoylation can be a mechanism by which

GluN2B retention may be enhanced in Ppt1-/- neurons. Indeed, total levels of Fyn were increased in

Ppt1-/- neurons compared to WT, and were significantly suppressed by 2 BP and cerulenin treatment

in both WT and Ppt1-/- neurons (Figure 11E). 2 BP and cerulenin treatments also significantly

reduced the ratio of palmitoylated/non-palmitoylated Fyn in WT and Ppt1-/- neurons (Figure 11F).

These findings imply that palmitoylation of Fyn regulates its stability and that Fyn hyperpalmitoyla-

tion may play a vital role in the stagnation of GluN2B to GluN2A subunit switch (Figure 11E and F).

Next, we examined the palmitoylation state

of GluN2B (Figure 11G). First, total GluN2B lev-

els were comparable between WT and Ppt1-/-,

vehicle-treated neurons at DIV18 (Figure 11G

and H). While 2 BP had no effect on total

GluN2B levels in WT neurons, 2 BP treatment

decreased total GluN2B in Ppt1-/- neurons com-

pared to vehicle-treated cells (Figure 11H). Cer-

ulenin had the same effect (Figure 11H).

Importantly, both 2 BP and cerulenin corrected

the ratio of palmitoylated/non-palmitoylated

GluN2B in Ppt1-/- neurons, with values approach-

ing those of vehicle-treated WT cells

(Figure 11I). No effect was observed in WT neu-

rons treated with cerulenin. The latter results

indicate that GluN2B palmitoylation state is less

sensitive to chronic, low-dose palmitoylation

inhibitor treatment than Fyn palmitoylation state.

One possibility, therefore, is that enhanced

Figure 9 continued

AL-containing neurons at DIV20 with or without the palmitoylation inhibitors, 2-bromopalmitate (2 BP, 1 mM) and cerulenin (1 mM), treatment for 6d. (D)

The percentage of soma area occupied by ALs with or without the palmitoylation inhibitors, 2 BP (1 mM) and cerulenin (1 mM), treatment for 6d. (E)

Quantification of the percentage of soma area occupied by lysosomes (LAMP-2-positive vesicles) with and without palmitoylation inhibitor, 2 BP (1 mM)

and cerulenin (1 mM), treatment for 6 days. WT, Ppt1-/-, and drug treatment conditions were compared (7–10 neurons/group/experiment, n = 3

independent experiments) by two-way ANOVA followed by Tukey’s post-hoc test and significance indicated as follows: *p<0.05, ***p<0.001 where

indicated. (F) Quantification of cellular viability in DIV18-20 WT and Ppt1-/- neurons treated with NMDA and glycine (100/10 mM) with or without

pretreatment with vehicle (DMSO) only, 2 BP (1 mM) or cerulenin (1 mM). Values for treatment with 2 BP (1 mM) or cerulenin (1 mM) in the absence of

NMDA and glycine are also shown. WT, Ppt1-/-, and drug treatment conditions were compared (n = 4 independent experiments, in duplicate) by two-

way ANOVA followed by Tukey’s post-hoc test and significance indicated as follows: **p<0.01, ***p<0.001 where indicated. Error bars represent s.e.m.

DOI: https://doi.org/10.7554/eLife.40316.015

The following figure supplement is available for figure 9:

Figure supplement 1. ALs accumulate in enlarged lysosomes of Ppt1-/- neurons.

DOI: https://doi.org/10.7554/eLife.40316.016

Video 5. Spontaneous calcium activity in DIV18 Ppt1-/-

neuron treated with 2 BP (1 mM, from DIV12-18).

Representative video of spontaneous neuronal calcium

activity in a Ppt1-/- cultured neuron that was treated

from DIV12-18 with 2 BP, at a dose of 1 mM. The last

treatment was 4–6 hr before the imaging session.

DOI: https://doi.org/10.7554/eLife.40316.018
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surface retention of GluN2B-containing NMDARs in Ppt1-/- neurons results from Fyn hyperpalmitoy-

lation. Alternatively, hyperpalmitoylation of GluN2B may directly lead to enhanced surface retention

of GluN2B-containing NMDARs in Ppt1-/- neurons (Mattison et al., 2012). Nevertheless, these data

are in line with Figure 10C, which shows the frequency of calcium influxes in Ppt1-/- neurons is

robustly decreased by treatment with 2 BP or cerulenin.

Finally, we examined the palmitoylation state of GluN2A at baseline and in response to palmitoy-

lation inhibitor treatment (Figure 11J). As we found in our biochemical analyses of the cortical

homogenates (Figures 2 and 5), Ppt1-/- neurons showed decreases in the band intensity of total

GluN2A level as compared to WT (Figure 11J and K). The palmitoylation state (ratio of palm/non-

palm) of GluN2A, however, was unchanged between WT and Ppt1-/- at baseline (Figure 11L), sug-

gesting that PPT1 is not directly involved in the palmitoylation state of GluN2A. Interestingly, chronic

treatment with 2 BP and cerulenin had dissimilar effects on GluN2A levels and palmitoylation state

in WT and Ppt1-/- neurons. In WT cells, 2 BP had no effect on GluN2A levels or palmitoylation state

(Figure 11K and L), indicating that the chronic low-dose treatment does not intervene the GluN2A

depalmitoylation in WT neurons. In contrast, 2 BP treatment in Ppt1-/- neurons robustly increased

both the total level and palmitoylation state of GluN2A, resulting in the nearly equal representation

of two distinct GluN2A palmitoylated species (Figure 11K and L). Differing from 2 BP, cerulenin

treatment modestly decreased total GluN2A levels and GluN2A palmitoylation state in WT cells

(Figure 11K and L). In contrast, cerulenin treatment of Ppt1-/- cells increased the total GluN2A pro-

tein level (Figure 11K and L), albeit not nearly as robustly as 2 BP. Overall, these results illustrate

complex and potentially indirect effects of palmitoylation inhibitor treatment on the palmitoylation

state of GluN2A in Ppt1-/- neurons. While there may be other possibilities, the data suggest that 2

BP treatment may have corrected a defect in palmitoylation in Ppt1-/- neurons (e.g. Fyn hyperpalmi-

toylation), thereby initiating or facilitating the GluN2B to GluN2A switch. Nevertheless, the increase

in GluN2A levels and palmitoylation in Ppt1-/- cells may ultimately account for the beneficial effects

of inhibitor treatment in our complementary analyses (Figures 9 and 10).

In aggregate, these data indicate hyperpalmitoylation of Fyn and GluN2B, and point

to mechanisms by which chronic low-dose palmitoylation inhibitor treatment may decrease the syn-

aptic stabilization of GluN2B, thereby reducing calcium load in Ppt1-/- neurons and mitigating the

enhanced susceptibility to excitotoxicity. Further, these data imply that the progression of CLN1

may be mediated by the palmitoylation of Fyn kinase, which is also being targeted for the treatment

of Alzheimer’s disease (Kaufman et al., 2015; Nygaard et al., 2015).

Discussion
Since the development of the first Ppt1-/- mouse and knock-in mouse model of CLN1, much progress

has been made in understanding the temporal, regional, and cell-type specific effects of lipofuscin

Video 6. Spontaneous calcium activity in DIV18 Ppt1-/-

neuron treated with cerulenin (1 mM, from DIV12-18).

Representative video of spontaneous neuronal calcium

activity in a Ppt1-/- cultured neuron that was treated

from DIV12-18 with cerulenin, at a dose of 1 mM. The

last treatment was 4–6 hr before the imaging session.

DOI: https://doi.org/10.7554/eLife.40316.019

Video 7. Spontaneous calcium activity in DIV18 Ppt1-/-

neuron treated with vehicle (DMSO, from DIV12-18).

Representative video of spontaneous neuronal calcium

activity in a Ppt1-/- cultured neuron that was treated

from DIV12-18 with DMSO as vehicle. The last

treatment was 4–6 hr before the imaging session.

DOI: https://doi.org/10.7554/eLife.40316.020

Koster et al. eLife 2019;8:e40316. DOI: https://doi.org/10.7554/eLife.40316 20 of 42

Research article Neuroscience

https://doi.org/10.7554/eLife.40316.019
https://doi.org/10.7554/eLife.40316.020
https://doi.org/10.7554/eLife.40316


0

5

10

15

20

25

0

50

100

150

200

250

A

Ca2+ transient frequency

fr
e
q

e
u

e
n

c
y
 (

#
 

tr
a
n

s
ie

n
ts

/5
0
0
 f

ra
m

e
s
)

A
re

a
 u

n
d

e
r 

c
u

rv
e
 

(g
re

y
 v

a
lu

e
 x

 p
ix

e
ls

)

D
if

fu
s
io

n
 d

is
ta

n
c
e

(p
ix

e
ls

)

Ca2+ diffusion distance

Area under curve

B

C

****

0

500

1000

1500
*

****

**

*

*

****

W
T

P
pt1

-/-

P
pt1

-/-
 + 

2-
B
P
/C

er

WT

Ppt1-/-

Ppt1-/- + 2-BP

Ppt1-/- + cerulenin

WT

Ppt1-/-

Ppt1-/- + 2-BP

Ppt1-/- + cerulenin

D
5

0
 f

ra
m

e
s

70 pixels

****
**** F/F

*
*

****
****

Figure 10. Palmitoylation inhibitor treatment partially reverses pathological calcium dynamics in Ppt1-/- neurons. A subset of Ppt1-/- cells treated with

the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) from DIV12-18 were transfected with GCaMP3 and imaged in the absence of Mg2+ for 5

min. Sites of calcium influx (spontaneous synaptic activity, DF/F0) were analyzed. These data were compared to WT and Ppt1-/- groups from Figure 7.

(A) Quantification of calcium transient area under the curve (AUC) in WT, Ppt1-/-, Ppt1-/- + 2 BP, and Ppt1-/- + cerulenin-treated groups. (B)

Quantification of calcium transient diffusion distance from WT, Ppt1-/-, Ppt1-/- + 2 BP, and Ppt1-/- + cerulenin treated groups. (C) Quantification of

calcium transient frequency (# transients/500 frames) for each synaptic site between WT, Ppt1-/-, Ppt1-/- + 2 BP, and Ppt1-/- + cerulenin-treated groups.

(D) Representative kymographs displaying the calcium influx (DF/F0) at one synaptic site (pixels, X-axis) over the course of 500 frames (arrow represents

direction of time in frames) from WT (left), Ppt1-/- (middle), and Ppt1-/- + palmitoylation inhibitor treatment groups. For experiments in Figure 10A–C,

WT, Ppt1-/-, Ppt1-/- + 2 BP, and Ppt1-/- + cerulenin groups were compared (n = 185 synaptic sites (WT), n = 131 synaptic sites (Ppt1-/-), n = 85 synaptic

sites (Ppt1-/- + 2 BP), n = 82 synaptic sites (Ppt1-/- + cerulenin); 3–4 neurons/group; three individual experiments) by one-way ANOVA followed by

Tukey’s post-hoc test and the significance was indicated as follows: *p<0.05,**p<0.01 ****p<0.0001 where indicated. Dots represent values for

individual synaptic sites. Error bars represent s.e.m.

DOI: https://doi.org/10.7554/eLife.40316.017

Koster et al. eLife 2019;8:e40316. DOI: https://doi.org/10.7554/eLife.40316 21 of 42

Research article Neuroscience

https://doi.org/10.7554/eLife.40316.017
https://doi.org/10.7554/eLife.40316


0

50

100

150

200

WT Ppt1-/- -HAWT Ppt1-/- WT Ppt1-/-

2-BP (1 m)

Cerulenin (1 m)
-- -- -- --
-- -- -- -- ++ ++

++ ++ -
-

A

G

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

WT

Ppt1-/-
WT

Ppt1-/-

Ratio (palm/non-palm) GluN2BTotal GluN2B

*

palm

non-palm

GluN2B

-actin

0

50

100

150

200

Ratio (palm/non-palm) FynTotal Fyn

WT Ppt1-/- -HAWT Ppt1-/- WT Ppt1-/-

2-BP (1 m)

Cerulenin (1 m)

-- -- -- --
-- -- -- -- ++ ++

++ ++ -
-

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

**
*

***

***

palm

non-palm

WT

Ppt1-/-
WT

Ppt1-/-

2-BP CeruleninVehicle

Fyn kinase

-actin

2-BP CeruleninVehicle

WT Ppt1-/- WT Ppt1-/- WT Ppt1-/-

2-BP (1 m)

Cerulenin (1 m)
-- -- -- --
-- -- -- -- ++ ++

++ ++

palm

non-palm

PSD-95

-actin

0

50

100

150

0

50

100

150

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

Ratio (palm/non-palm) PSD-95Total PSD-95

WT
Ppt1-/-

WT
Ppt1-/-** *

2-BP CeruleninVehicle2-BP CeruleninVehicle

2-BP (1 m)
Cerulenin (1 m)

-- -- -- --
-- -- -- -- ++ ++

++ ++

palm
non-palm

-actin

0

50

100

150

0

100

200

300

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

P
e
rc

e
n

t 
o

f 
W

T
-

v
e
h

ic
le

 t
re

a
te

d

Ratio (palm/non-palm) GluN2ATotal GluN2A

WT
Ppt1-/-

WT
Ppt1-/-

****
*

2-BP CeruleninVehicle 2-BP CeruleninVehicle

***

****
*

****
*

2-BP CeruleninVehicle 2-BP CeruleninVehicle

WT Ppt1-/- WT Ppt1-/- WT Ppt1-/-
GluN2A

B C

D

E F

H I

J

K L

0

50

100

150

200

0

50

100

150

200

*
*

*

Figure 11. Hyperpalmitoylation of Fyn kinase and GluN2B is reversed in Ppt1-/- primary cortical neurons by palmitoylation inhibitor treatment. (A)

Representative post-APEGS immunoblot of PSD-95 with b-actin loading control. (B) Quantification of total PSD-95 levels following chronic (7d)

treatment with vehicle or the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) where indicated. (C) Quantification of the ratio of palmitoylated/

non-palmitoylated PSD-95 levels following chronic (7d) treatment with vehicle or the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) where

Figure 11 continued on next page
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accumulation and neuronal degeneration, particularly in late stage disease (Gupta et al., 2001;

Bible et al., 2004; Kielar et al., 2007; Bouchelion et al., 2014). In addition, comprehensive data

characterizing the behavioral dysfunction of the Ppt1-/- mouse has recapitulated clinical symptoms of

the disease (Dearborn et al., 2015). Recent data demonstrate that PPT1 localizes to synaptic com-

partments and influences presynaptic localization and mobility of prominent presynaptic proteins,

including SNAP25 (Kim et al., 2008). These findings correlate with histological and electrophysiolog-

ical findings in cultured Ppt1-/- neurons, demonstrating a depletion of presynaptic vesicle pool size

(Virmani et al., 2005). Moreover, presynaptic protein localization and function are altered in CLN1

models and in human tissue (Kanaani et al., 2004; Kim et al., 2008; Aby et al., 2013).

In the current study, we have identified a role for PPT1 in postsynaptic maturation in the Ppt1-/-

mouse model of CLN1. Our principal finding demonstrates a role for PPT1 in the regulation of

NMDAR composition and function that leaves Ppt1-/- neurons vulnerable to excitotoxic insult, which

is alleviated by chronic low-dose palmitoylation inhibitor treatment. Together, these data implicate

dysregulated GluN2 subunit switch as a major pathogenic mechanism in CLN1.

Stagnation of GluN2B to GluN2A subunit switch in the Ppt1-/- mouse
visual cortex
During early postnatal development, NMDARs switch their subunit composition from primarily con-

taining GluN2B subunits to predominantly containing GluN2A subunits (Carmignoto and Vicini,

1992; Sheng et al., 1994; Stocca and Vicini, 1998). The increased contribution of GluN2A subunits

is accompanied by several distinctive changes in NMDAR-mediated synaptic currents, including a

shortening of the decay time (Carmignoto and Vicini, 1992). In the rodent visual cortex, develop-

mental decrease of the NMDAR-EPSC decay time and the corresponding switch from GluN2B- to

GluN2A-diheteromeric receptors occurs between the second and fourth postnatal weeks

(Carmignoto and Vicini, 1992; Quinlan et al., 1999a; Quinlan et al., 1999b; Philpot et al., 2001).

The GluN2 subunit switch is not absolute, and GluN2B subunits remains expressed in many regions

of the adult brain (Lopez de Armentia and Sah, 2003). Consequently, synaptic NMDARs are pre-

dominantly diheteromeric GluN1/GluN2A and triheteromeric GluN1/GluN2A/GluN2B receptors

(Luo et al., 1997; Tovar and Westbrook, 1999; Tovar et al., 2013), while extrasynaptic sites are

enriched in GluN2B-containing receptors (Carmignoto and Vicini, 1992; Rumbaugh and Vicini,

1999; Tovar and Westbrook, 1999).

Our biochemical analyses show reductions in the protein amount of GluN2A subunit and their

preferential synaptic scaffold, PSD-95, in the Ppt1-/- mouse visual cortex at distinct developmental

time points (P33-P60). These alterations correlate with the prolongation of the evoked NMDAR-

EPSC decay time in Ppt1-/- layer II/III cortical neurons. One may anticipate the prolonged decay time

in Ppt1-/- neurons is more sensitive to a GluN2B-specific inhibitor. However, both WT and Ppt1-/-

Figure 11 continued

indicated. (D) Representative post-APEGS immunoblot of Fyn kinase with b-actin loading control and minus hydroxylamine (-HA) control. (E)

Quantification of total Fyn kinase levels following chronic (7d) treatment with vehicle or the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM)

where indicated. (F) Quantification of the ratio of palmitoylated/non-palmitoylated Fyn kinase levels following chronic (7 days) treatment with vehicle or

the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) where indicated. (G) Representative post-APEGS immunoblot of GluN2B with b-actin

loading control and minus hydroxylamine (-HA) control. (H) Quantification of total GluN2B levels following chronic (7d) treatment with vehicle or the

palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) where indicated. (I) Quantification of the ratio of palmitoylated/non-palmitoylated GluN2B

levels following chronic (7 days) treatment with vehicle or the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) where indicated. (J)

Representative post-APEGS immunoblot of GluN2A with b-actin loading control. (K) Quantification of total GluN2A levels following chronic (7d)

treatment with vehicle or the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) where indicated. (L) Quantification of the ratio of palmitoylated/

non-palmitoylated GluN2A levels following chronic (7d) treatment with vehicle or the palmitoylation inhibitors, 2 BP (1 mM) or cerulenin (1 mM) where

indicated. DMSO was used for vehicle treatment. For experiments in Figure 11A and D, WT, Ppt1-/-, WT + 2 BP, WT + cerulenin, Ppt1-/- + 2 BP, and

Ppt1-/- + cerulenin treatment groups were compared (n = 4 independent experiments) by two-way ANOVA followed by Tukey’s post-hoc test and

significance indicated as follows: *p<0.05, **p<0.01, ****p<0.0001 where indicated. For experiments in Figure 11B and C, WT, Ppt1-/-, WT + 2 BP,

WT + cerulenin, Ppt1-/- + 2 BP, and Ppt1-/- + cerulenin were compared (n = 2–4 independent experiments) at each time point using two-way ANOVA

followed by Tukey’s post-hoc test and the significance was indicated as follows: *p<0.05, **p<0.01, ***p<0.001 where indicated. Error bars represent s.

e.m.
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neurons equally responded to Ro 25–6981 (Figure 3E). Importantly, triheteromeric NMDARs have

intermediate decay kinetics (between purely GluN2A- or GluN2B-containing diheteromeric recep-

tors) and are relatively insensitive to GluN2B-specific inhibitors (Stroebel et al., 2018). Still, the

GluN2B subunit may dominate specific features of these triheteromeric NMDARs such as their recy-

cling rate or activation during synaptic plasticity (Tang et al., 2010; Delaney et al., 2013). We dem-

onstrate that GluN2B is hyperpalmitoylated in Ppt1-/- neurons (Figure 11C). Therefore, the

dysregulated GluN2 subunit switch in Ppt1-/- neurons may be explained by the growing presence of

the triheteromeric receptors at P42 (and anticipate the same results between P33 and P60) in the

cortex (Luo et al., 1997). Specifically, we propose that increased palmitoylation of GluN2B subunits

leads to more stable assembly of triheteromeric receptors and their accumulation at postsynaptic

sites.

However, the presence of triheteromeric receptors does not fully explain the Ca2+ imaging data

demonstrating that Ro 25–6981 treatment sufficiently inhibits extrasynaptic Ca2+ influx in vitro (Fig-

ure 7), which is likely mediated by diheteromeric GluN2B-NMDARs. In rat hippocampal neurons,

although the ifenprodil-sensitive component of synaptic and extrasynaptic NMDAR populations

declines with maturation, the majority of extrasynaptic NMDARs remain sensitive to ifenprodil (dihe-

teromeric GluN2B-NMDARs) even into synaptic maturity (DIV13-19)(Thomas et al., 2006). This sus-

tained extrasynaptic population of diheteromeric GluN2B-NMDARs would be represented in our in

vitro imaging experiments (in Mg2+-free solution) and be blocked by bath application of Ro 25–

6981, constraining the remaining activity to synaptic NMDARs that more closely resemble WT neu-

rons (Figure 7). Another explanation is that immature spine structure may have altered the dendritic

distribution of GluN2B-containing diheteromeric receptors in Ppt1-/- neurons, limiting the represen-

tation of these Ro 25–6981-sensitive NMDARs evoked by single pulse of synaptic activation as in

Figure 3E. These differences in experimental preparation (dissociated neurons vs. slice and electro-

physiology vs. Ca2+ imaging) may therefore contribute to the observed variation in Ro 25–6981 effi-

cacy in vivo and in vitro.

Candidate PPT1 substrates that regulate the GluN2B to GluN2A
subunit switch
Initially, we predicted synaptic markers, particularly PSD-95, would be hyperpalmitoylated and over-

represented at postsynaptic sites, since their synaptic distribution depends on the balance between

palmitoylation and depalmitoylation (Craven et al., 1999; El-Husseini et al., 2000a; Jeyifous et al.,

2016). As PSD-95 facilitates the GluN2 subunit switch and preferentially interacts with GluN2A, we

also hypothesized an increase in the GluN2A subunit. However, our biochemical data indicate reduc-

tions in the total amount as well as the synaptic incorporation of GluN2A and PSD-95 in the PPT1-

deficient brain (Figure 2, Figure 2—figure supplement 1). Interestingly, a recent study suggests

that PSD-95 is depalmitoylated by the a/b hydrolase domain-containing 17 (ABHD17) family

of depalmitoylating enzymes, not PPT1 (Yokoi et al., 2016). Our results support this notion, as PSD-

95 palmitoylation state is comparable between WT and Ppt1-/- neurons (Figure 11B). These findings

illustrate that depalmitoylases demonstrate substrate specificity which may be important for the reg-

ulation of coordinated, long-term changes at the synapse.

Our biochemical analyses demonstrate that the GluN2B to GluN2A switch is disrupted both in

vivo (Figure 2A–D) and in vitro (Figure 5A–D) in Ppt1-/- neurons and that PPT1 expression in the WT

visual cortex correlates tightly with the timing of this disruption (Figure 2E). Further, both electro-

physiological (Figure 3) and calcium imaging data (Figure 7) indicate that Ppt1-/- neurons have more

GluN2B-predominant extrasynaptic NMDARs. Finally, we demonstrate that GluN2B is hyperpalmi-

toylated in Ppt1-/- in vitro (Figure 11C). These findings raise the possibility that GluN2B is a PPT1

substrate and thus, lack of PPT1-mediated GluN2B depalmitoylation partly drives disease symptoms.

Indeed, protein palmitoylation generally enhances the half-life of proteins (Linder and Deschenes,

2007) and, in the case of GluN2B, specifically enhances its phosphorylation and consequent surface

retention (Hayashi et al., 2009). Thus, GluN2B hyperpalmitoylation alone may alter NMDAR function

enough to drive some of the functional deficits described in Ppt1-/- neurons herein.

Alternatively, the lack of PPT1 function may indirectly set the stage for an overrepresentation of

GluN2B at excitatory synapses and consequent pathogenic activity. A primary candidate for such an

indirect mechanism involves Src family kinase Fyn, which regulates GluN2B protein conformation,

surface retention, and fine-scale synaptic localization (Prybylowski et al., 2005; Nakazawa et al.,
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2006; Mattison et al., 2012). Fyn is palmitoylated and its subcellular localization is palmitoylation-

dependent (Koegl et al., 1994). Further, Fyn kinase is developmentally regulated (Umemori et al.,

1992; Inomata et al., 1994) and a major palmitoylated downstream kinase of reelin signaling (see

below) that phosphorylates GluN2B, affecting its surface stabilization (Alland et al., 1994;

Koegl et al., 1994; Prybylowski et al., 2005; Kang et al., 2008). Crucially, palmitoylation of

GluN2B enhances Fyn-mediated phosphorylation at Tyr1472 and thereby inhibits its internalization

(Hayashi et al., 2009). Thus, Fyn hyperactivation may be responsible for the dysregulation of

GluN2B to GluN2A switch in Ppt1-/- neurons. Specifically, hyperpalmitoylated Fyn kinase may lead to

enhanced phosphorylation and surface retention of GluN2B-containing NMDARs, limiting access to

alternative depalmitoylating enzymes which may act in recycling endosomes or other cellular com-

partments, resulting in GluN2B hyperpalmitoylation. Indeed, the palmitoylation state of Fyn is more

sensitive to palmitoylation inhibitors (Figure 11B) than GluN2B (Figure 11C). Notably, 2BP-treated

Ppt1-/- neurons exhibit an increase in GluN2A palmitoylation state (Figure 11D). While the reason

for change is not entirely clear, one possibility is that the palmitoylation state of Fyn is more sensitive

to the chronic low-dose inhibition than that of GluN2 subunits. In this scenario, suppression of Fyn

palmitoylation attenuates its function, thereby exaggerating the GluN2 subunit switch in Ppt1-/-

neurons.

There are several other mechanisms underlying this GluN2 subunit switch that may be affected by

lack of PPT1. These signaling pathways include reelin, Wnt-5a, and mGluR5 (Groc et al., 2007;

Cerpa et al., 2011; Matta et al., 2011). The accumulation of reelin at excitatory synapses during

development, for example, mobilizes GluN2B-containing NMDARs and enhances the synaptic contri-

bution of GluN2A-containing NMDARs (Groc et al., 2007; Iafrati et al., 2014). Similarly, evoked

activation of mGluR5 at hippocampal synapses is necessary for incorporation of GluN2A-containing

NMDARs, and mGluR5-null mice demonstrate deficient GluN2B to GluN2A switching (Matta et al.,

2011). Importantly, Wnt-5a, mGluR5, and Fyn kinase (downstream of reelin signaling) are directly

regulated by palmitoylation state (Kurayoshi et al., 2007; Yokoi et al., 2016), suggesting that dis-

ruptions in protein depalmitoylation may lead to impaired synaptic maturation through several path-

ways. Further study is needed to elucidate precisely how PPT1 influences the GluN2B to GluN2A

switch and if Fyn is indeed a key mediator. Nevertheless, we have shown that the lack of functional

PPT1 results in aberrant surface retention of GluN2B-containing NMDAR complexes, either directly

or indirectly, thereby impeding the developmental switch to GluN2A-containing receptors.

Excitotoxicity and NMDAR regulation
Patients afflicted with later-onset NCLs typically exhibit an enlarged VEP prior to degeneration, con-

current with seizure (Pampiglione and Harden, 1977; Haltia, 2006; Pagon et al., 2013). This phe-

nomenon has not been directly observed in CLN1, though this may be due to the rapid

degeneration and advanced pathology at time of diagnosis for these patients. Nevertheless, it is

conceivable that disrupted GluN2 subunit switch contributes to hyperexcitability in CLN1 and

thereby accelerates cell death, leading to the rapid degeneration of neuronal circuits. Indeed, recent

evidence link GluN2 subunit composition and NMDAR localization to opposing downstream tran-

scriptional programs (Martel et al., 2009; Martel et al., 2012; Hardingham and Bading, 2010).

Specifically, GluN2A-containing NMDARs in the postsynaptic density activate cyclic-AMP response

element binding protein (CREB) and other transcription factors associated with cell-survival and

learning. In contrast, extrasynaptic, GluN2B-containing NMDARs preferentially trigger pro-apoptotic

signaling pathways and cause inhibition of CREB (Hardingham and Bading, 2002;

Hardingham et al., 2002). Although this system is likely more intricate than described here

(Thomas et al., 2006), these previous studies are consistent with our observations that Ppt1-/- neu-

rons are biased toward extrasynaptic calcium transients (Figure 7 and Video 2) and that they are

more susceptible to excitotoxicity (Figures 8 and 9). These data are also in agreement with previous

studies demonstrating markedly enhanced NMDA-mediated toxicity in Ppt1-/- neurons and improved

behavioral phenotype of Ppt1-/- mice treated with the NMDAR antagonist, memantine (Finn et al.,

2013). Furthermore, the most significant outcome of this study is that palmitoylation inhibitors miti-

gated the pro-apoptotic predisposition of Ppt1-/- neurons in vitro (Figure 9).

The incorporation of GluN2A into NMDARs is experience-dependent (Quinlan et al., 1999b;

Quinlan et al., 1999a). Therefore, an intriguing possibility is that Ppt1-/- neurons in sensory cortices

are unable to tolerate normal sensory experiences, in part because this experience-dependent
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GluN2 subunit switch is disrupted. Indeed, PPT1-defeciency results in selective degeneration of tha-

lamic nuclei and primary sensory cortices (Bible et al., 2004; Kielar et al., 2007). Further, PPT1

expression, as we demonstrate herein (Figure 2E, Figure 2—figure supplement 1E), is

developmentally regulated in WT rodents and may mediate this switching phenomenon

(Suopanki et al., 1999a; Suopanki et al., 1999b). Together, we argue that intact PPT1 plays a criti-

cal role in regulating NMDAR functional properties in response to external stimuli, thereby facilitat-

ing synaptic maturation and preventing excitotoxicity. Whether manipulating neuronal activity or

experience-dependent synaptic plasticity ameliorates disease progression remains unknown and is a

focus of ongoing experiments.

Dendritic spine immaturity induced by lack of PPT1
During neurodevelopment, rapid spinogenesis involves filopodial formation followed by molecular

and structural changes that lead to dendritic spine maturation in the adult brain. In the current study,

we demonstrate that dendritic spines in Ppt1-/- neurons are longer, thinner, and show increased den-

sity as compared to WT (Figures 4 and 6), which are generally indications of spine immaturity.

Indeed, the processes underlying spinogenesis are regulated by various palmitoylated proteins

including the ones we have examined in this study. For instance, it is established that Src family

kinase activity, including Fyn, mediates biochemical changes that lead to filopodia and dendritic

spine formation in neurons (Morita et al., 2006; Webb et al., 2007; Babus et al., 2011;

Formoso et al., 2015). GluN2B activity also enhances filopodial formation in hippocampal neurons,

and application of GluN2B-specific blockers inhibits this effect (Henle et al., 2012). Further, GluN2B

hyperpalmitoylation at specific sites stabilizes GluN2B-containing receptors at the cell surface

(Mattison et al., 2012). Thus, it is plausible that hyperpalmitoylation of GluN2B in Ppt1-/- cells

increases filopodial formation through enhanced expression of surface NMDARs, resulting in an

increased spine density (Figures 4 and 6). Whether hyperpalmitoylation of GluN2B and Fyn are

directly responsible for the altered spine morphology in Ppt1-/- neurons awaits further studies.

Other palmitoylated proteins may also account for aberrant spine formation in Ppt1-/- neurons.

Increased spine density in Ppt1-/- neurons suggests that filopodial organizer proteins may be sub-

strates of PPT1 or are indirectly affected by the enzyme. Several neuronal proteins readily induce

filopodial formation in a palmitoylation-dependent manner in cultured neurons (Patterson and

Skene, 1994; Gauthier-Campbell et al., 2004). For example, palmitoylation of the

PPT1 substrate growth-associated protein 43 (GAP43) regulates filopodial formation (Kutzleb et al.,

1998; Gauthier-Campbell et al., 2004; Arstikaitis et al., 2008), and its protein amount is increased

in the Ppt1-/- brain beginning at 1 month (Zhang et al., 2006). Cdc42 is another palmitoylated pro-

tein that may accelerate neurite formation in Ppt1-/- neurons (Gauthier-Campbell et al., 2004;

Kang et al., 2008). Hyperpalmitoylation of these proteins in the absence of PPT1 may accelerate

their activity and lead to excessive filopodial formation in Ppt1-/- neurons (Patterson and Skene,

1999).

Filopodial formation is generally followed by spine maturation, which is facilitated by the palmi-

toylation and localization of PSD-95 at the postsynaptic membrane (Craven et al., 1999; El-

Husseini et al., 2000a; Yoshii et al., 2011; Jeyifous et al., 2016). Synaptosomes derived from

Ppt1-/- mouse cortices show reductions in PSD-95 protein levels (Figure 2). This finding is consistent

with the decrease in mature dendritic spine characteristics in Ppt1-/- neurons in vitro and in vivo (Fig-

ures 4 and 6). However, the lack of PPT1 function had no direct effect on PSD-95 palmitoylation

state (Figure 11A). Thus, we argue that the perturbed GluN2B to GluN2A switch is primarily respon-

sible for excessive filopodial formation in Ppt1-/- neurons. While underrepresented PSD-95 expres-

sion correlates with impaired spine maturation, this is likely a secondary effect. Further study is

warranted to identify the PPT1 substrates that directly regulate spinogenesis.

Implications for other neurodegenerative diseases
While substantial progress has been made in our understanding of adult-onset neurodegenerative

diseases including Alzheimer’s disease and Parkinson’s disease, effective, disease-modifying thera-

peutics are yet to be developed for most of these disorders. In part, this is likely due to the genetic

complexity and heterogeneity of these diseases as well as lifestyle and environmental factors limiting

the translational success of seemingly promising therapeutic strategies. Recently, studies in

Koster et al. eLife 2019;8:e40316. DOI: https://doi.org/10.7554/eLife.40316 26 of 42

Research article Neuroscience

https://doi.org/10.7554/eLife.40316


monogenic diseases have attracted attention because they share common pathological hallmarks

with adult-onset neurodegenerative diseases, including lipofuscin. This approach has turned out to

be valuable to decipher underlying disease mechanisms in Parkinson’s disease, for instance

(Peltonen et al., 2006; Neudorfer et al., 1996; Tayebi et al., 2001; Sidransky et al., 2009;

Sidransky and Lopez, 2012).

Our data indicate a significant dysregulation of NMDAR composition and function in the Ppt1-/-

cortex associated with GluN2B and Fyn hyperpalmitoylation. Importantly, GluN2B has already been

implicated in psychiatric and neurodegenerative disorders, including Alzheimer’s disease

(Paoletti et al., 2013; Yamamoto et al., 2015). Furthermore, Fyn is currently being investigated in

clinical trials for Alzheimer’s disease (Nygaard et al., 2014; Nygaard et al., 2015; Kaufman et al.,

2015). Hence, our findings in CLN1 corroborate evidence in adult-onset neurodegenerative disor-

ders and converge on disruption of Fyn kinase, GluN2B, or both as a shared feature of neurodegen-

eration. GluN2B and Fyn function therefore represent promising therapeutic targets for CLN1 and

beyond.

The importance of palmitoylation at the synapse imply that additional mechanisms linking dysre-

gulated protein palmitoylation to neurological diseases will likely be revealed. For instance, AMPAR

and GABAR subunits undergo palmitoylation (Hayashi et al., 2005; Fang et al., 2006) and recent

work demonstrates that deficient AMPAR palmitoylation facilitates seizure activity in vivo

(Itoh et al., 2018). Further, preliminary results from our lab show developmental hyperpalmitoylation

of at least one AMPAR subunit in Ppt1-/- animals (Koster, unpublished findings). Hence, the regula-

tion of these receptors may also be involved in the pathogenesis of CLN1 or other diseases with per-

turbations in the balance between palmitoylation and depalmitoylation. Importantly, the

palmitoylation of amyloid precursor protein (APP) and huntingtin are implicated in Alzheimer’s dis-

ease and Huntington’s disease pathogenesis, respectively (Huang et al., 2004; Smith et al., 2005;

Zheng and Koo, 2006; Bhattacharyya et al., 2013). Thus, our results extend a growing body of evi-

dence implicating protein palmitoylation in neurological diseases and warrant further investigation

of protein depalmitoylation as a therapeutic target.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Mus musculus)

B6;129-Ppt1tm1Hof/J Jax stock #: 004313 Gupta et al., 2001;
RRID:MGI:004313

Antibody Rabbit polyclonal
anti-GluN2A

Novus Biologicals Cat: NB300-105;
RRID:AB_10001400

(1:1000)

Antibody Mouse monoclonal
anti-GluN2B

UC Davis/NIH
NeuroMab Facility

Cat: 75/097;
RRID:AB_10673405

(1:1000)

Antibody Mouse monoclonal
anti-GluN1

UC Davis/NIH
NeuroMab Facility

Cat: 75/272;
RRID:AB_11000180

(1:1000)

Antibody Mouse monoclonal
anti-PSD-95

UC Davis/NIH
NeuroMab Facility

Cat: K28/74;
RRID:AB_2315909

(1:2000)

Antibody Mouse monoclonal
anti-SAP102

UC Davis/NIH
NeuroMab Facility

Cat: N19/2;
RRID:AB_2261666

(1:2000)

Antibody Rabbit polyclonal
anti-Fyn

Cell Signaling Cat: 4032 (1:1000)

Antibody Rabbit polyclonal
anti-PPT1

Gift from Sandra
Hofmann

(1:500); Dr. Hofmann

Antibody Mouse monoclonal
anti-b-actin-HRP

ThermoFisher
Scientific

Cat: MA5-15739-HRP;
RRID:AB_2537667

(1:2000)

Antibody Rabbit polyclonal
anti-MAP2

Millipore Sigma Cat: AB5622;
RRID:AB_91939

(1:400)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Rat monoclonal
anti-LAMP2

abcam Cat: ab13524;
RRID:AB_2134736

(1:400)

Recombinant
DNA reagent

pEF-GFP Addgene Plasmid: 11154 Drs. Matsuda and Cepko

Recombinant
DNA reagent

G-CaMP3 Addgene Plasmid: 22692 Dr. Looger

Commercial
assay or kit

PrestoBlue cell
viability assay

ThermoFisher
Scientific

Cat: A13261

Chemical
compound, drug

2-bromopalmitate Sigma Cat: 238422 Treatment: 1 mM

Chemical
compound, drug

cerulenin Cayman
Chemicals

Cat: 10005647 Treatment: 1 mM

Software, algorithm Fiji

Animals, group allocation, and data handling
All animal procedures were performed in accordance with the guidelines of the University of Illinois

of Chicago Institutional Animal Care and Use Committee. Ppt1+/- (heterozygous) mice were

obtained from Jackson Laboratory and maintained on 12 hr light/dark cycle with food and water ad

libitum. Breeding of Ppt1+/- ± results in litters containing Ppt1-/-, Ppt1+/-, and Ppt1+/+ (WT) animals.

Ppt1-/- and WT littermate controls at specified developmental time points: P11, P14, P28, P33, P42,

P60, P78, and P120 were genotyped in-house (Gupta et al., 2001) and used for experiments.

Although we used the littermate control system, in which WT and Ppt1-/- mice from the same litters

were compared, each n was treated independently in statistical testing (pair-wise tests were not

used). Imaging data was acquired randomly for each experiment (no criteria for selecting cells, view

fields, etc. except where anatomically necessary, e.g. Figure 1). All data were acquired and main-

tained without descriptive naming/labeling to ease randomization. Data was randomized by students

within the lab prior to analysis by KPK.

Brain fractionation and immunoblotting
For collection of brain for biochemistry (immunoblot), Ppt1-/- and WT animals were decapitated fol-

lowing isoflurane anesthesia, then the brain was removed, and washed in ice cold PBS. The occipital

cortex (visual cortex), hippocampus, and remaining cortex were separately collected on ice. Isolated

visual cortices from Ppt1-/- and WT animals were homogenized in ice-cold synaptosome buffer (320

mM sucrose, 1 mM EDTA, 4 mM HEPES, pH7.4 containing 1x protease inhibitor cocktail (Roche), 1x

phosphatase inhibitor cocktail (Roche) and 1 mM PMSF) using 30 strokes in a Dounce homogenizer.

Aliquots for whole lysate (WL) were stored and the remaining sample was used for synaptosome

preparation, performed as previously with slight modification. In brief, WLs were centrifuged at 1000

x g to remove cellular debris, supernatant was then centrifuged at 12,000 x g for 15 min to generate

pellet P2. P2 was resuspended in synaptosome buffer and spun at 18,000 x g for 15 min to produce

synaptosomal membrane fraction, LP1, which was used for downstream biochemical analyses (synap-

tosomes). For immunoblot, protein concentration of each sample was determined using BCA protein

assay (Pierce). Samples were then measured to 20 mg total protein in 2x Laemmli buffer containing

10% b-mercaptoethanol (Bio-rad), boiled at 70˚C for 10 min and loaded into 10% tris-glycine hand

cast gels (Bio-rad), or 4–20% precast gels (Bio-rad) for electrophoresis (110V, 1.5–2 hr). Proteins

were wet-transferred to PVDF membranes (Immobilon-P, Millipore), blocked in TBS, pH7.4 contain-

ing 5% non-fat milk and 0.1% Tween-20 (TBS-T +5% milk). Membranes were incubated in primary

antibody solutions containing 2% BSA in TBS-T for 2 hr at RT or overnight at 4˚C. Primary antibodies

were used as follows: GluN2A (Cat: NB300-105, 1:1,000, Novus Biologicals), GluN2B (Cat: 75/097,

1:1,000, Neuromab), GluN1 (Cat: 75/272, 1:1000, Neuromab), PSD-95 (Cat: K28/74, 1:2,000, Neuro-

mab), SAP102 (Cat: N19/2, 1:2,000, Neuromab), Fyn kinase (Cat: 4023, 1:1,000, Cell signaling), PPT1

(kindly provided by Dr. Sandra Hofmann, and b-actin-HRP (Cat: MA5-15739-HRP, 1:2,000, Thermo-

Fisher). Membranes were then incubated with appropriate secondary, HRP-conjugated antibodies
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(Jackson ImmunoResearch) at either 1:5,000, 1:10,000, or 1:30,000 (PSD-95 only) for 1 hr at RT. Visu-

alization and quantification was performed using Pierce SuperSignal ECL substrate and Odyssey-FC

chemiluminescent imaging station (LI-COR). Signal density for each synaptic protein was measured

using the LI-COR software, Image Studio Lite (version 5.2) and was normalized to the signal density

for b-actin loading control for each lane. A total of four independent experiments was performed for

both WL and LP1 analyses, with a minimum of two technical replicates for each experiment averaged

together.

Histology and autofluorescent lipopigment quantification
Ppt1-/- and WT mice were anesthetized using isoflurane and transcardially perfused with ice cold

PBS (pH 7.4,~30 ml/mouse) followed by 4% paraformaldehyde (PFA) in PBS (~15 ml/mouse). Brains

were removed and post-fixed for 48 hr at 4˚C in 4% PFA and transferred to PBS, pH7.4 containing

0.01% sodium azide for storage if necessary. Brains from Ppt1-/- and WT animals were incubated in

30% sucrose solution for 48 hr prior to sectioning using Vibratome 1000 in cold PBS. For imaging

and quantification of AL, sagittal sections were cut at 100 mm. Every third section was mounted on

Superfrost Plus microscope slides (VWR) using Vectamount mounting media containing DAPI (Vector

Laboratories, cat: H-5000). Interlaced/overlapping images of visual cortex area V1 from the cortical

surface to subcortical white matter (or subiculum), which was localized using Paxino’s mouse atlas

(sagittal), were collected for 2–4 sections from each animal using a Zeiss LSM710 confocal laser scan-

ning microscope at 40x magnification (excitation at 405 nm to visualize DAPI and 561 nm to visualize

AL). All sections were imaged using identical capture conditions. Quantification of AL was performed

by thresholding images in FIJI (NIH), generating a binary mask of AL-positive pixels (satisfied thresh-

old) vs. background. The identical threshold was applied to each image (from cortical surface to sub-

cortical white matter and across animals). Percent area occupied by AL puncta that satisfied the

threshold was then calculated using the ‘analyze particles’ tool in FIJI. This analysis was performed

for 2–4 sections (total of ~10–20 images, as imaging an entire cortical column is typically five inter-

laced images) from each animal and averaged together to give a single value, representative of the

total area occupied by AL in the cortical column imaged. Three to six animals per group were ana-

lyzed this way and averaged to give the mean area occupied by AL at each time point, for both gen-

otypes (n = 4–6 animals/group).

Electrophysiology
WT and Ppt1-/- animals at P42 were deeply anesthetized using isoflurane drop method and decapi-

tated. Brains were resected in semi-frozen oxygenated (95% O2 and 5% CO2) artificial cerebrospinal

fluid (aCSF, in mM: NaCl 85, sucrose 75, KCl 2.5, CaCl2 0.5, MgCl2 4, NaHCO3 24, NaH2PO4 1.25,

D-glucose 25, pH 7.3), and 350 mm sections containing visual cortex area V1 were sectioned using a

Leica VT1200 S vibratome in semi-frozen aCSF. After recovery (1 hr) in aCSF at 30˚C, sections were

transferred to the recording chamber, perfused at 2 ml/min with aCSF at 30˚C. Following localization

of visual cortex area V1 using Paxinos mouse brain atlas, a stimulating electrode was placed in layer

IV, and pyramidal neurons from layer II/III were blindly patched (patch solution in mM: CsOH mono-

hydrate 130, D-Gluconic acid 130, EGTA 0.2, MgCl2 1, CsCl 6, Hepes 10, Na2-ATP 2.5, Na-GTP 0.5,

Phoshocreatine 5, QX-314 3; pH 7.3, osmolarity 305 mOsm) and recorded in voltage clamp mode

at +50 mV (VH) to remove Mg2+ block from NMDARs. NMDA-EPSCs were pharmacologically iso-

lated via addition of CNQX (10 mM), (+)-Bicuculline (60 mM) and SCH 50911 to block AMPA, GABAA

and GABAB receptors, respectively. Stimulation intensity was titrated to give a saturating postsynap-

tic response, and EPSCs were then recorded, averaging 5–10 sweeps. The decay phase of the aver-

aged NMDAR-EPSCs were then fitted to a double exponential (Stocca and Vicini, 1998;

Vicini et al., 1998). We calculated for each cell: the amplitude of the fast (Af) component (GluN2A-

mediated), the amplitude of the slow (As) component (GluN2B-mediated), the contribution of the

fast component Af/Af + As to the overall decay phase, the t fast (tf), the t slow (ts) and the t

weighted (tw) in WT and Ppt1-/- mice following this formula: tw= tfx(Af/Af +As) + tsx(As/Af +As)

(n = 8/4 (cells/animals), WT; n = 8/5 PPT-KO). For experiments in Figure 3E, baseline NMDAR-

EPSCs were recorded as typical and compared to those following 30 min of bath-infused Ro 25–

6981 (3 mM).
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In utero electroporation
In utero electroporation was performed as previously described (Yoshii et al., 2011). Timed-preg-

nant dams at E16.5 were deeply anesthetized via isoflurane (3% induction, 1–1.5% for maintenance

of anesthesia during surgery) and laparotomized. The uterus was then externalized and up to ~1 ml

of solution containing GFP construct (2 mg/ml) and fast green dye was delivered into the left lateral

ventricle through the uterine wall using a micropipette. Using an ECM 830 Square Wave electropora-

tor (Harvard Apparatus, Holliston MA), brains were electroporated with 5 pulses of 28V for 50 ms at

intervals of 950 ms at such an angle to transfect neurons in visual cortex. After recovery, pregnancies

were monitored, and pups were delivered and nursed normally. Electroporated pups were geno-

typed, raised to P33, and sacrificed via transcardial perfusion as described above. Electroporated

brains from WT and Ppt1-/- mice (procedure schematized in Figure 4A) were sectioned and sequen-

tially mounted. Electroporated neurons in visual cortex (Figure 4B) were imaged to capture all apical

neurites and 3D reconstructed images were analyzed in Imaris (Bitplane) for dendritic spine charac-

teristics known to be associated with synaptic maturity (spine density, spine length, spine volume,

and spine head volume). At least two z-stack images (typically >100 z-planes/image) were stitched

together to capture the prominent apical neurites and extensions into the cortical surface for each

cell. Each stitched image, equivalent to one cell, was considered one n.

Primary cortical neuron culture
For primary cortical neuron cultures, embryos from timed-pregnant, Ppt1-/+ dams were removed,

decapitated, and cortices resected at embryonic day (E) 15.5. All dissection steps were performed in

ice cold HBSS, pH7.4. Following cortical resection, tissue from each individually-genotyped embryo

were digested in HBSS containing 20 U/ml papain and DNAse (20 min total, tubes flicked at 10 min)

before sequential trituration with 1 ml (~15 strokes) and 200 ml (~10 strokes) pipettes, generating a

single-cell suspension. For live-cell imaging experiments, cells were counted then plated at 150,000–

180,000 cells/well in 24-well plates containing poly-D-lysine/laminin-coated coverslips. For biochemi-

cal experiments, that is immunoblot, APEGS assay in vitro, cells were plated on poly-D-lysine/lami-

nin-coated 6-well plates at 1,000,000 cells/well. Cells were plated and stored in plating medium

(Neurobasal medium containing B27 supplement, L-glutamine and glutamate) for 3–5 DIV, before

replacing half medium every 3 days with feeding medium (plating medium without glutamate). Cul-

tures used in chronic palmitoylation inhibitor treatment were exposed to either DMSO (vehicle), 2

BP (1 mm, Sigma, cat: 238422) or cerulenin (1 mm, Cayman Chemicals, cat: 10005647) every 48 hr

between DIV 12 and 18.

Primary cortical neuron harvest and immunoblotting
Primary cortical neurons from E15.5 WT and Ppt1-/- embryos were cultured for 7, 10, or 18 DIV prior

to harvest for immunoblot or APEGS assay (only DIV18 used for APEGS). To harvest protein extracts,

cells were washed 2x with ice-cold PBS before addition of lysis buffer containing 1% SDS and prote-

ase inhibitor cocktail, 500 ml/well. Cells were incubated and swirled with lysis buffer for 5 min,

scraped from the plate, triturated briefly, and collected in 1.5 ml tubes. Lysates were centrifuged at

20,000 g for 15 min to remove debris, and the supernatant was collected for biochemical analysis.

Immunoblotting analyses were performed as above. APEGS assay was carried out as described in

the following section.

APEGS assay on primary cortical neuron lysates
The APEGS assay was performed as utilized in (Yokoi et al., 2016) and recommended by Dr. M.

Fukata (personal communication, 06/2018). Briefly, cortical neuron lysates were brought to 150 mg

total protein in a final volume of 0.5 ml buffer A (PBS containing 4% SDS, 5 mM EDTA, protease

inhibitors, remaining sample used in aliquots for ‘input’). Proteins were reduced by addition of 25

mM Bond-Breaker TCEP (0.5M stock solution, ThermoFisher) and incubation at 55˚C for 1 hr. Next,

to block free thiols, freshly prepared N-ethylmaleimide (NEM) was added to lysates (to 50 mM) and

the mixture was rotated end-over-end for 3 hr at RT. Following 2x chloroform-methanol precipitation

(at which point, protein precipitates were often stored overnight at �20˚C), lysates were divided

into +hydroxylamine (HA) and –HA groups for each sample, which were exposed to 3 volumes of

HA-containing buffer (1 M HA, to expose palmitoylated cysteine residues) or Tris-buffer control (-
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HA, see Figure 10), respectively, for 1 hr at 37˚C. Following chloroform-methanol precipitation,

lysates were solubilized and exposed to 10 mM TCEP and 20 mM mPEG-5k (Laysan Bio Inc., cat#

MPEG-MAL-5000–1 g) for 1 hr at RT with shaking (thereby replacing palmitic acid with mPEG-5K on

exposed cysteine residues). Following the final chloroform-methanol precipitation, samples were sol-

ubilized in a small volume (60 ml) of PBS containing 1% SDS and protein concentration was measured

by BCA assay (Pierce). Samples were then brought to 10 mg protein in laemmli buffer with 2% b-mer-

captoethanol for immunoblot analyses as above. Quantification of palmitoylated vs. non-palmitoy-

lated protein was carried out as above, with the added consideration that palmitoylated protein was

taken as the sum of all (typically two-three distinct bands, see Figure 9) bands demonstrating the

APEGS-dependent molecular weight shift compared to the –HA control lane. Non-palmitoylated

protein was quantified from the band size-matched to the –HA control sample. The ratio was taken

as the palmitoylated protein divided by non-palmitoylated protein, all divided by b-actin control

from the same lane.

Transfection, dendritic spine and calcium imaging analyses
For analysis of dendritic spine morphology, WT and Ppt1-/- neurons were transfected between DIV6-

8 with GFP using Lipofectamine 2000 (ThermoFisher) according to manufacturer protocol with a

slight modification. Briefly, GFP DNA construct (~2 mg/ml, added at ~1 mg/well) was mixed with Lipo-

fectamine-containing Neurobasal medium, incubated for 30 min to complex DNA-Lipofectamine,

equilibrated to 37˚C, and added to the cells 250 ml/well for 1–1.5 hr. Following incubation, complete

medium was returned to the cells. Neurons were then imaged at DIV15 and DIV20 for dendritic

spine morphology using a Zeiss LSM 710 confocal microscope equipped with a heated stage at 63x

magnification. GFP-positive neurons were imaged at 0.2 mm Z-plane interval (typically 25 Z-planes/

image). Three to seven overlapping Z-stacks were stitched to visualize an entire neuron. Z-stack

images were collapsed into a single plane and dendritic spines were analyzed using semi-automated

image processing software, Imaris (Bitplane). The same dendrite and dendritic spine processing

parameters were used for each image. For DIV15: n = 4–5 neurons/group, three-independent

experiments, WT = 21,514 spines; Ppt1-/- = 18,013 spines. For DIV20: n = 3 neurons/group, two-

independent experiments, WT = 11,335 spines; Ppt1-/- = 9958 spines.

To directly image calcium signals in WT and Ppt1-/- neurons, cells were transfected as above using

the construct encoding GCaMP3 (see Acknowledgments) at DIV8. A subset of cells (Figure 10) were

treated with 2 BP (1 mM) or cerulenin (1 mM) from DIV12-18. Cells were grown to DIV18 then imaged

at room temperature in Tyrode’s solution (imaging medium, 139 mM NaCl, 3 mM KCl, 17 mM

NaHCO3, 12 mM glucose, and 3 mM CaCl2) for a maximum of 15 min using a Mako G-507B camera

mounted onto a Leica inverted microscope. Videos were acquired at ~7 framess using StreamPix

software (NorPix). A maximum of 5 min per neuron was recorded (thus, minimum three neurons per

coverslip were acquired). N = 3–6 neurons/group, three independent experiments. For treatment

with Ro 25–6981, neurons were imaged at baseline for 2–2.5 min before adding Ro 25–6981 (1 mM)

directly to the imaging medium. Neurons were then imaged for an additional 2.5 min.

To analyze the area under the curve (AUC) and width (diffusion distance) of calcium transients,

500–600 frames from the middle of each video (average frame count for whole videos=~2200

frames) for WT, Ppt1-/-, and Ppt1-/- palmitoylation inhibitor-treated (treatment performed as in ‘Pri-

mary cortical neuron culture section; DIV12-18, every other day, 1 mM) neurons were analyzed using

FIJI (NIH). Dendritic segments, excluding primary dendrites, were traced using a segmented line ROI

with pixel width of 50, which reliably encompassed the dendritic segment and accompanying den-

dritic spines. Next, the following macro derived from the ImageJ forum (http://forum.imagej.net/t/

how-to-obtain-xy-values-from-repeated-profile-plot/1398) was run on each individual ROI:

macro ‘Stack profile Plot’ {

collectedValues="";

ymin = 0; ymax = 255;

saveSettings();

if (nSlices == 1)

exit(‘Stack required’);

run(‘Profile Plot Options...",

‘width = 400 height = 200 minimum=‘+ymin + ’ maximum=‘+ymax + ’ fixed’);
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setBatchMode(true);

stack1 = getImageID;

stack2 = 0;

n = nSlices;

for (i = 1; i <= n; i++) {

showProgress(i, n);

selectImage(stack1);

setSlice(i);

run(‘Clear Results’);

profile = getProfile();

for (j = 0; j < profile.length; j++) {

collectedValues = collectedValues + profile[j] + ‘\t’;

}

collectedValues = collectedValues + ‘\n’;

run(‘Plot Profile’); run(‘Copy’);

w = getWidth;

h = getHeight;

close();

if (stack2 == 0) {

newImage(‘Plots’, ‘8-bit’, w, h, 1);

stack2 = getImageID;

} else {

selectImage(stack2);

run(‘Add Slice’);

}

run(‘Paste’);

}

f = File.open(‘C:/‘cell#, ROI #”.xls’);

print(f, collectedValues);

setSlice(1);

setBatchMode(false);

restoreSettings();

}

This gives the fluorescence intensity at each pixel along the ROI across the time/frame dimension.

The background fluorescence for each ROI was then subtracted by averaging the fluorescence

across the ROI in an inactive state (no calcium transients), giving the measure DF/F0 when examined

across time/frame. For each ROI (up to 1265 pixels in length), each calcium transient at individual

synaptic sites (dendritic spines or dendritic shafts) was averaged. Those averages were then com-

piled to give the average transient signal, which was then used to analyze the AUC and calcium dif-

fusion distance (n = 3 neurons/group/experiment, three distinct cultures: WT = 55 ROIs, 185

synaptic sites, 1630 transients; Ppt1-/- = 38 ROIs, 131 synaptic sites, 1281 transients; Ppt1-/- + 2-

BP = 28 ROIs, 82 synaptic sites, 420 transients; Ppt1-/- + cerulenin = 24 ROIs, 82 synaptic sites, 540

transients). For Ro 25–6981-treated neurons, the same protocol was followed with the exception

that calcium transients at an individual synaptic site were split into ‘before application’ and ‘after

application’ groups.

To analyze synaptic synchrony, DF/F0 measurements for 20 randomly-chosen sites of synaptic

activity per neuron were correlated across the time dimension (500 frames of each video). A correla-

tion matrix was generated to determine the average correlation of each synaptic site with all other

chosen sites. The average values for each synaptic site, for five neurons/group are plotted in

Figure 7.

NMDA toxicity assays
To measure cell viability following exposure of WT and Ppt1-/- neurons to NMDA and glycine, neu-

rons were plated as above and grown to DIV18. For experiments presented in Figure 6, feeding

medium was removed from neurons, stored at 37˚C, and replaced with B27-free Neurobasal medium

Koster et al. eLife 2019;8:e40316. DOI: https://doi.org/10.7554/eLife.40316 32 of 42

Research article Neuroscience

https://doi.org/10.7554/eLife.40316


with or without NMDA/glycine at the following concentrations: 10/1 mM, 100/10 mM, or 300/30 mM

(ratio maintained at 10:1). Cells were incubated for 2 hr at 37˚C in treatment medium. Following

incubation, treatment medium was removed and replaced with the original feeding medium. Cells

were then incubated an additional 22 hr before addition of PrestoBlue cell viability reagent (Thermo-

Fisher). At 24 hr, fluorescence intensity of each well was measured using a Beckman Coulter DTX

800 Multimode Detector. Cell viability for each treatment condition was calculated and expressed as

percentage of vehicle-treated control wells (no pretreatment, no NMDA application). Experiments in

Figure 7 were performed similarly except that cultures were pretreated with either DMSO (vehicle),

2 BP (1 mM, Sigma, cat: 238422) or cerulenin (1 mM, Cayman Chemicals, cat: 10005647) every 48 hr

between DIV 11 and 18.

AL accumulation in vitro, palmitoylation inhibitor treatment, imaging
and analysis
WT and Ppt1-/- neurons were cultured as above. To examine AL deposition, neurons were grown to

DIV18-20, fixed in 4% PFA for 10 min at RT, and stored in PBS for up to 72 hr prior to immunocyto-

chemistry. To examine AL accumulation alone, cells were immunostained for the microtubule associ-

ated protein, MAP2 (Millipore Sigma, cat: AB5622) and mounted in DAPI-containing mounting

medium. To assess AL localization, DIV18-DIV20 neurons were immunostained for MAP2 and LAMP-

2 (Abcam, cat: ab13524). Neurons were then imaged at random using a Zeiss LSM 710 confocal

microscope at 63x magnification. Z-stacks (0.4 mm Z-plane interval, 12–22 Z-planes/image) were

taken at 512 � 512 pixel density. 7–10 neurons/group for three independent experiments.

To semi-automatically analyze the percentage of AL-containing cells, the cytosolic area covered

by AL deposits, and the cytosolic area covered by lysosomes, images immunostained for MAP2 and

LAMP-2 were processed in FIJI. Each channel of the image: LAMP-2 (488 nm), MAP2 (633 nm), DAPI

(405 nm), AL (561 nm) was thresholded separately as to display only the lysosomes, cell soma, the

nucleus, and AL deposits, respectively. Thresholds were kept identical between images. Next, the

areas of these compartments/deposits were measured using the ‘analyze particles’ tool restricted to

an ROI tracing the cell soma. Lysosomes needed to have a circularity of >0.5 to avoid counting small

clusters of lysosomes as a single unit (Bandyopadhyay et al., 2014; Grossi et al., 2016). To measure

AL deposits, the same approach was used with the additional constraint: AL deposits were required

to have a circularity >0.4 and comprise more than eight adjacent pixels. Cytosolic area was calcu-

lated by measuring MAP2 signal area and subtracting the area occupied by DAPI stain.

For line scan analysis of the representative, vehicle treated WT and Ppt1-/- images in Figure 9—

figure supplement 1, images were loaded in Fiji and channels split individually. Next, line scans of

the cell soma across areas encompassing somatic lysosomes and, in the case of Ppt1-/- neurons, AL

deposits, were drawn manually as a line ROI. The ‘plot profile’ tool was then used to obtain the grey

scale values for the fluorescence intensity of each channel across the same ROI. These values were

then plotted either individually (as in B and E) or plotted with LAMP2 and AL signals overlapping (as

in C and F).

Immunocytochemistry
Coverslips were stained in runs so that all experimental and control groups were immunostained

simultaneously. Coverslips were washed 3x with TBS, permeabilized for 20 min at RT with TBS con-

taining 0.5% Triton X-100 and blocked for 1 hr at RT in TBS containing 0.1% Triton X-100% and 5%

BSA. Then, primary antibody (MAP2 or LAMP-2) at 1:400 dilution was added to coverslips in TBS

containing 0.1% Triton X-100% and 1% BSA and incubated for 2 hr at RT or overnight at 4˚C. Follow-
ing 4X washes with TBS containing 0.1% Triton X-100, cells were incubated with 1:400 secondary,

fluorophore-linked antibody (either Alexa Fluor 488, cat. #: A-11034, A-11006; or Alexa Fluor 633,

ThermoFisher, cat. #: A-21070) in TBS containing 0.1% Triton x-100% and 1% BSA. These steps are

repeated for double immunostained cells. For LAMP-2/MAP2 double immunostaining, saponin was

used in place of Triton X-100 at the same concentrations. Coverslips are then mounted on Super-

Frost Plus slides in DAPI Vectamount medium.
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