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Abstract To identify factors that regulate gut microbiota density and the impact of varied

microbiota density on health, we assayed this fundamental ecosystem property in fecal samples

across mammals, human disease, and therapeutic interventions. Physiologic features of the host

(carrying capacity) and the fitness of the gut microbiota shape microbiota density. Therapeutic
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manipulation of microbiota density in mice altered host metabolic and immune homeostasis. In

humans, gut microbiota density was reduced in Crohn’s disease, ulcerative colitis, and ileal pouch-

anal anastomosis. The gut microbiota in recurrent Clostridium difficile infection had lower density

and reduced fitness that were restored by fecal microbiota transplantation. Understanding the

interplay between microbiota and disease in terms of microbiota density, host carrying capacity,

and microbiota fitness provide new insights into microbiome structure and microbiome targeted

therapeutics.

Editorial note: This article has been through an editorial process in which the authors decide how

to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all

the issues have been addressed (see decision letter).

DOI: https://doi.org/10.7554/eLife.40553.001

Introduction
Population density is a fundamental parameter in understanding the health and function of any eco-

system, yet we know little about which host and microbial factors contribute to the density of organ-

isms in the gut microbiota (i.e., gut microbiota density). The relationships uncovered between the

gut microbiota and health over the past decade have largely focused on relative differences in com-

munity composition, estimated with culture-independent 16S rRNA gene (Caporaso et al., 2010;

Schloss et al., 2009) or shotgun metagenomic sequencing (Segata et al., 2012). The microbiome’s

influence on host physiology likely depends on the number – and not just the type – of bacteria

interfacing with the host. Therefore, understanding factors driving gut microbiota density, as well as

the impact of microbiota density on health, may advance the therapeutic potential of the

microbiota.

Microbiota density has previously been measured with colony-forming units, DNA spike-ins

(Satinsky et al., 2013; Stämmler et al., 2016), qPCR (Mahowald et al., 2009; Rey et al., 2013),

flow cytometry (Props et al., 2017; Reyes et al., 2013; Vandeputte et al., 2017b), and microbial

DNA quantification (microbial DNA per mass of sample) (Faith et al., 2011; Llewellyn et al., 2018;

Reyes et al., 2013). Here, we use fecal microbial DNA content to estimate gut microbiota density,

since it correlates with flow cytometry counts and colony-forming units (CFU), and it can be easily

incorporated into standard microbiome sequencing workflows by weighing the sample (Reyes et al.,

2013). We investigate host and microbial factors that contribute to microbiota density across a

diverse set of mammalian microbiomes, study the impact of microbiota density on host adiposity

and immune function in controlled mouse models, and describe microbiota density changes in dis-

ease and the resolution of those alterations after therapy.

Results

The natural variation of gut microbiota density in mammals is driven by
host and microbial factors
In macroecology, carrying capacity is the maximal density of organisms supported by an ecosystem

and is broadly dictated by the resources (e.g., food, water, and habitat) in the environment. Whether

or not the collection of species in an environment can reach the carrying capacity depends on their

ability to efficiently utilize the available resources (i.e., the community’s fitness for the environment).

To explore the contribution of host carrying capacity and gut microbiota fitness to microbiota den-

sity, we first collected fecal material from sixteen different mammalian species (Supplementary file

1) in order to sample a diverse range of host intestinal architectures and gut microbial community

compositions. Using methods optimized to assay fecal microbiota density with greater throughput

(see Materials and methods and Figure 1—figure supplement 1), we observed significant differen-

ces in microbiota density across the mammalian species (H = 69.0, p = 6.72 x 10�9; Kruskal-Wallis)

with a 216-fold difference between the median of the most dense and least dense gut microbiota

(Figure 1A). At the higher taxonomic rank of order, where we sampled at least two unique species

(Atriodactyla, Carnivora, Primates, and Rodentia), we still found significant differences in microbiota

density (H = 39.0, p = 3.39 x 10�9; Kruskal-Wallis), suggesting that evolutionarily conserved host fea-

tures impact microbiota density. We found no correlation between microbiota density and either
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Figure 1. The natural variation in gut microbiota density across mammals is driven by host and microbial factors.

(A) Fecal microbiota density varies across mammalian species. (B) Microbiota density and water content of fecal

samples are not correlated. (C) Animals from the order Carnivora have a reduced microbiota density compared to

mammals from other orders. (D) Different mammalian gut microbiotas transplanted into germ-free Swiss Webster

mice (n = 3 per group) vary in their fitness to reach microbiota densities similar to mouse microbiotas. In (A, C,

and D) points depict individual samples, and bars indicate median. In (B) points and lines indicate median values ±

SEM. In (D) a red X indicates the microbiota density of the original mammalian sample, while dashed lines

represent IQR of conventional Swiss Webster mice. ***p < 0.001. Source data available for (A-D). 16S rRNA

gene amplicon sequencing data is available for (A and D) (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.40553.002

The following source data and figure supplements are available for figure 1:

Source data 1. Microbiota density in mammalian samples.

DOI: https://doi.org/10.7554/eLife.40553.005

Source data 2. Fecal water content of mammalian samples.

DOI: https://doi.org/10.7554/eLife.40553.006

Source data 3. Microbiota density of gnotobiotic mice colonized with mammalian microbiome samples.

DOI: https://doi.org/10.7554/eLife.40553.007

Figure supplement 1. DNAse Inactivation Buffer DNA extraction method (DIB), phenol:chloroform extraction, and

culture-based measurements of microbiota density yield consistent results.

DOI: https://doi.org/10.7554/eLife.40553.003

Figure supplement 2. Microbiota density is not correlated with body mass.

DOI: https://doi.org/10.7554/eLife.40553.004
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fecal water content (� = -0.0418, p = 0.892, Spearman; Figure 1B) or host size (mass) (� = -0.364, p

= 0.167, Spearman; Figure 1—figure supplement 2). Nonetheless, animals from order Carnivora

(dog, ferret, lion, red panda, and tiger), with simple gut architectures adapted to carnivorous diets,

had significantly reduced microbiota densities compared with the rest of the mammals studied (p =

6.14 x 10�10, Mann-Whitney, Figure 1C).

To assay the relative contributions of the host (i.e., carrying capacity) and the microbiota (i.e.,

microbiota fitness) to microbiota density, we utilized germ-free mice with controlled host carrying

capacity (i.e., fixed diet, genetics, and environment) transplanted with the microbiotas of different

mammals. Although there are clear caveats to assaying properties of the microbiota in a non-native

host, several prior studies have demonstrated that germ-free microbiota transplantations from other

mammals can recapitulate many aspects of the microbial community (Goodman et al., 2011;

Ridaura et al., 2013; Seedorf et al., 2014) and even host physiology (Britton et al., 2019;

Cekanaviciute et al., 2017; De Palma et al., 2017; Sampson et al., 2016) in the murine host.

Importantly, these microbiota transplant experiments provide an experimental tool to estimate rela-

tive differences in fitness between microbiotas because each microbiota is transplanted into one or

more replicate murine hosts with the same carrying capacity. In germ-free Swiss Webster mice colo-

nized with four of the lowest density microbiotas in our initial screen (lion, elephant, ferret, and red

panda), the lion and red panda microbiotas reached higher microbiota densities in the mouse than

in the native host (Figure 1D), suggesting their densities were limited by the carrying capacity of

their host (which could include factors like intestinal architecture, host diet and host social behav-

iors). The elephant and ferret microbiotas colonized mice at densities comparable to those in the

native host and significantly less dense than a mouse microbiota (Figure 1D), suggesting their densi-

ties are limited by the fitness of each microbiota that cannot reach the mouse carrying capacity.

Altogether, these mammalian microbiota samples and germ-free transfer experiments demonstrate

that as in macroecology, microbiota density represents the combined influence of host carrying

capacity and community fitness.

Manipulation of colonic microbiota density alters host physiology
To broadly assess the impact of therapeutics on gut microbiota density, we provided SPF mice with

one of 20 orally administered drugs, including antibiotics, anti-motility agents, and laxatives

(Supplementary file 2). Only 9 of the 14 tested antibiotics significantly decreased gut microbiota

density compared to untreated animals (p < 0.05 for each; Kruskal-Wallis rank sum test, followed by

a Dunn’s test with Bonferroni correction), and the taxa reduced by each antibiotic were not strongly

reflective of the antibiotic’s spectrum (see Supplemental Results and Figure 2—figure supplement

1). Amongst these 9 density-reducing antibiotics, there were substantial differences in each drug’s

depleting capacity (Figure 2A). Of the laxatives, PEG 3350 reduced microbiota density (p = 2.22 x

10�4), while lactulose increased it (p = 0.0279). The anti-motility agent loperamide and the proton

pump inhibitor omeprazole had no significant effect. Across the pharmacologics, we never observe

high microbiota density with low alpha diversity, which drives a significant correlation between alpha

diversity and microbiota density (� = 0.628, p < 0.0001, Spearman correlation; Figure 2—figure sup-

plement 2H). However, we commonly observe high alpha diversity with low microbiota density (e.g.,

animals given metronidazole; Figure 2—figure supplement 2H), suggesting changes in microbiota

density do not strictly correspond to changes in alpha diversity (see Supplemental Results and Fig-

ure 2—figure supplement 2). As with our results in the mammals, we found no correlation between

microbiota density and fecal water content across the tested pharmacologics (� = -0.338, p = 0.411,

Spearman; Figure 2—figure supplement 3F).

Comparing antibiotic-treated or germ-free mice with conventional mice has demonstrated the

influence of the microbiota on a range of physiological measures (Atarashi et al., 2011; Faith et al.,

2014; Bäckhed et al., 2004; Geuking et al., 2011; Ivanov et al., 2009; Mortha et al., 2014;

Muller et al., 2014; Bongers et al., 2014; Ridaura et al., 2013; Wostmann and Bruckner-Kardoss,

1959; Zhang et al., 2015). To better understand the impact of microbiota density on host physiol-

ogy, we selected five antibiotics (ampicillin, ciprofloxacin, clindamycin, polymyxin B, vancomycin)

based on their varying ability to decrease microbiota density (Figure 2A). As expected, treating 4-

week old SPF C57BL/6J mice with each antibiotic in their drinking water for four weeks (n = 6 mice

per antibiotic, 9 SPF antibiotic-free controls, and 6 germ-free controls) led to a range of density

reductions across the experimental groups (1.1 – 36.0 fold; Figure 2—figure supplement 3A). We
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Figure 2. Manipulation of colonic microbiota density alters host physiology. (A) Pharmacologic interventions

differentially alter microbiota density in SPF C57BL/6J mice. Samples from 3 to 12 (mean = 6) mice per group. (B–

E) Antibiotic-induced changes in microbiota density significantly correlate with (B) host cecum size, (C) adiposity,

(D) fecal IgA, and (E) colonic lamina propria FoxP3 +T regulatory cells. n = 6 mice per antibiotic group, 9 SPF

antibiotic-free controls, and six germ-free controls. In (A), dashed lines represent the IQR of untreated SPF C57BL/

6J mice and AVNM = ampicillin, vancomycin, neomycin, metronidazole. Statistical tests performed for individual

treatment conditions vs untreated using Kruskal-Wallis with Dunn’s post-test corrected for multiple comparisons

with the Bonferonni correction. Bars indicate median. ns = not significant, *p < 0.05, **p < 0.01, and ***p < 0.001.

In (B-E) points represent individual mice. Shapes indicate treatment group. Source data available for (A-E). 16S

rRNA gene amplicon sequencing data is available for A (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.40553.008

The following source data and figure supplements are available for figure 2:

Source data 1. Microbiota density of mice treated with pharmacologics.

DOI: https://doi.org/10.7554/eLife.40553.013

Figure 2 continued on next page
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found a significant negative correlation between cecum size and microbiota density (� = -0.729, p =

2.46 x 10�7, Spearman; Figure 2—figure supplement 3B). Epididymal fat pad mass, fecal IgA, and

lamina propria FoxP3+CD4+ regulatory T cells were each positively correlated with microbiota den-

sity (�fat = 0.587, pfat = 6.11 x 10�5; �IgA = 0.783, pIgA = 3.35 x 10�7; �Treg = 0.639, pTreg = 5.31 x

10�6; Spearman; Figure 2—figure supplement 3C–3E). The strength of these associations is inde-

pendent of the water content of the feces. Using group averages, the Spearman’s correlations are

the same for dry and wet microbiota density vs phenotypes (i.e., the rank order of density does not

change when using dry weights). Furthermore, when estimating the relationships between micro-

biota density and host physiology with linear models we find that wet weight is a better predictor of

changes in cecum size, epididymal fad pad mass, fecal IgA, and FoxP3+CD4+ regulatory T cells than

dry weight.

Microbiota density in inflammatory bowel disease (IBD)
To characterize the impact of host health status on gut microbiota density, we collected fecal sam-

ples from 70 healthy controls, 138 subjects with Crohn’s disease (CD), 97 subjects with ulcerative

colitis (UC), and 19 subjects with UC that had undergone an ileal pouch-anal anastomosis (IPAA) pro-

cedure following total colectomy. Concordant with prior work using phylum-specific qPCR

(Frank et al., 2007) and flow cytometry (CD-only; Vandeputte et al., 2017b), subjects with IBD had

decreased microbiota density compared to healthy controls (pUC = 0.00181, pCD = 1.77�10�4,

pIPAA = 2.40�10�5, each vs Healthy, Kruskal-Wallis rank sum test, followed by a Dunn’s test with

Bonferroni correction; Figure 3A), even when excluding individuals receiving antibiotics (Figure 3—

figure supplement 1A). Individuals with active CD, as well as IPAA subjects, had increased fecal

water content compared to healthy individuals (pactive CD = 0.036, pIPAA = 0.0184, each vs Healthy;

Tukey’s HSD), while individuals with UC or inactive CD did not. Nonetheless, the decrease in micro-

biota density in IBD compared to healthy controls was consistent across individuals with active dis-

ease or inactive disease (pactive IBD = 7.68 x 10�5, pactive CD = 0.000466, pinactive IBD = 0.00229,

pinactive CD = 0.0479, each vs Healthy, Kruskal-Wallis rank sum test, followed by a Dunn’s test with

Bonferroni correction; Figure 3B), demonstrating that the microbiota density changes in IBD were

not simply driven by the increased fecal water content that occurred with active inflammation in CD.

To associate changes in microbiota composition with the altered microbiota density in individuals

with IBD, we performed 16S rRNA gene amplicon sequencing of the fecal DNA (Figure 3C–3D). In

line with previous studies (Frank et al., 2007; Gevers et al., 2014; Gophna et al., 2006;

Jacobs et al., 2016), the IBD microbiome had a decreased alpha diversity compared to healthy sub-

jects (pUC = 0.00339, pCD = 2.39�10�9, pIPAA = 1.17�10�12, each vs Healthy; Kruskal-Wallis rank

sum test, followed by a Dunn’s test with Bonferroni correction; Figure 3—figure supplement 1B).

When we multiplied each taxa’s relative abundance by the microbiota density to calculate their abso-

lute abundances, we found decreases in gut microbiota density were most significantly correlated

with decreases in Firmicutes, while Proteobacteria were the only one of the four major phyla in the

Figure 2 continued

Source data 2. Microbiota density and phenotypic changes in antibiotic-treated mice.

DOI: https://doi.org/10.7554/eLife.40553.014

Source data 3. Fecal water content of mice diets with varied fiber sources and protein content.

DOI: https://doi.org/10.7554/eLife.40553.015

Source data 4. Fecal water content of mice diets with varied fiber sources and protein content.

DOI: https://doi.org/10.7554/eLife.40553.016

Figure supplement 1. In vivo antibiotic spectrum of activity.

DOI: https://doi.org/10.7554/eLife.40553.009

Figure supplement 2. Alteration of the absolute murine fecal microbiota by pharmacologics, and the relationship

between alpha diversity and microbiota density in pharmacologic interventions.

DOI: https://doi.org/10.7554/eLife.40553.010

Figure supplement 3. Phenotypic changes observed in antibiotic-treated mice.

DOI: https://doi.org/10.7554/eLife.40553.011

Figure supplement 4. Fecal water content and microbiota density can be manipulated independently by diet.

DOI: https://doi.org/10.7554/eLife.40553.012
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gut microbiota that were not correlated with microbiota density (Figure 3E–3H). These results from

measuring the density of each phyla provide a novel insight compared to previous studies that asso-

ciated a relative increase in the proportion of Proteobacteria with IBD (Frank et al., 2007;

Gevers et al., 2014). We show here that in absolute terms, Proteobacteria are able to sustain a con-

stant density in the individuals with IBD while the remaining phyla decrease in density.

Fecal microbiota transplants restore microbiota density and microbiota
fitness
Given the large difference in the microbiota between healthy individuals and those with recurrent

Clostridium difficile infection (rCDI) (Figure 4—figure supplement 1A and B; Seekatz et al., 2014;

Shankar et al., 2014), we hypothesized that on a mechanistic level, FMT bolsters colonization resis-

tance by improving gut microbiota fitness. In fecal samples from FMT donors and their rCDI FMT

recipients prior to and after FMT, we observed that the rCDI gut microbiota has a significantly lower

microbiota density than the donor microbiota, and that FMT increased microbiota density (p < 0.05

Figure 3. Microbiota density is altered in IBD. (A) Subjects with ulcerative colitis and Crohn’s disease, as well as subjects who have undergone ileal

pouch-anal anastomosis (IPAA) have reduced microbiota density compared to healthy controls. (B) The reduction in microbiota density in IBD patients

is independent of disease activity. (C–D) 16S rRNA gene sequencing reveals phylum-level changes in (C) relative and (D) absolute abundances of the

microbiota in subjects with UC, CD, and IPAA compared to healthy controls. (E–H) The absolute abundance of all of the major phyla are strongly

correlated with microbiota density, with the exception of Proteobacteria, whose abundance is largely constant. In (A-C) bars indicate median,

**p < 0.01, and ***p < 0.001 (Kruskal-Wallis with Dunn’s post-test corrected for multiple comparisons with the Bonferonni correction). In (C) each point

represents the average microbiota density for an individual mouse before or after the initiation and development of colitis. In (E-H) points represent

individual subjects and colors indicate their health status. Source data available for (A and B). 16S rRNA gene amplicon sequencing data is available for

(C-H) (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.40553.017

The following source data and figure supplement are available for figure 3:

Source data 1. Microbiota density and diversity in individuals with IBD or IPAA.

DOI: https://doi.org/10.7554/eLife.40553.019

Figure supplement 1. The microbiota of IBD and IPAA subjects.

DOI: https://doi.org/10.7554/eLife.40553.018
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for all comparisons, Kruskal-Wallis rank sum test, followed by a Dunn’s test with Bonferroni correc-

tion; Figure 4A). We did not observe any differences in fecal water content between the donors and

recipients before or after FMT (p > 0.2 for all comparisons, Tukey’s HSD). In addition, we found that

rCDI FMT recipients had both a relative and absolute increase in Proteobacteria that was signifi-

cantly reduced by FMT (Figure 4B and C, and Figure 3—figure supplement 1C–1F). These data

suggest that FMT restores higher densities of Bacteroidetes, Firmicutes, and Actinobacteria to more

fully realize the host’s carrying capacity. However, these results may be confounded by the fact that

the individuals with rCDI have been exposed to antibiotic treatment prior to their FMT, and as we

showed in Figure 2A, antibiotics may reduce microbiota density.

To separate the host physiologic and pharmacologic factors that might impact our understanding

of community fitness in rCDI, we utilized a gnotobiotic murine model of FMT (Figure 4D) where

Figure 4. The rCDI microbiota has a fitness defect that is therapeutically treatable by FMT. (A) rCDI subjects have

reduced microbiota densities that are significantly increased upon FMT with donor microbiotas. (B and C)

Following FMT, the composition of the microbiota of individuals with rCDI is restored to more closely resemble

that of healthy donors in both (B) relative and (C) absolute terms. (D) Germ-free mice were colonized with the

microbiota from FMT Donors (a) or individuals with rCDI that underwent FMT (b). These mice then received the

microbiota from the FMT donor corresponding to the clinical FMT (c) which could be compared to germ-free mice

colonized with the Post-FMT sample from the individual who received the FMT (d). (E) Microbiota density in mice

from the experimental scheme described in (D) showed decrease in microbiota fitness prior to FMT and an

increase in microbiota density following FMT demonstrating the restoration of community fitness. In (A and E)

points represent individual samples, bars indicate median, *p < 0.05, **p < 0.01, and ***p < 0.001 (Kruskal-Wallis

with Dunn’s post-test corrected for multiple comparisons with the Bonferonni correction). In (E), colors represent

each one of five different FMT donor-recipient pairs. Source data available for A and E. 16S rRNA gene amplicon

sequencing data is available for B, C, and E (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.40553.020

The following source data and figure supplement are available for figure 4:

Source data 1. Microbiota density of FMT recipients and donors.

DOI: https://doi.org/10.7554/eLife.40553.022

Source data 2. Microbiota density of gnotobiotic mouse model of FMT.

DOI: https://doi.org/10.7554/eLife.40553.023

Figure supplement 1. FMT changes the microbiome of individuals with rCDI to resemble that of healthy donors.

DOI: https://doi.org/10.7554/eLife.40553.021
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germ-free mice were initially colonized with the fecal material of individuals with rCDI for 3 weeks

prior to a single transplant of fecal material via oral gavage from a second human donor – the same

healthy FMT donor used for the transplant clinically. The ex-germ-free mice therefore model the

fecal microbiota transplant but in a fixed environment, with a controlled diet, and no antibiotic con-

founder. As a control, we colonized germ-free mice with the FMT donor microbiota alone

(Figure 4D). The microbiota density of mice colonized with the healthy samples (a) was greater than

that of mice colonized with rCDI samples (b) (p = 1.79�10�4, Kruskal-Wallis rank sum test, followed

by a Dunn’s test with Bonferroni correction; Figure 4E), suggesting that rCDI individuals have a

reduced microbiota fitness compared to healthy donors. Following the introduction of the healthy

donor microbiota to the mice colonized with the rCDI microbiota (c), we observed increased micro-

biota density in these mice (p = 6.88�10�8, Kruskal-Wallis rank sum test, followed by a Dunn’s test

with Bonferroni correction; Figure 4E), implying a restoration of microbiota fitness. Furthermore,

when we colonize germ-free mice with the microbiota of the individuals with rCDI 6–12 months after

they received an FMT (d), we find that their microbiota fitness had been restored, just as in our

mouse FMT model (p = 8.60�10�8, Kruskal-Wallis rank sum test, followed by a Dunn’s test with Bon-

ferroni correction; Figure 4E). These findings in the mice model recapitulate the data in our human

cohort of FMT recipients and suggest that FMT successfully treats the fitness defect of the rCDI

community.

Discussion
The DNA-based microbiota density estimation method employed here and in previous studies

(Faith et al., 2011; Llewellyn et al., 2018; Reyes et al., 2013) has the advantage that it can be

incorporated into existing 16S rRNA and metagenomic workflows by simply weighing the input sam-

ple and ensuring the input mass of fecal material is within the linear range of the DNA extraction

protocol. Incorporating microbiota density into standard culture independent microbiome workflows

would greatly broaden our understanding of factors that drive one of the most fundamental proper-

ties of any ecosystem – its population density – and it would allow the broader study of absolute

taxon abundances. Recent work has demonstrated that the amount of live/dead bacteria can vary

between fecal samples (Costea et al., 2017; Maurice et al., 2013; Sinha et al., 2017), which would

not be captured by a DNA-based density metric. However, in practice we found that the influence of

any variation from live/dead bacteria was sufficiently low that it did not influence the major conclu-

sions of this study; we observed a very significant correlation between the viability-based CFU den-

sity measurement and the DNA-based one and all of the major relationships observed in this study

were consistent across both approaches (i.e., variation across mammals, IBD and IPAA lower density

than healthy, rCDI lower density than FMT donor or rCDI post-transplant; Figure 1—figure supple-

ment 1D).

Although bacteria dominate the gut microbiota and were the primary focus of this study, this

approach could also be used to account for the non-bacterial (e.g., fungal, viral, protozoan) compo-

nents of the microbiome, assuming an appropriate DNA extraction method was chosen to efficiently

lyse these broader microbial groups. While recent studies that examined the fungal microbiome

have shown that fungi can alter the efficacy of FMT in rCDI for selected individuals (Zuo et al.,

2018), we did not detect a substantial contribution of fungi in the metagenome of our rCDI samples

extracted with phenol:chloroform and bead beating (see Supplemental Results). As described

above, microbial density is highly correlated with CFU and ultimately each microbial genome is asso-

ciated with a single organism. Therefore, as long as the relative abundance measure is scaled by the

size of each organism’s genome (i.e., genome equivalents) the density of each species estimated by

this DNA-based method should also roughly reflect the CFU density of each species with the same

caveats of 16S rRNA copy number and genome copy number that apply to all microbiome studies.

As measures of microbiota density seek to become more accurate, well-curated databases that con-

tain information on fundamental characteristics of microbes such as cell volume or mass could pro-

vide further refinement.

Previous work has demonstrated that changes in fecal water are associated with but not necessar-

ily causally influencing differences in microbiota composition across the human population

(Falony et al., 2016; Vandeputte et al., 2017a). While both microbiota density and fecal water con-

tent vary across mammals and can be altered by pharmacologics (Figures 1 and 2, and Figure 2—
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figure supplement 3F), dietary components (Figure 2—figure supplement 1; Llewellyn et al.,

2018), and host disease status (Figures 3 and 4), we find microbiota density is consistently not cor-

related with water content. In the context of altering host physiology through antibiotic manipulation

of microbiota density, the best predictor of the impact of changes of microbiota density on host

physiology was when density was calculated with stool wet weight, suggesting both wet and dry

components of stool are important diluents in determining microbiota density and its impact on the

host. Our results suggest that microbiota density may change independently of water content,

implying that the density of microbes can be altered independently of water and other contents of

the stool bulk, such as undigested dietary components or host tissue.

Differences in microbiota density can be influenced by both the host’s carrying capacity and the

fitness of the microbiota to reach the carrying capacity of a given host. We found the density of gut

microbes varies across mammals and is more similar in more phylogenetically related species. Across

mammals, gut architecture appears to be a major driver of density, as the lowest densities were

observed in order Carnivora, whose short, simple intestines have a lower carrying capacity and are

maladapted for microbial fermentation at high densities. The low microbiota density of the red

panda, a member of Carnivora with a herbivorous diet, further supports intestinal architecture as a

major determinant of host carrying capacity and thus a driver of microbiota density. Finally, the sig-

nificantly reduced microbiota density in humans with IPAA uniquely demonstrates that changing gut

architecture within a species (in this case by surgery to treat ulcerative colitis) is equally capable of

influencing host carrying capacity. Outside of animal models, it is possible that other host features

that may be more readily altered, such as dietary habits or social behaviors, may also influence the

host carrying capacity.

Within a murine host with controlled carrying capacity (i.e., fixed diet, genetics, housing, etc.), we

found microbiota density can be altered with pharmacologics, with downstream consequences to

host adiposity and immune function. Different antibiotics were highly varied in their ability to impact

microbiota density, which could explain the mixed efficacy of antibiotics in microbiota-targeted clini-

cal trials for complex disease and varied responses to antibiotics in animal models. Identifying more

effective microbiota depleting cocktails would improve the design of such studies, while measuring

microbiota density in trials with antibiotics could better stratify clinical response. Previous studies

have observed that microbiota density can be manipulated by dietary changes (Llewellyn et al.,

2018; Sonnenburg et al., 2016). Furthermore, we found that altering microbiota density with either

diet or antibiotics could modify colitis severity (Llewellyn et al., 2018). Understanding the long-term

effect of high or low microbiota density on health could help refine the use of diet and the micro-

biota in disease treatment and prevention.

We also observed that microbiota density is reduced in individuals with IBD. Coupled with our

findings that changes in microbiota density can alter host metabolism and immune populations,

these results suggest that chronically low microbiota density may play a role in the development or

progression of disease. It might even be possible that an initial reduction in microbiota density con-

tributes to a pro-inflammatory host immune system that creates a positive feedback loop that sus-

tains a low microbiota density. It is also possible that a low microbiota density, if due to low

microbiota fitness, has reduced colonization resistance, allowing for pathogens or pathobionts to

take hold and contribute to disease processes in the host (Battaglioli et al., 2018).

Finally, we found that the reduced microbiota density in rCDI, due to a lack of microbiota fitness,

was ‘druggable’ by FMT. Moving forward, studying the factors that determine both host carrying

capacity and microbiota fitness may allow us to predict which disease states may benefit from thera-

peutics that target the host versus ones that target the microbiota. By identifying components of the

microbiota that confer increased fitness, we can improve our understanding of the ecological rules

that govern the microbiome. For example, exploring how FMT is able to increase microbiota fitness

and therefore microbiota density should provide mechanistic insights into FMT for rCDI that can be

used for other potential indications for FMT. These results also suggest that routine monitoring

could identify individuals with microbiota fitness deficiencies that might benefit from prophylactic

microbial therapeutics to boost colonization resistance to treat or prevent disease (Battaglioli et al.,

2018).
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Antibody Anti-Mouse/
Rat Foxp3 PE

Thermo
Fisher Scientific

Cat# 12-5773-82;
RRID:AB_465936

(1:100)

Antibody APC Anti-Mouse
CD4

BioLegend Cat# 100411;
RRID:AB_312696

(1:200)

Antibody APC/Cy7 Anti-
Mouse CD45

BioLegend Cat# 103115;
RRID:AB_312980

(1:100)

Antibody Goat Anti-Mouse
IgA-HRP

Sigma-Aldrich Cat# A4789;
RRID:AB_258201

(1:2000)

Antibody Goat Anti-Mouse
IgA-UNLB

SouthernBiotech Cat# 1040–01;
RRID:AB_2314669

Working
concentration 1 ng/mL

Chemical
compound, drug

Amoxicillin Sigma-Aldrich Cat# A8523

Chemical
compound, drug

Ampicillin Sigma-Aldrich Cat# A9518

Chemical
compound, drug

Azithromycin AK Scientific Cat# SYN3010

Chemical
compound, drug

Carbenicillin Sigma-Aldrich Cat# C1389

Chemical
compound, drug

Cephalexin Sigma-Aldrich Cat# C4895

Chemical
compound, drug

Ciprofloxacin Sigma-Aldrich Cat# 17850

Chemical
compound, drug

Clarithromycin Sigma-Aldrich Cat# C9742

Chemical
compound, drug

Clindamycin Sigma-Aldrich Cat# C5269

Chemical
compound, drug

Doxycycline Sigma-Aldrich Cat# D9891

Chemical
compound, drug

Lactulose Sigma-Aldrich Cat# 61360

Chemical
compound, drug

Loperamide Sigma-Aldrich Cat# L4762

Chemical
compound, drug

Metronidazole Research Products International Cat# M81000

Chemical
compound, drug

Neomycin Sigma-Aldrich Cat# N6386

Chemical
compound, drug

Omeprazole Sigma-Aldrich Cat# O104

Chemical
compound, drug

Peroxidase Solution B KPL Cat# 50-65-02

Chemical
compound, drug

PhenoL:Chloroform
:IAA, 25:24:1, pH 6.6

Thermo Fisher
Scientific

Cat# AM9732

Chemical
compound, drug

PM Buffer Qiagen Cat# 19083

Chemical
compound, drug

Polyethylene
Glycol 3350

Miralax Product # 11523–723

Chemical
compound, drug

Polymyxin B Sigma-Aldrich Cat# P0972

Chemical
compound, drug

Rifaximin Sigma-Aldrich Cat# R9904

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

RNAlater
Stabilization
Reagent

Qiagen Cat# 76104

Chemical
compound, drug

Sodium
dodecyl
sulfate (SDS)

Sigma-Aldrich Cat# 75746

Chemical
compound, drug

TMB Peroxidase
Substrate

KPL Cat# 50-76-02

Chemical
compound, drug

Vancomycin Amresco Cat# 990

Commercial
assay or kit

Bioanalyzer
6000 Nano Kit

Agilent Cat# 5067–1511

Commercial
assay or kit

Foxp3
Fixation/
Permeabilization
Buffer Set

BioLegend Cat# 421403

Commercial
assay or kit

NEBNext Ultra II
DNA Library Prep Kit

New
England
BioLabs

Cat# E7645L

Commercial
assay or kit

QIAquick 96
PCR Purification Kit

Qiagen Cat# 28181

Commercial
assay or kit

Quant-IT dsDNA
Assay Kit –
Broad Range

Thermo
Fisher
Scientific

Cat# Q32853

Commercial
assay or kit

Quant-IT
dsDNA Assay
Kit – High
Sensitivity

Thermo
Fisher
Scientific

Cat# Q33130

Commercial
assay or kit

RNeasy Mini Kit Qiagen Cat# 74104

Commercial
assay or kit

Zombie Aqua
Fixable Viability Kit

BioLegend Cat# 423101

Other 0.1 mm
diameter zirconia
/silica beads

BioSpec Cat# 11079101z

Other 1.0 mL collection
tubes

Thermo
Fisher Scientific

Cat# 3740

Other 2.0 mL collection
tubes

Axygen Cat# SCT-200-SS-C-S

Other Agencourt
AMPure XP Beads

Beckman Coulter Cat# A63880

Other Bioruptor Pico Diagenode Cat# B01060010

Other Collagenase VIII Sigma-Aldrich Cat# C2139

Other DNase1 Sigma-Aldrich Cat# DN25

Other LSR II Flow
Cytometer

BD Biosciences SORP

Other Mini-Bead
beater-96

BioSpec Cat# 1001

Other NEBNext Ultra
Q5 Master Mix

New England
BioLabs

Cat# M0544L

Other SPRIselect
Beads

Beckman
Coulter

Cat# B23317

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Other Synergy HTX
Multi-Mode
Microplate Reader

BioTek http://www.biotek.com

Other,
deposited data

Greengenes
reference database
version 13_8

DeSantis et al., 2006 http://greengenes.lbl.gov

Other,
deposited data

Microbiota 16S
rDNA gene
sequences

This paper SRA Project #: PRJNA413199

Other,
deposited data

Mus musculus
mm10 genome

UCSC http://genome.ucsc.edu

Other,
deposited data

Shotgun
metagenomic
sequencing data

This paper SRA Project #:
PRJNA413199

Sequence-based
reagent (primers)

16S V4
(515–806) F 5’-GTGCCAGCA
GCCGCGGTAA-3’

IDT (Relman et al., 1992) N/A

Sequence-based
reagent (primers)

16S V4
(515–806) R 5’-GGACTACCA
GGGTATCTAAT-3’

IDT (Relman et al., 1992) N/A

Sequence-based
reagent (primers)

Mouse TNFa
(6455–6718) F 5’-GGCTTTCCG
AATTCACTGGAG-3’

IDT (Nitsche et al., 2001) N/A

Sequence
-based
reagent (primers)

Mouse TNFa
(6455–6718) R 5’-CCCCGGCC
TTCCAAATAAA-3’

IDT (Nitsche et al., 2001) N/A

Software,
algorithm

FACSDiva BD Biosciences http://www.bdbio
sciences.com/us/
instruments/
research/software
/flow-cytometry-
acquisition/bd-facsdiva
-software/m/
111112/overview

Software,
algorithm

FLASH Magoč and Salzberg, 2011 http://ccb.jhu.
edu/software/FLASH/

Software,
algorithm

FlowJo (version 10) Treestar https://www.flowjo.
com/solutions/f
lowjo/downloads

Software,
algorithm

MetaPhlAn2 Truong et al., 2015 N/A

Software,
algorithm

Multcomp
R package

Hothorn et al., 2008 https://cran.r-project
.org/package=multcomp

Software,
algorithm

Phyloseq
R package

McMurdie and Holmes (2013) https://joey711.
github.io/phyloseq

Software,
algorithm

QIIME (version
1.9.1)

Caporaso et al., 2010 http://qiime.org

Software,
algorithm

R R Core Team, 2017 https://www.
R-project.org

Strain, strain
background
(mus musculus)

C57BL/6J mice Jackson Laboratory Stock #000664

Strain, strain
background
(mus musculus)

Swiss Webster mice Taconic Biosciences SW-M and SW-F

Contijoch et al. eLife 2019;8:e40553. DOI: https://doi.org/10.7554/eLife.40553 13 of 26

Research Communication Human Biology and Medicine Microbiology and Infectious Disease

http://www.biotek.com
http://greengenes.lbl.gov
http://genome.ucsc.edu
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://www.bdbiosciences.com/us/instruments/research/software/flow-cytometry-acquisition/bd-facsdiva-software/m/111112/overview
http://ccb.jhu.edu/software/FLASH/
http://ccb.jhu.edu/software/FLASH/
https://www.flowjo.com/solutions/flowjo/downloads
https://www.flowjo.com/solutions/flowjo/downloads
https://www.flowjo.com/solutions/flowjo/downloads
https://cran.r-project.org/package=multcomp
https://cran.r-project.org/package=multcomp
https://joey711.github.io/phyloseq
https://joey711.github.io/phyloseq
http://qiime.org
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.7554/eLife.40553


Mammalian samples
Fecal samples from the mammals used in this study were collected either from laboratory animals

housed and maintained at the Icahn School of Medicine at Mount Sinai (New York, NY), or from ani-

mals at the Zoo Knoxville (Knoxville, TN). Approximate animal masses were curated from the litera-

ture (Blandford, 1987; Lambert, 1998; Ebinger, 1974; Garland, 1983; Roberts and Gittleman,

1984; Smith and Jungers, 1997).

Mice
Specific pathogen free (SPF) mice were purchased from Jackson Labs (C57BL/6J) or Taconic (Swiss

Webster Mice). Germ-free (GF) WT C57BL/6J (Jackson), and Swiss Webster (Taconic) mice were

housed in standard, commercially available flexible film isolators. To generate gnotobiotic mice from

human or mammalian fecal samples, GF mice were gavaged with 200 mL of clarified stool from the

source. Four week old male mice were used for the antibiotic treatment phenotyping experiments

(Figure 3). All other experiments used both male and female mice between 4 and 6 weeks old. Swiss

Webster mice were used to perform gnotobiotic experiments. All animal experiments in this study

were approved by Institutional Animal Care and Use Committee (IACUC) of the Icahn School of

Medicine (protocol: IACUC-2013-1385) and were performed in accordance with the approved guide-

lines for animal experimentation at the Icahn School of Medicine at Mount Sinai.

Human subjects
Individual ages 18 and over were recruited to be part of the study using a protocol approved by the

Mount Sinai Institutional Review Board (HS# 11-01669). Once the coordinators went over the con-

sent form and subjects consented to be part of the study to be published with subjects deidentified,

they were given a study identification number that all their study samples were labeled with. All

study samples were processed with no identifiers linked to them other than their study id. To study

the microbiota of individuals with IBD, we collected fecal samples from 70 healthy controls (42

female, 28 male), with an average age of 55.1 (range: 23-73), 109 individuals with ulcerative colitis

(67 female, 42 male), with an average age of 52.8 (range: 22-80), and 144 individuals with Crohn’s

Disease (72 female, 72 male), with an average age of 41.7 (range: 22-79). For subjects with ulcerative

colitis we defined disease activity using the Mayo Endoscopic Subscore (Mayo). Individuals with a

Mayo = 3 were categorized as having active disease, and individuals with a Mayo = 0 were catego-

rized as having inactive disease. For individuals with Crohn’s disease, active disease was defined as a

Simple Endoscopic Score for Crohn Disease (SES-CD) �5, and inactive disease as SES-CD = 0. The

remaining samples were excluded from these analyses. Stool samples were also collected from indi-

viduals with ulcerative colitis that had undergone an ileal pouch-anal anastomosis procedure follow-

ing total colectomy (3 female, 12 male), with an average age of 42.93 (range: 19-68). These samples

were collected from individuals in accordance with the IRB at the Tel Aviv Sourasky Medical Center.

All individuals signed an informed consent. For the analysis of the change in the microbiota in recur-

rent Clostridium difficile infection following fecal microbiota transplantation, we collected samples

from 11 healthy donors (8 female, 3 male; average age: 47.9, range: 25-75), 12 recipients who also

had IBD (8 female, 4 male; average age: 55.3, range: 32-78), and 11 recipients who did not have IBD

(9 female, 3 male; average age: 62, range: 36-87), as described in Hirten et al. (2018). The study

was approved by the Mount Sinai IRB.

Fecal sample collection and pre-processing
To quantify the mass of each fecal sample or fecal sample aliquot, we pre-weighed tubes prior to

sample collection and post-weighed the tubes after adding the fecal material. For mouse samples,

fresh fecal samples were collected directly into the collection tubes and stored at �80˚C. For all

other mammalian species with larger fecal sample sizes, samples were aliquoted on dry ice or liquid

nitrogen and stored at �80˚C. Sample aliquot sizes were targeted in the linear range of the fecal

DNA extraction protocol (approx. 50 mg in mice and <200 mg in humans) to enable quantitative

yields of DNA from the fecal material. Samples weighing less than 5 mg were excluded from

analysis.
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Phenol:chloroform DNA extraction
Fecal samples processed with the phenol:chloroform DNA extraction method were collected into

2.0 mL collection tubes (Axygen, SCT-200-SS-C-S). Similar to previous studies (Reyes et al., 2013),

samples were suspended in a solution containing 282 mL of extraction buffer (20 mM Tris (pH 8.0),

200 mM NaCl, 2mM EDTA), 200 mL 20% SDS, 550 mL phenol:chloroform:isoamyl alcohol (25:24:1,

pH 7.9), and 400 mL of 0.1 mm diameter zirconia/silica beads (BioSpec, 11079101z). Samples were

then lysed by mechanical disruption with a Mini-Beadbeater-96 (BioSpec, 1001) for 5 minutes at

room temperature. Samples were centrifuged at 4000rpm for 5 minutes to separate aqueous and

organic phases. The aqueous phase was collected and mixed with 650 mL of PM Buffer (Qiagen,

19083). DNA extracts were then purified using a Qiagen PCR Purification kit (Qiagen, 28181), and

eluted into 100 mL of EB buffer. Purified DNA was quantified using the Broad Range or High Sensitiv-

ity Quant-IT dsDNA Assay kit (Thermo Fisher, Q32853 and Q33130) in combination with a BioTek

Synergy HTX Multi-Mode Reader.

DNase inactivation buffer DNA extraction
Phenol:chloroform based DNA extraction with bead beating is an effective method to isolate micro-

bial DNA from feces. However, automation of phenol:chloroform requires liquid handling robotics in

an environment compatible with this hazardous chemical mixture. In addition, the variable volume of

the aqueous phase produced with this method presents an obstacle for its automation. We therefore

tested the DIB bead beating extraction protocol as an alternative, since by eliminating the hazardous

chemicals the protocol is compatible with more high-throughput liquid handling robotics platforms.

Samples processed with the DNase Inactivation Buffer (DIB) DNA extraction method were col-

lected into 1.0 mL tubes (Thermo Fisher, 3740). Samples were suspended in a solution containing

700 mL of DIB (0.5% SDS, 0.5 mM EDTA, 20 mM Tris (pH 8.0)) and 200 mL of 0.1 mm diameter zirco-

nia/silica beads. Samples were then lysed by mechanical disruption and centrifuged as above. Since

there is no phase separation with this method, it is straightforward to subsample the supernatant to

improve the dynamic range of DNA quantification by avoiding saturating the column with DNA

quantities above the binding capacity. 50-200 mL of the supernatant was transferred into new collec-

tion tubes. Depending on the volume collected, an additional volume of DIB was added in order to

reach a total volume of 200 mL. Next, this DIB lysate was combined with 600 mL of PM Buffer, puri-

fied with a Qiagen PCR Purification kit, and eluted into 100 mL of EB buffer. Purified DNA was quan-

tified using the Broad Range or High Sensitivity Quant-IT dsDNA Assay kit in combination with a

BioTek Synergy HTX Multi-Mode Reader.

16S rRNA sequencing
DNA templates were normalized to 2 ng/mL, and the V4 variable region of the 16S rRNA gene was

amplified by PCR using indexed primers as previously described (Faith et al., 2013). The uniquely

indexed 16S rRNA V4 amplicons were pooled and purified with AMPure XP beads (Beckman Coul-

ter, A63880) with a ratio of 1:1 beads to PCR reaction. Correct amplicon size and the absence of

primer dimers were verified by gel electrophoresis. The pooled samples were sequenced with an Illu-

mina MiSeq (paired-end 250bp). Raw sequencing files (fastq) for all 16S sequencing samples are

stored in the public Sequence Read Archive (SRA) under project number PRJNA413199.

Shotgun metagenomic sequencing
Metagenomic libraries were prepared using the NEBNext Ultra II DNA Library Prep kit (New England

BioLabs, E7645L). Briefly, DNA samples were first sheared by sonication with a Diagenode Bioruptor

Pico sonicator (Diagenode, B01060010) for a total of 14 cycles of 20 seconds. End repair and

adapter ligation was performed as per the manufacturer’s instructions. The ligation products were

then purified using a double size selection with SPRIselect beads (Beckman Coulter, B23317) to

retain products of 500–600 base pairs. Enrichment PCR was performed with NEBNext Ultra Q5 Mas-

ter Mix (New England BioLabs, M0544L). Samples were quantified using the High Sensitivity Quant-

IT dsDNA assay kit in combination with a BioTek Synergy HTX Multi-Mode Reader, checked for

appropriate size by gel electrophoresis, and pooled in even proportions. The pooled libraries were

then purified with double size selection using 0.6x followed by 0.2x of AMPure XP beads (Beckman

Coulter, A63880). Samples were sequenced with an Illumina HiSeq (paired-end 150 bp). For
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MetaPhlAn2 analysis, paired end sequence files were combined into one file per sample by concate-

nation of the two read files. Sequence data files (fastq) for all metagenomic sequencing samples are

stored in the public Sequence Read Archive (SRA) under project number PRJNA413199.

Fecal sample water content
Samples were collected into pre-weighed 2.0 mL collection tubes (Axygen, SCT-200-SS-C-S). After

collecting a fecal sample, sample mass was determined by post-weighing the tube. To measure the

water content of a sample, tubes were placed at 105˚C for 24 hr, and weighed again (Hinnant and

Kothmann, 1988). The water content of a sample was calculated as the difference in final and initial

mass of the sample, divided by the initial mass.

Pharmacologic treatment of mice
Antibiotics (and other compounds) were provided ad libitum to mice in their drinking water, when

possible. All of the pharmacologics were prepared into a 2% sucrose solution (which also served as

the control treatment) and sterilized with a 0.22 mm filter. Compounds that were not readily water-

soluble were administered to mice via oral gavage of 200 mL once per day, as indicated in

Supplementary file 1. Unless identified otherwise, antibiotic and pharmacologic concentrations

were calculated using a maximal clinical dose (taken from the online clinical resource UpToDate.

com) or from previous studies (Atarashi et al., 2011; Kashyap et al., 2013; Larsson et al., 1983;

Vaishnava et al., 2011; Bryant et al., 1988), assuming a 20 g mouse that drinks 3 mL water per

day.

Measurement of fecal immunoglobulin A
Fecal pellets were collected and massed. To each fecal pellet, 1 mL of sterile PBS was added per

100 mg feces. Each sample was homogenized without beads in a Mini-Beadbeater-96 for 3 min (Bio-

Spec, 1001) followed by vortexing for 3 min. Samples were centrifuged at 9000g for 10 min at 4˚C
and supernatants were collected. Immunoglobulin A was measured by ELISA. Plates were coated

with a working concentration of 1 ng/mL of goat anti-mouse IgA-UNLB (SouthernBiotech Cat# 1040-

01, RRID:AB_2314669), and then blocked with 1% BSA in PBS overnight at 4˚C. Wells were washed

with washing buffer (0.1% Tween-20 in PBS) 3 times. Then, fecal supernatant was diluted in dilution

buffer (0.1% Tween-20, 1% BSA in PBS), added to each well, and incubated overnight at 4˚C. The
wells were washed again with washing buffer 5 times, and incubated for 2 hours at room tempera-

ture with a 1/2000 dilution of goat anti-mouse IgA-HRP (Sigma-Aldrich Cat# A4789, RRID:

AB_258201) in dilution buffer. Following the incubation, the wells were washed 5 times with PBS/

Tween-20. Next, TMB substrate was added to wells for 1 minute (KBL, 50-76-02 and 50-65-02), and

the reaction was quenched using 1M H2SO4. Absorbance at 450 nm was measured using a BioTek

Synergy HTX Multi-Mode Reader. Samples were quantified against a standard curve from 1000 ng/

mL to 0.5 ng/mL.

CFU assay
We performed colony forming unit assays to obtain a culture-dependent measurement of microbiota

density that also incorporates viability, as only live microbes will form colonies in this assay. Fecal

samples were stored at �80˚C after sampling. Prior to plating larger samples were pulverized under

liquid nitrogen. Approximately 500 mg of fecal sample was homogenized in 12 ml of rich broth and

filtered with a 100 mM filter to remove particulate matter (Britton et al., 2019). Serial dilutions of

this clarified fecal slurry were plated on chocolate agar and grown in an anaerobic chamber at 37˚C
for 72 hours, whereupon colonies were manually quantified and normalized to CFU/g feces.

Colonic lamina propria immune populations
Colonic lamina propria immune cell populations were measured as previously described

(Britton et al., 2019). Briefly, colonic tissue was dissected and placed into RPMI medium at 4˚C. Tis-
sues were then transferred into HBSS and vortexed briefly, before being transferred into dissociation

buffer (10% FBS, 5 mM EDTA, 15 mM HEPES in HBSS) and shaken for 30 minutes at 110 rpm at

37˚C. Tissues were washed in HBSS before digestion in HBSS containing 2% FBS, 0.5 mg/mL Colla-

genase VIII (Sigma C2139) and 0.5 mg/mL DNase 1 (Sigma DN25) for 30 minutes at 110 rpm at
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37˚C. Digested tissue was then passed through a 100 mm filter into cold RPMI medium. Samples

were then centrifuged at 1500 rpm, 4˚C for 5 minutes. The supernatant was removed and cells were

washed once more in PBS before staining for flow cytometry. No enrichment of mononuclear cells

by density centrifugation was performed. Cells were initially blocked with Fc Block (BioLegend Cat#

101320, RRID:AB_1574975) and subsequently stained for: viability (BioLegend Cat# 423101) and

immunolabelled for expression of CD4 (1:200, BioLegend Cat# 100411, RRID:AB_312696) and CD45

(1:100, BioLegend Cat# 103115, RRID:AB_312980), and FoxP3 (1:100, Thermo Fisher Scientific Cat#

12-5773-82, RRID:AB_465936). Surface markers were stained before fixation and intracellular

markers were stained after fixation with the FoxP3 Fixation/Permeabilization Kit (eBioscience). Sam-

ples were run on a BD LSRII and analyzed with FlowJo.

Microbiota density and absolute abundances
We define microbiota density as the total DNA extracted from each sample (in mg) per mg of fresh

sample. For samples processed with the DIB-based extraction method, the total DNA extracted is

adjusted by the fraction of the supernatant that was subsampled in the DNA extraction (e.g., a 100

mL subsample is 1/7th of the total volume; total sample DNA is [DNA eluted] * 7). We then are able

to utilize this measurement of microbiota density to compute the absolute abundance of microbial

taxa by scaling the relative abundances of microbes in a sample by the microbiota density of that

sample.

16S rRNA gene amplicon sequencing data analysis
Paired end reads were joined into a single DNA sequence using the FLASH algorithm (Magoč and

Salzberg, 2011). We split our pooled sequencing library by index using QIIME v 1.9.1

(Caporaso et al., 2010), and picked OTUs against the greengenes reference database 13_8 at 97%

sequence identity (DeSantis et al., 2006; McDonald et al., 2012). The resulting OTU tables were

subsequently analyzed in R (R Core Team, 2017) with the help of the phyloseq package

(McMurdie and Holmes, 2013), and custom functions developed to convert relative abundances

into absolute abundances using microbiota density data.

Shotgun metagenomic sequencing data analysis
The metagenomic sequencing data was analyzed using MetaPhlAn2 (Truong et al., 2015). One mil-

lion paired-end reads were used for each sample, providing enough depth to reach species-level res-

olution (Hillmann et al., 2018).

Statistical analysis
Data presented were analyzed and visualized using the R statistical software (R Core Team, 2017).

Statistical tests were used as described in the main text. For nonparametric statistical tests, multiple

comparisons were performed using Dunn’s test following Kruskal-Wallis using the FSA R package

(Ogle, 2018), and corrected for multiple comparisons using Bonferonni correction. For many-to-one

comparisons (e.g., pharmacologic treatments compared to untreated controls), multiple hypothesis

testing correction was accomplished by using Dunnett’s test, implemented with the multcomp R

package (Hothorn et al., 2008). For multiple comparisons between experimental groups, Tukey’s

honest significant difference (HSD) was used to correct for multiple testing. Unless otherwise noted,

figures depict individual samples as points, and the bars indicate the median or mean ± SEM. In fig-

ures, *p < 0.05, ** p < 0.01, and ***p < 0.001.

Repeated sampling of gnotobiotic mice
For the experiments in which gnotobiotic mice were used to assess the roles of host carrying capac-

ity and microbiota fitness in shaping microbiota density, mice were sampled longitudinally to

increase sample size for each condition. For the mice colonized with fecal samples from the lion, ele-

phant, ferret, and red panda, two-way ANOVA shows that the main effect is the microbiota used to

colonize the mouse (F = 32.3, p = 8.27�10�16), while the identity of the individual mice does not

contribute to the effects (F = 1.08, p = 0.388). The same is true for the mice colonized with fecal

samples from individuals with IBD and pouch (F = 29.4, p < 0.0001 for the colonizing microbiota;

F = 0.746, p = 0.634; two-way ANOVA). As a result, we are able to effectively measure the
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microbiota density of gnotobiotic mice in these conditions and increase the utility of each gnotobi-

otic mouse.

Supplemental results
DNase inactivation buffer vs phenol chloroform DNA extraction comparison
To test if the two DNA extraction methods affected the resulting microbiota composition data, we

processed separate aliquots from the same fecal sample using both methods. We found that the

abundances of taxa in the sample processed with both methods were highly correlated (Figure 1—

figure supplement 1A and B), suggesting that they represent equivalent ways to assay microbial

community composition. In practice, the DIB method was most conducive to the small feces pro-

duced by mice and the large majority of mouse samples for this study were processed using this pro-

tocol, since the protocol utilizes smaller tubes that can be arrayed into standard 96-well formats. For

the remaining mammals, the phenol:chloroform method was used as the number of stools used in

the study was less, and the larger stools were more practical to aliquot into the wider 2.0 mL tube

used for the phenol:chloroform method.

One possible limitation of using DNA content as a measurement of microbiota density is that

small amounts of fecal matter contain sufficient DNA to saturate or clog the DNA binding columns

used during extraction. This upper limit can largely be avoided by limiting the amount of input fecal

material of higher microbiota density mammals (e.g., mice) to < 50 mg and lower microbiota density

mammals (e.g., humans) to < 200 mg. In our experience, bead beating also becomes inefficient at

>200 mg of fecal material. In contrast to the phenol:chloroform method, the DIB extraction protocol

relies on a subsampling step that provides an additional safeguard to ensure the DNA extraction

does not saturate the capacity of the Qiagen DNA-binding columns. By sampling a fraction of the

lysate, we can extend the upper limit of our extraction protocol. At the extreme, using a 5 mL sub-

sample of the lysate can increase the dynamic range by a factor of 140, which in turn implies that we

can measure microbiota density for samples containing up to 1.4 mg of DNA (140 * 10 mg binding

capacity of columns). On the lower end of our dynamic range, dye-based methods (Qubit Hi-sensitiv-

ity) provide an accurate detection down to 0.2 ng.

qPCR quantification of DNA origin
While the dynamic range of the DIB extraction method described above is typically sufficient for

stool samples, which contain high densities of microbial DNA compared with other environments,

we further extended the method with qPCR-based quantification of the V4 region of the 16S rRNA

gene. Additionally, by utilizing DNA yield per fecal sample as a measure of microbiota density, we

assume host DNA is a minor contributor to the total fecal DNA yield.

To quantify the amount of bacterial and mouse DNA in our samples, we targeted the V4 region

of the bacterial 16S rRNA gene (Relman et al., 1992) and the mouse TNFa gene (Nitsche et al.,

2001). qPCR reactions were performed in 20 mL reaction volumes with final primer concentrations of

200 nM, using KAPA SYBR FAST Master Mix (2x) ROX Low (Kapa Biosystems). The thermal cycling

and imaging were performed on the ViiA 7 Real-Time PCR System (Thermo Fisher).

We quantified the amount of host vs bacterial DNA in several samples by qPCR, and evaluated

the qPCR performance against spike-in controls with known combinations of mouse and bacterial

DNA. We found that even amongst samples with low microbial density (e.g., samples from mice

treated with vancomycin), the DNA content is largely microbial (Figure 1—figure supplement 1C).

We were also able to measure the presence of microbial DNA down to concentrations near 1 pg/mL

(Figure 1—figure supplement 1C). This allows us to measure microbial density for samples with

DNA as low as 100 pg (minimum concentration 1 pg/mL in a 100 mL elution volume). Coupled with

the ability to subsample the lysate from our DNA extraction protocol, this allows us to measure

microbiota density across 5 orders of magnitude for the phenol:chloroform method and 7 orders of

magnitude with the DIB protocol.

Antibiotic spectrum and in vivo activity
By combining measures of microbiota density with sequencing-based measures of gut microbiota

composition, we can study the ability of antibiotics to act within the context of a complex microbial

community. We examined the 16S rRNA gene sequencing data from our antibiotics experiments
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(Figure 2) to study the effects of polymyxin B, which acts by binding to the bacterial outer mem-

brane that is present in gram-negative but not gram-positive organisms, and of vancomycin, which

acts by inhibiting cell wall synthesis in gram-positive bacteria, and is thought to have little or no effi-

cacy against gram-negative organisms. We focused on the changes in absolute abundances of bac-

terial phyla that are largely gram-positive (Actinobacteria and Firmicutes) or largely gram-negative

(Bacteroidetes and Proteobacteria). Polymyxin B did not reduce the microbiota density overall, and

did not significantly reduce the absolute abundance of Gram-negative bacteria (p = 0.116, Wilcoxon

rank sum test; Figure 2—figure supplement 1A) or change the absolute abundance of Gram-posi-

tive bacteria (p = 0.273, Wilcoxon rank sum test, Figure 2—figure supplement 1B). Vancomycin, on

the other hand, drove a significant decrease in the absolute abundance of both gram-positive and

gram-negative organisms (pGram(+) = 6.27�10�13, pGram(-) = 6.27�10�13, Wilcoxon rank sum test;

Figure 2—figure supplement 1C and D). These results suggest that the spectrum of activity of anti-

biotics as determined by in vitro assays may not reflect the effects of these drugs in vivo, when they

are introduced to complex communities of organisms such as in the gut.

Absolute microbial dynamics and alpha diversity in response to
pharmacologics
Culture-independent measurements have revealed that antibiotics can disrupt the composition of a

healthy gut microbiota (Dethlefsen et al., 2008). We hypothesized that antibiotics may also have an

impact on the gut microbiota density. To test this hypothesis, we administered vancomycin in two

doses (0.2 mg/mL and 0.5 mg/mL) to two sets of SPF C57BL/6J mice and collected fecal pellets

before and during treatment. We found that vancomycin exerted selective pressure against suscepti-

ble organisms leading to a relative expansion of Verrucomicrobia and Firmicutes in the low and high

dose groups respectively (Figure 2—figure supplement 2A and B ). When we multiplied each taxa’s

relative abundance by the microbiota density to calculate their absolute abundances, we observed a

bloom of Verrucomicrobia in the low dose group (Figure 2—figure supplement 2C ). Surprisingly,

in the high dose group, we found that vancomycin successfully depleted members of all phyla,

including Firmicutes (Figure 2—figure supplement 2D ). Microbiota density and alpha diversity

were not significantly correlated (� = 0.107; p = 0.557; Spearman; Figure 2—figure supplement

2E), as both low dose and high dose vancomycin significantly reduced alpha diversity (plow = 6.10 x

10�5 and phigh = 0.00223, final timepoint vs baseline, Mann Whitney; Figure 2—figure supplement

2F ), while only high dose vancomycin reduced microbiota density (plow = 0.669, phigh = 0.0127, final

timepoint vs baseline, Mann Whitney; Figure 2—figure supplement 2G ).

Identifying fungi in rCDI samples
Recent work has demonstrated that the fungal community may play an important role in modulating

response to FMT in patients with rCDI (Zuo et al., 2018). We sought to identify whether our cohort

of individuals with rCDI had a significant fungal component to their microbiota. We performed shot-

gun metagenomic sequencing on fecal samples from patients prior to FMT (n = 15) and profiled the

composition of the microbial community using MetaPhlAn2 (Truong et al., 2015). Using this

approach, we were only able to identify fungal reads in one of the eighteen samples. In this sample,

Saccharomyces cerevisiae was the only identified fungi and comprised 0.112% of the mapped reads,

while the remaining 99.9% were mapped to bacteria, consistent with previous reports of fungal

reads accounting for approximately 0.1% of the human gut metagenome (MetaHIT Consortium

et al., 2010).

One possible limitation of this analysis is that the methods described here are not specifically

designed to extract and measure fungal DNA, as they do not utilize lyticase or a heat lysis step as in

other protocols (Iliev et al., 2012; Huseyin et al., 2017; Sokol et al., 2017; Tang et al., 2015).

Nonetheless, previous work by Yu and Morrison (2004) demonstrated that a bead-beating plus

phenol:chloroform extraction method (Whitford et al., 1998), similar to the one employed for the

rCDI samples used in this study was able to extract more DNA from rumen samples than other meth-

ods such as the QIAamp DNA Stool Mini Kit that have been employed in other fungal microbiome

studies (Suhr et al., 2016). Furthermore, the identification of fungal reads in our samples demon-

strates our methods were capable of isolating at least a proportion of the fungal DNA.
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Another possible limitation of this approach is that the databases of published fungal genomes

are relatively sparse. This limitation is shared among all sequencing-based approaches aimed at

studying the fungal microbiome, and makes it possible that the real fungal fraction of the micro-

biome is larger than what we are able to identify.

Acknowledgements
We are grateful to C Fermin, E Vazquez, and G Escano in the Mount Sinai Immunology Institute Gno-

tobiotic facility for their help with gnotobiotic animal husbandry. D Present and S Petrunio provided

helpful suggestions during the course of this work. Next generation sequencing was performed at

NYU School of Medicine by the Genome Technology Center partially supported by the Cancer Cen-

ter Support Grant, P30CA016087. Human microbiome processing was performed in part by the

Human Immune Monitoring Center at the Icahn School of Medicine at Mount Sinai. This work was

supported in part by the staff and resources of Scientific Computing and of the Flow Cytometry

Core at the Icahn School of Medicine at Mount Sinai. Raw sequencing files (fastq) for all 16S rRNA

gene amplicon sequencing samples and metagenomic sequencing samples are stored in the public

Sequence Read Archive (SRA) under project number PRJNA413199. Flow cytometry data is available

through Mendeley Data (http://dx.doi.org/10.17632/cjvfrbyxhj.1).

Additional information

Competing interests

Ruiqi Huang, Marla Dubinsky, Jeremiah J Faith: Is a consultant for Janssen and has no other financial

competing interests to declare. The other authors declare that no competing interests exist.

Funding

Funder Grant reference number Author

National Institute of Diabetes
and Digestive and Kidney Dis-
eases

DK112679 Eduardo J Contijoch

National Institute of General
Medical Sciences

GM108505 Jeremiah J Faith

Leona M. and Harry B. Helms-
ley Charitable Trust

Iris Dotan

Janssen Research and Devel-
opment

Eric E Schadt
Marla Dubinsky
Jeremiah J Faith

National Institute of General
Medical Sciences

GM007280 Eduardo J Contijoch
Sean R Llewellyn

The sampling of the Inflammatory Bowel Disease cohort (Crohn’s disease and

ulcerative colitis) was jointly designed by a collaborative effort between Mount Sinai

and Janssen Research and Development. Beyond this exception, no other funders

had no role in study design, data collection and interpretation, or the decision to

submit the work for publication.

Author contributions

Eduardo J Contijoch, Conceptualization, Data curation, Software, Formal analysis, Funding acquisi-

tion, Validation, Investigation, Visualization, Methodology, Writing—original draft, Writing—review

and editing; Graham J Britton, Chao Yang, Investigation, Methodology, Writing—review and editing;

Ilaria Mogno, Methodology, Writing—review and editing; Zhihua Li, Methodology; Ruby Ng, Sheela

Hira, Revital Barkan, Robert P Hirten, Shih-Chen Fu, Yuying Luo, Nancy Yang, Tramy Luong, Philippe

R Labrias, Roman Kosoy, Seunghee Kim-Schulze, Xiaochen Qin, Anabella Castillo, Amanda Hurley,

Ashish Atreja, Jason Rogers, Farah Fasihuddin, Merjona Saliaj, Amy Nolan, Pamela Reyes-Mercedes,

Carina Rodriguez, Sarah Aly, Kenneth Santa-Cruz, Mayte Suárez-Fariñas, Ruiqi Huang, Ke Hao, Jun
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