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Abstract Variation in DNA methylation enables plants to inherit traits independently of changes

to DNA sequence. Here, we have screened an Arabidopsis population of epigenetic recombinant

inbred lines (epiRILs) for resistance against Hyaloperonospora arabidopsidis (Hpa). These lines

share the same genetic background, but show variation in heritable patterns of DNA methylation.

We identified four epigenetic quantitative trait loci (epiQTLs) that provide quantitative resistance

without reducing plant growth or resistance to other (a)biotic stresses. Phenotypic characterisation

and RNA-sequencing analysis revealed that Hpa-resistant epiRILs are primed to activate defence

responses at the relatively early stages of infection. Collectively, our results show that

hypomethylation at selected pericentromeric regions is sufficient to provide quantitative disease

resistance, which is associated with genome-wide priming of defence-related genes. Based on

comparisons of global gene expression and DNA methylation between the wild-type and resistant

epiRILs, we discuss mechanisms by which the pericentromeric epiQTLs could regulate the defence-

related transcriptome.

DOI: https://doi.org/10.7554/eLife.40655.001

Introduction
Eukaryotic cytosine methylation plays an important role in the regulation of gene expression and

genome stability. In plants, this form of DNA methylation occurs at three sequence contexts: CG,

CHG and CHH, where H indicates any base except guanine (G) (Vanyushin, 2006; Law and Jacob-

sen, 2010). Patterns of plant DNA methylation in the plant genome can remain stable over multiple

generations and influence heritable phenotypes (Quadrana and Colot, 2016). Recent evidence has

suggested that reduced DNA methylation increases the responsiveness of the plant immune system

(Espinas et al., 2016) This ‘priming’ of plant defence enables an augmented induction of defence-

related genes after pathogen attack, causing increased levels of quantitative resistance (Prime-A-

Plant Group et al., 2006; Conrath et al., 2015; Martinez-Medina et al., 2016; Liégard et al.,

2018). In some cases, priming of defence-related genes is associated with post-translational histone

modifications that mark a more open chromatin structure (Jaskiewicz et al., 2011; Luna et al.,
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2012). Additional evidence for epigenetic regulation of plant immunity has come from independent

studies reporting that disease-exposed Arabidopsis produces progeny that expresses transgenera-

tional acquired resistance (TAR), which is associated with priming of defence-related genes

(Luna et al., 2012; Slaughter et al., 2012). Furthermore, Arabidopsis mutants that are impaired in

the establishment or maintenance of DNA methylation mimic TAR-related priming without prior

priming stimulus (Lopez et al., 2011; Luna and Ton, 2012; López Sánchez et al., 2016). By con-

trast, the hyper-methylated ros1-4 mutant, which is impaired in active DNA de-methytation, is more

susceptible to biotrophic pathogens, affected in defence gene responsiveness, and impaired in TAR

(López Sánchez et al., 2016; Yu et al., 2013). Thus, DNA (de)methylation determines quantitative

disease resistance by influencing the responsiveness of defence-related genes. However, causal evi-

dence that selected hypomethylated DNA loci are responsible for the meiotic transmission of this

form of quantitative disease resistance is lacking.

Epigenetic Recombinant Inbred Lines (epiRILs) have been developed with the aim to study the

epigenetic basis of heritable plant traits (Reinders et al., 2009; Johannes et al., 2009). EpiRILs

show little differences in DNA sequence, but vary substantially in DNA methylation. A commonly

used population of epiRILs is derived from a cross between the Arabidopsis wild-type (Wt) accession

Col-0 and the decreased DNA methylation1-2 (ddm1-2) mutant (Johannes et al., 2009). The DDM1

protein is a chromatin re-modelling enzyme that provides DNA methyltransferase enzymes access to

heterochromatic transposable elements (TEs) (Jeddeloh et al., 1998; Brzeski and Jerzmanowski,

2003; Zemach et al., 2013). Accordingly, the ddm1-2 mutation causes loss of pericentromeric het-

erochromatin and reduced DNA methylation in all sequence contexts (Kakutani et al., 1996;

Ito et al., 2015). Although the epiRILs from the ddm1-2 x Col-0 cross do not carry the ddm1-2 muta-

tion, they contain stably inherited hypomethylated DNA regions from the ddm1-2 parent, which are

maintained up to 16 generations of self-pollination (Johannes et al., 2009; Colomé-Tatché et al.,

eLife digest In plants, animals and microbes genetic information is encoded by DNA, which are

made up of sequences of building blocks, called nucleotide bases. These sequences can be

separated into sections known as genes that each encode specific traits. It was previously thought

that only changes to the sequence of bases in a DNA molecule could alter the traits passed on to

future generations. However, it has recently become clear that some traits can also be inherited

through modifications to the DNA that do not alter its sequence.

One such modification is to attach a tag, known as a methyl group, to a nucleotide base known

as cytosine. These methyl tags can be added to, or removed from, DNA to create different patterns

of methylation. Previous studies have shown that plants whose DNA is less methylated than normal

(‘hypo-methylated’) are more resistant to plant diseases. However, the location and identity of the

hypo-methylated DNA regions controlling this resistance remained unknown. To address this

problem, Furci, Jain et al. studied how DNA methylation in a small weed known as Arabidopsis

thaliana affects how well the plants can resist a disease known as downy mildew.

Furci, Jain et al. studied a population of over 100 A. thaliana lines that have the same DNA

sequences but different patterns of DNA methylation. The experiments identified four DNA

locations that were less methylated in lines with enhanced resistance to downy mildew. Importantly,

this form of resistance did not appear to reduce how well the plants grew, or make them less able to

resist other diseases or environmental stresses.

The results of further experiments suggested that reduced methylation at the four DNA regions

prime the plant’s immune system, enabling a faster and stronger activation of a multitude of

defence genes across the genome after attack by downy mildew.

The next steps following on from this work are to investigate exactly how the four DNA regions

with reduced methylation can prime so many different defence genes in the plant. Further research

is also needed to determine whether it is possible to breed crop plants with lower levels of

methylation at specific DNA locations to improve disease resistance, but without decreasing the

amount and quality of food produced.

DOI: https://doi.org/10.7554/eLife.40655.002
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2012; Latzel et al., 2013). A core set of 123 epiRILs from this population at the eight generation of

self-pollination in the wild-type (Wt) background has been characterized for differentially methylated

region (DMR) markers, enabling linkage mapping of heritable hypomethylated loci controlling root

growth, flowering and abiotic stress tolerance (Liégard et al., 2018; Cortijo et al., 2014;

Kooke et al., 2015).

In this study, we have characterised the core set of 123 lines from the ddm1-2 x Col-0 epiRIL pop-

ulation for resistance against the biotrophic downy mildew pathogen Hyaloperonospora arabidopsi-

dis (Hpa) to search for heritable hypomethylated loci controlling disease resistance. We identified

four of these epigenetic quantitative trait loci (epiQTLs), accounting for 60% of the variation in dis-

ease resistance. None of these epiQTLs were associated with growth impairment, indicating that the

resistance does not incur major physiological costs on plant development. Further phenotypic char-

acterisation and transcriptome analysis of selected Hpa-resistant epiRILs revealed that their resis-

tance is associated with genome-wide priming of defence-related genes. Interestingly, bisulfite

sequencing did not reveal defence regulatory genes inside the epiQTL regions that were simulta-

neously primed and hypomethylated, suggesting that DDM1-dependent DNA methylation at the

epiQTLs trans-regulates the responsiveness of distant defence genes.

Results

Identification of epiQTLs controlling quantitative resistance against
Hpa
To examine the role of DDM1-dependent DNA methylation in heritable disease resistance, 123 epi-

RILs from the ddm1-2 x Col-0 cross were analysed for Hpa resistance and compared to siblings of

the ddm1-2 parent (Figure 1a, red), the Wt parent (Col-0), and five progenies thereof (Figure 1a,

green). Leaves of 3-week-old plants were inoculated with Hpa conidiospores and then collected for

trypan-blue staining at 6 days post-inoculation (dpi). Microscopic classification of leaves into four

classes of Hpa colonisation (Figure 1—figure supplement 1) revealed 51 epiRILs with statistically

enhanced levels of resistance compared to each susceptible Wt line (Pearson’s Chi-squared tests,

p<0.05). Of these, eight epiRILs showed similar levels of Hpa resistance as the ddm1-2 line

(Figure 1a, dark blue triangles; Pearson’s Chi-squared test, p>0.05), whereas 43 epiRILs showed

intermediate levels of resistance. To identify the epiQTL(s) responsible for the observed variation in

Hpa resistance, the categorical classification of Hpa infection was converted into a single value

numerical resistance index (RI; Figure 1a, bottom graph). Using a linkage map of stably inherited

DMR markers (Colomé-Tatché et al., 2012) (Supplementary file 1 dataset S1), interval mapping

revealed four statistically significant epiQTLs on chromosomes I, II, IV and V (Figure 1b). The epiQTL

on chromosome II had the highest logarithm of odds (LOD) value. For all epiQTLs, the DMR markers

with the highest LOD scores (‘peak markers’) showed a positive correlation between ddm1-2 haplo-

type and RI (Figure 1c), indicating that the hypomethylated haplotype from ddm1-2 increases resis-

tance against Hpa. A linear regression model to calculate the percentage of RI variance explained by

each peak marker (R (2)(g)) (Cortijo et al., 2014) confirmed that the DMR peak marker of the epiQTL

on chromosome II had the strongest contribution to RI variation. Using an additive model, the com-

bined contribution of all epiQTL peak markers to RI variation (R2(G)) (Cortijo et al., 2014) was esti-

mated at 60.0% (Figure 1d).

DNA methylation maintains genome stability by preventing transposition of TEs. In the Col-0 x

ddm1-2 epiRIL population, reduced methylation at the ddm1-2 haplotype occurs predominantly at

long transposons in heterochromatic pericentromeric regions (Zemach et al., 2013; Colomé-

Tatché et al., 2012). Frequent transposition events in the epiRILs are nevertheless rare as most DNA

hypomethylation occurs at relic transposons that have lost the ability to transpose, and the occur-

rence of independent transposition events at similar loci is extremely unlikely (Colomé-Tatché et al.,

2012; Matzke and Mosher, 2014). However, it is possible that transposition events originating from

the heavily hypomethylated ddm1-2 parent were crossed into the population, resulting into shared

transposition events (STEs) between multiple epiRILs, which could have contributed to variation in

resistance. To account for this possibility, we compared the genomic DNA sequences of the four

epiQTL intervals from 122 epiRILs (LOD drop-off = 2) for the presence of STEs in more than two epi-

RILs, using TE-tracker software (Gilly et al., 2014). This analysis revealed three STEs in the epiQTL
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Figure 1. Mapping of epigenetic quantitative trait loci (epiQTL) controlling transgenerational resistance against Hyaloperonosopra arabidopsidis (Hpa).

(a) Levels of Hpa resistance in 123 epiRIL lines, the ddm1-2 line (F4; red triangle) and six Wt lines (Col-0; green triangles). Top graph shows distribution

of infection classes in each epiRIL; blue triangles pinpoint the eight most resistant epiRILs with statistically similar levels of Hpa colonisation as the

ddm1-2 line (Pearson’s Chi-squared test, p>0.05). Bottom graph shows variation in Hpa resistance index (RI). Green bars: Wt lines; red bar: ddm1-2;

blue bars eight most resistant epiRILs (n > 100). (b) Linkage analysis of RI (blue line) and green leaf area (GLA) of three-week-old seedlings (green).

Green bars at the bottom represent chromosomes. Red line represents the threshold of significance. Peak DMR markers with the highest LOD scores

are shown on top. (c) Correlation plots between peak marker haplotype (methylated Wt versus hypomethylated ddm1-2) and RI (blue) or GLA (green).

(d) Percentages of resistance variance explained by the peak DMR markers, including covariance between markers (orange).

DOI: https://doi.org/10.7554/eLife.40655.003

The following source data and figure supplements are available for figure 1:

Source data 1.

DOI: https://doi.org/10.7554/eLife.40655.013

Figure supplement 1. Representative examples of infection classes used for quantification of Hpa resistance.

Figure 1 continued on next page
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interval on chromosome I (Supplementary file 1 dataset S2), while no STEs could be detected in the

other epiQTL intervals. None of the STEs in the epiQTL on chromosome I showed statistically signifi-

cant linkage with RI (Supplementary file 1 dataset S2). Accordingly, we conclude that the segregat-

ing Hpa resistance in the epiRIL population is caused by epigenetic variation in DNA methylation,

rather than genetic variation by STEs.

Effects of the resistance epiQTLs on plant growth and resistance
against other (a) biotic stresses
Expression of inducible defence mechanisms is often associated with physiological costs, resulting in

reduced plant growth (Huot et al., 2014). To determine whether the resistance that is controlled by

the four epiQTLs is associated with costs to plant growth, we quantified the green leaf area (GLA) of

12–15 individual plants per line at the stage of Hpa inoculation (Figure 1—figure supplement 2).

Subsequent interval mapping revealed one statistically significant epiQTL on chromosome I

(Figure 1b). The corresponding peak marker (MM150) showed a negative correlation between GLA

and ddm1-2 haplotype (Figure 1c), indicating that the hypomethylated ddm1-2 allele at this locus

represses plant growth. The growth epiQTL mapped to a different region than the resistance

epiQTL on chromosome I (Figure 1b, inset). Furthermore, none of the eight most resistant epiRILs

showed significant growth reduction compared to all Wt lines in the screen (Figure 1—figure sup-

plement 2). Hence, the resistance provided by the four hypomethylated epiQTLs is not associated

with major physiological costs to plant growth.

Enhanced defence to one stress can lead to enhanced susceptibility to another stress, which is

caused by antagonistic cross-talk between defence signalling pathways (Koornneef and Pieterse,

2008). To examine whether Hpa resistance in the epiRIL population is associated with increased sus-

ceptibility to other stresses, we compared the eight most Hpa-resistant epiRILs (Figure 1a; Fig-

ure 1—figure supplement 3a) for resistance against the necrotrophic fungus Plectosphaerella

cucumerina (Pc) and tolerance to salt (NaCl). At 9 dpi with Pc spores, epiRIL#193 showed a statisti-

cally significant reduction in necrotic lesion size compared to the Wt (line #602), indicating enhanced

resistance (Figure 1—figure supplement 3b). The seven other epiRILs showed unaffected levels of

Pc resistance that were similar to the Wt. Salt tolerance was quantified by the percentage of seed-

lings with fully developed cotyledons at 6 days after germination on agar medium with increasing

NaCl concentrations. Remarkably, all Hpa-resistant epiRILs showed varying degrees of tolerance to

the highest NaCl concentration compared to Wt plants (Figure 1—figure supplement 3c). Thus, the

quantitative resistance to Hpa in the epiRIL population does not compromise resistance against

necrotrophic pathogens or abiotic stress.

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.40655.004

Figure supplement 2. Average green leaf area (GLA) of the 123 epiRILs (light green), the ddm1-2 line (F4; red) and six Wt lines (Col-0; dark green).

DOI: https://doi.org/10.7554/eLife.40655.005

Figure supplement 2—source data 1.

DOI: https://doi.org/10.7554/eLife.40655.006

Figure supplement 3. Resistance phenotypes of the eight most Hpa-resistant epiRILs against different (a) biotic stresses.

DOI: https://doi.org/10.7554/eLife.40655.007

Figure supplement 3—source data 1.

DOI: https://doi.org/10.7554/eLife.40655.008

Figure supplement 4. Defence marker phenotypes of the eight most Hpa-resistant lines.

DOI: https://doi.org/10.7554/eLife.40655.009

Figure supplement 4—source data 1.

DOI: https://doi.org/10.7554/eLife.40655.010

Figure supplement 5. Transgenerational stability of Hpa resistance in Hpa-resistant epiRILs.

DOI: https://doi.org/10.7554/eLife.40655.011

Figure supplement 5—source data 1.

DOI: https://doi.org/10.7554/eLife.40655.012
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Hpa-resistant epiRILs are primed to activate different defence
mechanisms
Basal resistance against Hpa involves a combination of salicylic acid (SA)-dependent and SA-inde-

pendent defence mechanisms (Knoth et al., 2007; Coates and Beynon, 2010). To examine the role

of SA-dependent defences, we profiled the expression of the SA-inducible marker gene PR1 at 48

and 72 hr post-inoculation (hpi), which represents a critical time-window for host defence against

Hpa (Koch and Slusarenko, 1990; Soylu and Soylu, 2003). None of the epiRILs showed a statisti-

cally significant increase in basal PR1 expression after mock inoculation (Figure 2a; Figure 1—figure

supplement 4a), indicating that the resistance is not based on constitutive up-regulation of SA-

dependent defence signalling. However, in comparison to the Wt line, epiRILs #71, #148, #193,

#229 and #508 showed augmented induction of PR1 at 48 and/or 72 hpi with Hpa (Figure 2a; Fig-

ure 1—figure supplement 4a), indicating priming of SA-inducible defences (Martinez-

Medina et al., 2016). To assess the role of cell wall defence, all lines were analysed for effectiveness

of callose deposition, which is a pathogen-inducible defence mechanism that is largely controlled by

SA-independent signalling (Luna et al., 2011). Compared to the Wt line, all but one epiRIL (#193)

showed a statistically significant increase in the proportion of callose-arrested germ tubes

(Figure 2a; Figure 1—figure supplement 4b). Hence, the eight most Hpa-resistant epiRILs are

primed to activate differentially regulated defence responses, which explains the lack of major costs

on growth and compatibility with other types of (a)biotic stress resistance in the epiRILs (Figures 1b

and 2a; Figure 1—figure supplements 2–4).

Transgenerational stability of the resistance
The 123 epiRILs analysed for Hpa resistance had been self-pollinated for eight generations in a Wt

(Col-0) genetic background since the F1 x Col-0 backcross (F9) (Johannes et al., 2009). To examine

the transgenerational stability of the resistance phenotype over one more generation, five individuals

from the eight most resistant epiRILs and the Wt line (Figure 1a, Figure 1—figure supplement 3a)

were selected to generate F10 families, which were then tested for Hpa resistance. Comparing distri-

butions of pooled leaves from all five families per line confirmed that each epiRIL maintained a statis-

tically enhanced level of resistance (Figure 1—figure supplement 5; Pearson’s Chi-squared test,

p<0.05; top asterisks). However, when comparing individual F10 families to the Wt, 2 of the 40 F10

families (line #71–2 and line #148–2) exhibited Wt levels of susceptibility, indicating that they had

lost Hpa resistance from the F9 to the F10 generation. Furthermore, four of the eight epiRILs tested

(#71, #148, #545, and #508) displayed statistically significant variation in Hpa resistance between the

5 F10 families within the epiRIL (Figure 1—figure supplement 5; Pearson’s Chi-squared test,

p<0.05; † symbols), suggesting instability of the Hpa resistance.

Hpa-resistant epiRILs show genome-wide priming of defence-related
genes
To study the transcriptomic basis of the transgenerational resistance, Wt plants (line #602) and 4

Hpa-resistant epiRILs (#148, #193, #454 and #508), each carrying different combinations of the four

epiQTLs, were analysed by RNA sequencing at 48 and 72 hpi (Figure 2a, bottom panel). Principal

component analysis (PCA) of biologically replicated samples (n = 3) revealed clear separation

between all treatment/time-point/epi-genotype combinations (Figure 2b). The first PCA axis

explained 31% of the variation in transcript abundance, separating samples from mock- and Hpa-

treated plants, whereas the second PCA axis explained 20% of the variation, mostly separating sam-

ples from the different lines (Figure 2b). This PCA pattern indicates that the response to Hpa infec-

tion had a bigger effect on global gene expression than epi-genotype. Moreover, samples from

Hpa-inoculated epiRILs showed relatively little difference between both time-points (Figure 2b),

whereas samples from Hpa-inoculated Wt plants at 48 hpi clustered between samples from mock-

inoculated Wt plants and samples from Hpa-inoculated Wt plants at 72 hpi. This pattern suggests a

difference in the speed and/or intensity of the transcriptional response to Hpa. To explore this possi-

bility further, we performed three-factorial likelihood ratio tests (q < 0.05) to select differentially

expressed genes between all epigenotype/treatment/time-point combinations. This analysis identi-

fied 20,569 genes, representing 61% of all annotated RNA-producing genes in the Arabidopsis

genome, including transposable elements, non-coding RNA genes and pseudogenes
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Figure 2. The defence-related transcriptome of Hpa-resistant epiRILs. (a) Defence marker phenotypes and epiQTL haplotypes of 4 Hpa-resistant

epiRILs and the Wt (#602), which were analysed by RNA sequencing. Top graph: relative expression of SA-dependent PR1 at 72 hr after inoculation (hpi)

with Hpa (red) or water (blue). Middle graph: resistance efficiency of callose deposition in Hpa-inoculated plants. Shown are percentages of arrested

(light) and non-arrested (dark) germ tubes at 48 hpi. Bottom panel: epiQTL haplotypes of selected lines. Green: methylated Wt haplotype; yellow:

Figure 2 continued on next page
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(Supplementary file 1 dataset S3). Of these, 9364 genes were induced by Hpa at 48 and/or 72 hpi

in one or more lines (Supplementary file 1 dataset S4). Subsequent hierarchical clustering of this

gene selection revealed a large cluster of Hpa-inducible transcripts displaying augmented induction

in the epiRILs at the relatively early time-point of 48 hr after Hpa inoculation (Figure 2—figure sup-

plement 1).

To characterize further the pathogen-inducible transcriptome of the resistant epiRILs, we selected

Hpa-inducible genes showing elevated levels of expression in the epiRILs during Hpa infection.

Within this gene selection, we distinguished two expression profiles. The first group of genes had

been selected for constitutively enhanced expression in the resistant epiRILs, using the following cri-

teria (Wald tests, q < 0.05): (i) Hpa-inducible in the Wt, (ii) not inducible by Hpa in the epiRIL and (iii)

displaying enhanced accumulation in mock-treated epiRIL that is equal or higher than accumulation

in the Hpa-inoculated Wt (‘Group 1’; Figure 2—figure supplement 2a). The second group of genes

had been selected for enhanced Hpa-induced expression in the epiRILs, using the following criteria

(Wald tests, q < 0.05): (i) Hpa-inducible in the Wt (#602), (ii) Hpa-inducible in the epiRIL(s) and (iii)

displaying statistically increased accumulation in Hpa-inoculated epiRILs compared to Hpa-inocu-

lated Wt plants (‘Group 2’; Figure 2—figure supplement 2a). For each epiRIL, we identified more

genes in Group 2 than in Group 1 (Figure 2c; Figure 2—figure supplements 2b, 3 and

4; Supplementary file 1 datasets S5 and S6). This difference was most pronounced at 48 hpi, which

represents a critical time-point for host defence against Hpa (Koch and Slusarenko, 1990;

Soylu and Soylu, 2003). Analysis of a statistical interaction between epi-genotype x Hpa treatment

revealed that >92% of all genes in Group 2 are significant for this interaction term

(Supplementary file 1 dataset S7), indicating a constitutively primed expression pattern. Visualisa-

tion of the expression profiles in heatmaps confirmed this notion, showing that the induction of

Group 2 genes by Hpa is strongly augmented in the resistant epiRILs compared to the Wt line

(Figure 2c; Figure 2—figure supplement 4), which is consistent with the definition of plant defence

priming (Martinez-Medina et al., 2016).

To examine the functional contributions of the Hpa-inducible genes in Groups 1 and 2, we

employed gene ontology (GO) term enrichment analysis. After exclusion of redundant GO terms

(Jantzen et al., 2011), we identified 469 GO terms, for which one or more of the sets showed statis-

tically significant enrichment. Group 2 genes at 48 hpi displayed dramatically enhanced GO term

Figure 2 continued

hypomethylated ddm1-2 haplotype. Asterisks indicate statistically significant differences to the Wt. (see Figure 1—figure supplement 4 for statistical

information). (b) Principal component analysis of 27,641 genes at 48 (small symbols) and 72 (large symbols) hpi with Hpa (triangles) or water (Mock;

circles). Colours indicate different lines. (c) Numbers and expression profiles of Hpa-inducible genes that show constitutively enhanced expression

(Group 1) or augmented levels of Hpa-induced expression (Group 2) in the Hpa-resistant epiRILs at 48 or 72 hpi. Heatmaps show normalised standard

deviations from the mean (z-scores) for each gene (rows), using rlog-transformed read counts (see Figure 2—figure supplements 3 and 4 for better

detail) (d) GO term enrichment of primed and constitutively up-regulated genes. Shown are 469 GO terms (rows), for which one or more epiRIL(s)

displayed a statistically significant enrichment in one or more categories (Hypergeometric test, followed by Benjamini-Hochberg FDR correction;

q < 0.05). Heatmap-projected values for each GO term (rows) represent percentage of GO-annotated genes in each category relative to all GO-

annotated genes in the Arabidopsis genome (TAIR10). Black bar on the top right indicates 111 defence-related GO terms.

DOI: https://doi.org/10.7554/eLife.40655.014

The following source data and figure supplements are available for figure 2:

Source data 1.

DOI: https://doi.org/10.7554/eLife.40655.019

Figure supplement 1. Hierarchical clustering of differentially expressed genes (DEGs) in selected Hpa-resistant epiRILs and the Wt at 48 and 72 hpi

(Ward method).

DOI: https://doi.org/10.7554/eLife.40655.015

Figure supplement 2. Selection of Hpa-inducible genes that show constitutively enhanced expression (Group 1) or enhanced Hpa-induced expression

in the resistant epiRILs (Group 2).

DOI: https://doi.org/10.7554/eLife.40655.016

Figure supplement 3. Transcript profiles of Hpa-inducible genes showing constitutively enhanced expression in the Hpa-resistant epiRILs (Group 1).

DOI: https://doi.org/10.7554/eLife.40655.017

Figure supplement 4. Transcript profiles of Hpa-inducible genes showing enhanced levels of Hpa-induced expression in the Hpa-resistant epiRILs

(Group 2).

DOI: https://doi.org/10.7554/eLife.40655.018
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enrichment compared to all other sets, which was obvious for all epiRILs (Figure 2d). This enrich-

ment was particularly pronounced for 111 GO terms relating to SA-dependent and SA-independent

defence mechanisms (Supplementary file 1 dataset S8), which supports our phenotypic characteri-

sation of SA-dependent and SA-independent defence markers (Figure 1—figure supplement 4).

Collectively, these results suggest that the quantitative resistance of the epiRILs is based on priming

of Hpa-inducible defence genes.

Interestingly, compared to the other gene selections, a relatively large proportion of defence-

related genes in Group 2 at 48 hpi was shared between all four epiRILs (Figure 2—figure supple-

ment 2b), pointing to relatively high similarity in the augmented immune response of the epiRILs.

Furthermore, only 5% of the genes in the Group 1% and 6.5% of the genes in Group 2 are physically

located within the borders of the epiQTL intervals (LOD drop-off = 2). The frequency of Group 1

and 2 genes relative to all other genes was significantly lower for the epiQTL regions compared to

the entire Arabidopsis genome (14.6%; Pearson’s Chi-squared test, p<0.05). Thus, the majority of

Hpa-inducible Group 1 and 2 genes showing enhanced expression in the more resistant epiRILs are

(trans-)regulated by DNA methylation at the four epiQTLs.

The resistance epiQTLs do not contain defence genes that are cis-
regulated by DNA methylation, suggesting involvement of trans-
regulatory mechanisms
Although 92% of all genes in Group 2 were located outside the physical borders of the four epiQTL

intervals (LOD-drop-off=2), we hypothesized that a small set of defence regulatory genes inside the

epiQTL regions are directly (cis-)regulated by DNA methylation to mediate augmented levels of

defence in response to Hpa infection. Since the Group 2 genes were strongly enriched with defence-

related GO terms (Figure 2d), we examined whether their augmented expression during Hpa infec-

tion is associated with the hypomethylated ddm1-2 haplotype. To this end, we calculated for each

gene in Group 2 the ratio of normalized transcript abundance between Hpa-inoculated epiRIL and

the Hpa-inoculated Wt line, which is proportional to their level of augmented expression during Hpa

infection. Hierarchical clustering of these ratios enabled us to select for genes that exclusively show

augmented expression when associated with the hypomethylated ddm1-2 haplotype of the corre-

sponding epiQTL (Figure 3a; Figure 3—figure supplement 1a). The expression ratios of 279

epiQTL-localised genes did not correlate with the ddm1-2 haplotype (Figure 3a, cluster II; Fig-

ure 3—figure supplement 1a; Supplementary file 1 dataset S9), indicating that DNA methylation

does not cis-regulate their augmented Hpa-inducible expression. By contrast, 73 epiQTL-localised

genes only showed augmented expression when associated with the hypomethylated ddm1-2 haplo-

type (Figure 3a, cluster I; Figure 3—figure supplement 1a; Supplementary file 1 dataset S10). To

confirm the hypomethylated status of these genes, we performed comprehensive bisulfite sequenc-

ing analysis of DNA methylation for the four epiRILs and the Wt line. DMR analysis of the gene body

(GB), 2 kb promoter region (P) and 1 kb downstream (D) regions confirmed that the levels of aug-

mented gene expression of the 279 genes in cluster II do not correlate positively with the extent of

DNA hypomethylation (Figure 3b, Figure 3—figure supplement 1b). This notion was confirmed by

linear regression analysis between the augmented expression ratio (48 hpi) and the average level of

DNA hypomethylation (Figure 3—figure supplement 2), indicating that the 279 genes in cluster II

are regulated indirectly (in trans) by DNA methylation. By contrast, the 73 epiQTL-based genes in

cluster I showed a positive correlation between augmented expression ratio (48 hpi) and DNA hypo-

methylation, which was statistically significant for each epiQTL (p<0.05; Figure 3—figure supple-

ment 2). These results indicate that the 73 genes in cluster I are regulated locally (in cis) by DNA

methylation.

Nearly all cis-regulated genes in cluster I showed a TE-like pattern of DNA methylation in the Wt

(teM; methylation at CG, CHG and CHH contexts), whereas most cluster II genes showed either no

methylation or a pattern of gene-body methylation in the Wt (gbM; methylation at CG only;

Figure 3b and Figure 3—figure supplement 1b). Furthermore, dividing hypomethylation at gene

bodies of Group 2 genes by type of DNA methylation (i.e. either teM or gbM) and plotting these val-

ues against augmented expression ratio revealed a statistically significant correlation between

expression ratio and reduced teM (p=1,06e�8; Figure 3—figure supplement 3), whereas no such

correlation was found for reduced gbM (p=0.66; Figure 3—figure supplement 3). These results
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Figure 3. Relationship between augmentation of pathogen-induced expression and DNA methylation for epiQTL-localised genes. (a) Expression

profiles of epiQTL-based genes showing elevated levels of Hpa-induced expression in one or more epiRIL(s) (Group 2). Shown are genes located in the

epiQTL interval of chromosome II (epiQTL2; LOD drop-off = 2; see Figure 3—figure supplement 1a for other the epiQTLs). Heatmap shows gene

expression ratios between Hpa-inoculated epiRILs and the Wt, representing augmented expression levels during pathogen attack. Hierarchical

clustering yielded two distinctly regulated gene clusters (I and II). Coloured bars on the top indicate epiQTL2 haplotypes. Green: methylated Wt

haplotype. Yellow: hypomethylated ddm1-2 haplotype. (b) Levels of CG DNA methylation of the same genes in the epiQTL2 interval (see Figure 3—

figure supplement 1b for other epiQTLs). Heatmap shows percentages of hypomethylation (blue) or hyper-methylation (brown) relative to the Wt for 2

kb promoter regions (P), gene bodies (GB) and 1 kb downstream regions (D). (c) Distribution of gene annotations of distinctly regulated gene clusters

for each epiQTL.

DOI: https://doi.org/10.7554/eLife.40655.020

The following source data and figure supplements are available for figure 3:

Source data 1.

DOI: https://doi.org/10.7554/eLife.40655.026

Figure supplement 1. Relationship between augmentation of pathogen-induced expression and DNA methylation for epiQTL-localised genes.

DOI: https://doi.org/10.7554/eLife.40655.021

Figure supplement 2. Correlation analysis between augmented gene transcription and DNA hypomethylation.

DOI: https://doi.org/10.7554/eLife.40655.022

Figure supplement 3. Correlation analysis between augmented gene transcription and type of DNA hypomethylation.

DOI: https://doi.org/10.7554/eLife.40655.023

Figure supplement 4. Genomic contexts of six plant protein-encoding genes in the epiQTL intervals, whose transcriptional priming coincides with

reduced DNA methylation.

DOI: https://doi.org/10.7554/eLife.40655.024

Figure supplement 5. Genome-wide chromatin interactions in Wt and ddm1-2 Arabidopsis.

DOI: https://doi.org/10.7554/eLife.40655.025

Furci et al. eLife 2019;8:e40655. DOI: https://doi.org/10.7554/eLife.40655 10 of 23

Research article Plant Biology

https://doi.org/10.7554/eLife.40655.020
https://doi.org/10.7554/eLife.40655.026
https://doi.org/10.7554/eLife.40655.021
https://doi.org/10.7554/eLife.40655.022
https://doi.org/10.7554/eLife.40655.023
https://doi.org/10.7554/eLife.40655.024
https://doi.org/10.7554/eLife.40655.025
https://doi.org/10.7554/eLife.40655


support the growing notion that reduced teM increases gene expression, whereas changes in gbM

have no direct influence on gene expression (Bewick et al., 2017).

The majority of in cis-regulated genes in cluster I genes were annotated as TEs, such as DNA

transposons of the CACTA family, retrotransposons of the GYPSY or COPIA families, or TE-related

genes, encoding transposases or enzymes necessary for TE function (Supplementary file 1 dataset

S10). Only six genes were annotated as protein-coding genes, of which two shared homology to

known protein-encoding genes (At2G07240, cysteine-type peptidase; At2G07750, RNA helicase).

However, none of these two genes has previously been associated with plant defence. Furthermore,

analysis of the genomic context of the six protein-coding genes revealed the presence of overlap-

ping and/or nearby TEs (Figure 3—figure supplement 4), suggesting that their correlation between

augmented expression and DNA hypomethylation is determined by association with TEs. Since TE-

encoded proteins have no antimicrobial activity or direct defence regulatory function, our results

suggest that global defence gene priming by hypomethylated epiQTLs is not based on cis-regula-

tion of defence regulatory genes, but rather on alternative trans-acting mechanisms by DNA methyl-

ation of the TE-rich epiQTL.

Discussion
By screening the Col-0 x ddm1-2 epiRIL population for leaf colonisation by the downy mildew patho-

gen Hpa, we have identified four epiQTLs that provide quantitative disease resistance (Figure 1b).

The combined contribution of all 4 DMR peak markers was estimated at 60% of the total variation

(Figure 1d), which is higher than previously reported variation in developmental plant traits for this

population (Latzel et al., 2013; Cortijo et al., 2014; Kooke et al., 2015). It was previously shown

that half of all stably inherited DMRs in the Col-0 x ddm1-2 epiRILs also occur in natural Arabidopsis

accessions (Latzel et al., 2013; Schmitz et al., 2013). Considering that the epiRIL population

includes heritable variation in a range of ecologically important plant traits, including flowering, root

growth, nutrient plasticity and (a)biotic stress resistance (Latzel et al., 2013; Cortijo et al., 2014;

Kooke et al., 2015), it is tempting to speculate that variation in DDM1-dependent DNA methylation

contributes to natural variation and environmental adaptation of Arabidopsis. Indeed, the pheno-

typic diversity in the Col-0 x ddm1-2 epiRIL population closely resembles that of natural Arabidopsis

accessions (Roux et al., 2011; Mauch-Mani et al., 2017). Furthermore, independent studies have

shown that high levels of enduring (a)biotic stress can trigger transgenerational acquired resistance

(TAR) in Arabidopsis (Luna et al., 2012; Wibowo et al., 2016; Rasmann et al., 2012). Interestingly,

repeated inoculation of 2- to 5 weeks old Arabidopsis seedlings with the hemi-biotrophic leaf patho-

gen Pseudomonas syringae pv. tomato causes TAR, which is associated with reduced transcription

of DDM1 gene in local leaves that is maintained in the apical meristem of paternal plants (Furci and

Ton, unpublished results). To what extent this this prolonged repression in DDM1 gene transcription

causes heritable reduction in DNA methylation at the epiQTLs requires further study.

Aller et al. (2018) have recently used the same Col-0 x ddm1-2 epiRIL population to map the

contribution of heritable variation in DNA methylation to the production of defence-related glucosi-

nolate metabolites (Aller et al., 2018). Interestingly, the resistance epiQTL on chromosome I from

our study partially overlaps with an epiQTL that influences basal production of the aliphatic glucosi-

nolate 3-methylthiopropyl (3MTP) (Aller et al., 2018). Glucosinolates contribute to defence against

both herbivores and microbes (Ishida et al., 2014). Moreover, myrosinase-dependent breakdown

products of indole-derived 4-methoxy-indol-3-ylmethylglucosinolate have been linked to the regula-

tion of callose-mediated cell wall defence in Arabidopsis (Clay et al., 2009; Bednarek et al., 2009).

However, the 3MTP-controlling epiQTL identified by Aller et al. (2018) was relatively weak com-

pared to the epiQTL controlling Hpa resistance (Figure 1b), indicating that its contribution to Hpa

resistance would at most be marginal. Furthermore, our transcriptome analysis revealed that the

largest variation in gene expression between epiRILs and the Wt line comes from the transcriptional

response to Hpa, rather than differences in basal gene expression (Figure 2b–c). Moreover, the

genes in Group 2, which displayed enhanced Hpa-induced expression in the resistant epiRILs at the

critical early time-point of 48 hpi, were strongly enriched with defence-related GO terms

(Figure 2d). The majority of these Group 2 genes showed a statistically significant interaction

between epi-genotype and Hpa treatment (Supplementary file 1 dataset S7), indicating that these

epiRILs were primed to activate defence-related genes. This notion was supported by the actual
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expression profiles of Group 2 genes (Figure 2c; Figure 2—figure supplement 4), as well as the

defence phenotypes of the eight most resistant epiRILs in the population (Figure 2a; Figure 1—fig-

ure supplement 4). Furthermore, our epiRIL screen for growth phenotypes demonstrated that the

resistance-controlling epiQTLs do not have a major impacts on plant growth (Figure 1b), which is

consistent with previous findings that defence priming is a low-cost defence strategy (van Hulten

et al., 2006). While we cannot exclude other mechanisms, these independent lines of evidence col-

lectively indicate that genome-wide priming of defence genes is the most plausible mechanism by

which the epiQTLs mediate quantitative disease resistance in the population.

Over recent years, various studies have established a link between DNA hypomethylation and

plant immune priming (Espinas et al., 2016; Conrath et al., 2015; López Sánchez et al., 2016).

However, causal evidence that heritable regions of reduced DNA methylation mediate transgenera-

tional disease resistance is lacking. Our study has shown that heritable regions of hypomethylated

DNA are sufficient to mediate resistance in a genetic Wt background. Furthermore, our study is the

first to link phenotypic and epigenetic variation of selected epiRILs to profiles of global gene expres-

sion, revealing that epigenetically controlled resistance is associated with genome-wide priming of

defence-related genes (Figure 2b–d; Figure 2—figure supplement 1; Figure 2—figure supple-

ment 4). The majority of these pathogenesis-related genes showed augmented induction at 48 hpi

(Figure 2c), which represents a critical early time-point in the interaction between Arabidopsis and

Hpa, during which hyphae from germinating spores start to penetrate the epidermal cell layer and

invade the mesophyll (Koch and Slusarenko, 1990; Soylu and Soylu, 2003). Notably, this set of

primed genes was substantially more enriched in SA-dependent and SA-independent defence GO

terms than the set of Hpa-inducible genes that were constitutively up-regulated in Hpa-resistant epi-

RILs (Figure 2d), corroborating the analysis of phenotypical defence markers (Figure 2a; Figure 1—

figure supplement 4).

DNA methylation of TEs has been reported to cis-regulate expression of nearby genes in Arabi-

dopsis (Soppe et al., 2000; Saze and Kakutani, 2007; Kinoshita et al., 2007; Lei et al., 2015;

Williams et al., 2015). By contrast, our study did not find evidence that DNA methylation in the

epiQTLs cis-regulates the responsiveness of nearby of defence genes. Firstly, the majority of primed

defence genes in the Hpa-resistant epiRILs were located outside the epiQTL intervals (92%). Sec-

ondly, of all primed genes within the epiQTLs, only 73 showed augmented induction that coincided

with DNA hypomethylation (Figure 3a; Figure 3—figure supplement 1; Figure 3—figure supple-

ment 2; Supplementary file 1 dataset S10). Of these, 67 encoded TEs or TE-related genes, while

the six protein-encoding genes were closely associated with one or more TEs and did not have func-

tions related plant defence (Figure 3a; Figure 3—figure supplement 1; Supplementary file 1 data-

set S10). Since TEs do not encode defence signalling proteins, we propose that DNA

hypomethylation at the TE-rich epiQTLs mediates augmented induction of defence genes across the

genome via trans-acting mechanisms. A recent transcriptome study of Hpa-infected Arabidopsis

identified 166 defence-related genes that were primed in the hypomethylated nrpe1-11 mutant and/

or repressed in hyper-methylated ros1-4 mutant (López Sánchez et al., 2016). The majority of these

defence genes were not targeted by NRPE1- and/or ROS1-dependent DNA (de)methylation, indicat-

ing that their responsiveness is trans-regulated by DNA methylation. Although NRPE1 and ROS1 tar-

get partially different genomic loci than DDM120, this study supports our hypothesis that DNA

methylation controls global defence gene responsiveness via trans-acting mechanisms.

There are various mechanisms by which DNA methylation could trans-regulate defence gene

expression. It is possible that transcribed TEs in the hypomethylated epiQTLs generate 21-22nt or

24nt small RNAs (sRNAs) that influence distant heterochromatin formation through via RDR6- and

DCL3-dependent RdDM pathways (Panda et al., 2016). Support for trans-regulation by sRNAs came

from a recent study, which reported that induction and subsequent re-silencing of pericentromeric

TEs in Arabidopsis upon Pseudomonas syringae infection is accompanied with accumulation of

RdDM-related sRNAs that are complementary to TEs and distal defence genes. Interestingly, while

the accumulation of these sRNAs coincided with re-silencing of the complementary TEs, the comple-

mentary defence genes remained expressed in the infected tissues (Cambiagno et al., 2018). These

findings are supported by another recent study, which demonstrated that AGO1-associated small

RNAs can trans-activate distant defence gene expression through interaction with the SWI/SNF chro-

matin remodelling complex (Liu et al., 2018). Apart from sRNAs, it is also possible that long inter-

genic noncoding RNAs (lincRNAs) from the hypomethylated epiQTLs regulate pathogen-induced
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expression of distant defence genes. A recent study revealed that pericentromeric TEs of Arabidop-

sis can produce DDM1-dependent lincRNAs that are increased by abiotic stress exposure

(Wang et al., 2017a). Since lincRNAs can promote euchromatin and heterochromatin formation at

distant genomic loci (Heo et al., 2013; Quinodoz and Guttman, 2014), hypomethylated TEs within

the epiQTLs could generate priming-inducing lincRNAs. While knowledge about lincRNAs in plants

remains limited, like sRNAs, their activity depends on sequence complementary with target loci

(Vance and Ponting, 2014). Unlike non-coding RNAs, long-range chromatin interactions can trans-

regulate gene expression independently of sequence complementarity (Harmston and Lenhard,

2013; Liu, 2016; Weber et al., 2016; Wang et al., 2017b). Previous high-throughput chromosome

conformation capture (Hi-C) analysis revealed that the ddm1-2 mutation has a profound impact on

long-range chromatin interactions within and beyond the pericentromeric regions (Feng et al.,

2014). Projection of these DDM1-dependent interactions onto the Arabidopsis genome shows

extensive coverage of the resistance epiQTLs identified in this study (Figure 3—figure supplement

5). Whether these long-range interactions contribute to trans-regulation of defence gene priming

would require further study, including a fully replicated Hi-C analysis of the resistant epiRILs charac-

terised in this study.

In conclusion, our study has shown that heritable DNA hypomethylation at selected pericentro-

meric regions controls quantitative disease resistance in Arabidopsis, which is associated with

genome-wide priming of defence-related genes. This transgenerational resistance is not associated

with reductions in plant growth (Figure 1b), nor does it negatively affect resistance to other types of

(a)biotic stresses tested in this study (Figure 1—figure supplement 3). However, whether this form

of epigenetically controlled resistance can be exploited in crops depends on a variety of factors,

including the stability of the disease resistance and potential non-target effects. For instance, our

experiments with Arabidopsis revealed that the resistance has limited stability and can erode over

one more generation in some epiRILs (Figure 1—figure supplement 5). Furthermore, the genomes

of most crop species contain substantially higher numbers of TEs, rendering predictions about the

applicability and potentially undesirable side effects on growth and seed production uncertain.

Future research will have to point out whether introgression of hypomethylated pericentromeric loci

into the background of elite crop varieties allows for selection of meta-stable quantitative disease

resistance without side-effects on agronomically important traits.

Materials and methods

Plant material and growth conditions
Epigenetic recombinant inbred lines (epiRILs) seeds of Arabidopsis (Arabidopsis thaliana, accession

Col-0) were purchased from Versailles Arabidopsis Stock Centre, INRA, France (http://publiclines.

versailles.inra.fr/epirils/index). The epiRIL screen included siblings of the F4 ddm1-2 parental plant of

the epiRIL population (IBENS, France). Arabidopsis seeds were stratified in water at 4˚C in the dark

for 3-5 days. For pathogen bioassays, seeds were sown in a sand:compost mixture (1:3) and grown

at short-day conditions for 3 weeks (8.5 hr light/15.5 hr dark, 21˚C, 80% relative humidity,~125 mmol

s�1 m�1 light intensity). To test transgenerational inheritance and stability of Hpa resistance in the

eight most resistant epiRILs (Figure 1—figure supplement 5), five individual F9 plants were culti-

vated for 4 weeks at short-day conditions and then moved to long-day conditions to initiate flower-

ing (16 hr light/8 hr dark, 21˚C, 80% relative humidity,~125 mmol s�1 m�1 light intensity). Seeds of

the 40 F10 families were collected for analysis of Hpa resistance (see below).

Screen for variation in disease resistance and seedling growth
Three-week-old seedlings were spray-inoculated with a suspension of asexual conidia from Hyaloper-

onospora arabidopsidis strain WACO9 (Hpa) at a density of 105 spores/ml. Hpa colonizsation was

quantified at 6 days post-inoculation (dpi) by microscopic scoring of leaves, as described previously

(López Sánchez et al., 2016). Briefly, trypan blue-stained leaves were analysed with a stereomicro-

scope (LAB-30, Optika Microscopes) and assigned to 4 Hpa colonisation classes: class I, no hyphal

colonisation; class II, �50% leaf area colonized by pathogen hyphae without formation of conidio-

phores; class III,�75% leaf area colonized by hyphae, presence of conidiophores; class IV, >75% leaf

area colonized by the pathogen, abundant conidiophores and sexual oospores (Figure 1—figure
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supplement 1). At least 100 leaves per (epi)genotype were analysed, not including the cotyledons.

Statistically significant differences in frequency distribution of Hpa colonisation classes between lines

were determined by Pearson’s Chi-squared tests, using R (v.3.5.1). Growth analysis of the epiRIL

population was based on digital photos (Canon 500D, 15MP) of 3-week-old plants, which were taken

on the day of Hpa inoculation. Digital image analysis of total green leaf area (GLA) was performed

using Adobe Photoshop 6.0. Green pixels corresponding to GLA were selected and converted into

mm2 after colour range adjustment, using the magic wand tool.

Mapping of epigenetic quantitative trait loci (epiQTLs)
Mapping of epiQTLs was performed using the ‘scanone’ function of the R/qtl package for R

(Broman et al., 2003) (Haley-Knott regression, step size: 2 cM), combining experimental phenotypi-

cal data with the recombination map of differentially methylated regions (DMR) generated previously

(Colomé-Tatché et al., 2012). For analysis of Hpa resistance, the categorical scoring of Hpa resis-

tance was first converted into a numeric resistance index (RI), using the following formula:

RI ¼ ðfclass I*4Þþ ðfclass II*3Þþ ðfclass III*2Þþ ðfclass IV*1Þ

where f = relative frequency of Hpa colonisation class of each line, multiplied by an arbitrary weight

value ranging from four for the most resistant category (class I) to one for most susceptible category

(class IV). Mapping of epiQTLs controlling plant growth was based on average GLA values of each

line before Hpa infection. A logarithm of odds (LOD) threshold of significance for each trait was

determined on the basis of 1000 permutations for each dataset (a = 0.05). The proportion of pheno-

typic variance R2 (G) explained by the DMR markers with the highest LOD score (peak markers) of all

four epiQTLs was calculated with the following formula (Cortijo et al., 2014):

R2 Gð Þ ¼ 1�
n� 1

n� kþ 1ð Þ

P

n

i

yi � b0 þ
Pk

j bjgij

h i� �2

Pn
i yi � y

�� �2

where n = number of lines analysed, k = number of DMR markers tested; b0 = intercept of the multi-

ple regression model; bj= QTL effect for each QTL j (slopes for each marker in the multiple regres-

sion model); gij = (epi) genotype of the jth marker for each individual i (coded as ‘1’ for ddm1-2

epialleles and ‘-1’ for WT epialleles); yi = phenotypic value of individual i; y
�
= mean of phenotypic

values. The contribution of each individual QTL j (R 2(g))was calculated, using the following formula:

R2 gð Þ ¼ 1�
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n� kþ 1ð Þ
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�
j

� �2
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;

as described by (Cortijo et al., 2014), where n= number of lines analysed, k = number of markers

tested; bj = QTL effect for each QTLj (slopes for each peak marker in the multiple regression model);

gij = (epi)genotype of the jth marker for each individual i (coded as ‘1’ for ddm1-2 epialleles and ‘-1’

for WT epialleles); g
�
j = average of the (epi)genotypes values for the jth marker. Covariance was calcu-

lated by subtracting the sum of the individual contributions of each QTL j on phenotypical variance

(i.e. R2(gQTL1) + R2(gQTL2) + R2(gQTL4) + R2(gQTL5)) from the phenotypical variance explained by the

full model (i.e. R2(G)).

Analysis of shared transposition events
TE-tracker software was used to interrogate available Illumina whole-genome sequencing data from

122 epiRILs for the presence of >2 shared transposition evens (STEs) within the epiQTLs intervals

(Gilly et al., 2014). STEs were analysed for statistically significant linkage with resistance phenotypes

(RIs), using the same linear regression model as described above for DMR linkage analysis.

Plectosphaerella cucumerina pathoassays
Plectosphaerella cucumerina (Pc, strain BMM (Ton and Mauch-Mani, 2004)) was grown from frozen

agar plugs (�80˚ C) on potato dextrose agar (PDA; Difco, UK). Inoculated plates were maintained at

room temperature in the dark for at least 2 weeks. Spores were gently scraped from water-
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inundated plates, after which spore densities were adjusted to 106 spores/ml using a hemocytome-

ter (Improved Neubauer, Hawksley, UK). Four fully expanded leaves of similar age from 5-week-old

plants were inoculated by applying 5 ml droplets, minimising variability due to age-related resistance.

After inoculation, plants were kept at 100% RH until scoring of lesion diameters. Average lesion

diameters at nine dpi were based on four leaves per plant from 12 plants per (epi)genotype (n = 40–

48), using a precision caliper (Traceable, Fischer Scientific). Statistically significant differences in

necrotic lesions diameter (asterisks) were quantified by two-tailed Student’s t-test (p<0.05) in pair-

wise comparisons with Wt line (#602), using R (v3.5.1).

Salt stress tolerance assays
Seeds were sterilised by exposure for 4 hr (h) to chlorine vapours from a 200 ml bleach solution con-

taining 10% v/v hydrochloric acid (37% v/v HCl, Fischer Scientific, 7732-18-5). Seeds were air-dried

for 1 hr in a sterile laminar flow cabinet and plated on half strength MS plates (Duchefa, M0221;

+0.05% w/v MES,+1% w/v sucrose, pH 5.7), containing increasing concentrations of NaCl (0 mM, 50

mM, 75 mM and 100 mM; Fischer Scientific, 7647-14-5). Plates were stratified for 4 days in the dark

at 4˚C and transferred to short-day growth conditions (8.5 hr light/15.5 hr dark, 21˚C, 80% RH, light

intensity 100–140 mmol s�1 m�1). Salt tolerance was expressed as percentage of seeds producing

fully expanded cotyledons by 6 days after stratification. Germination percentages of epi-genotypes

were calculated from >50 seeds per treatment. Statistically significant differences in germination

rates (asterisks) were quantified by Fisher’s exact test (p<0.05) in pairwise comparisons with Wt line

(#602) at each salt concentration, using R (v3.5.1).

Quantification of callose effectiveness against Hpa infection
Seedlings were collected at three dpi and cleared for >24 hr in 100% ethanol. One day prior to anal-

ysis, samples were incubated for 30 min in 0.07 M phosphate buffer (pH 9), followed by 15 min incu-

bation in a 4:1 mixture (v/v) of 0.05% w/v aniline blue (Sigma-Aldrich, 415049) in 0.07M phosphate

buffer (pH 9) and 0.025% w/v calcofluor white (Fluorescent brightener 28, Sigma-Aldrich, F3543) in

0.1M Tris-HCL (pH 7.5). After initial staining, samples were incubated overnight in 0.5% w/v aniline

blue (Sigma-Aldrich, 415049) in 0.07M phosphate buffer (pH 9) and scored with an epifluorescence

microscope (Olympus BX 51) fitted with blue filter (XF02-2; excitation 330 nm, emission 400 nm).

Germinated conidia (germ tubes) were divided between in two classes: non-arrested and arrested

by callose. In each assay, 10 leaves from different plants for each (epi)genotype were analysed,

amounting to >150 conidia-callose interactions. Statistically significant differences in resistance effi-

ciency of callose (asterisks) were analysed using Pearson’s Chi-squared tests (p<0.05) in pairwise

comparisons with Wt line (#602), using R (v3.5.1).

Reverse-transcriptase quantitative polymerase chain reactions (RT-
qPCR)
Three biologically replicated samples for each genotype/treatment/time-point combination were

collected at 48 and 72 hpi, each consisting of six to 12 leaves collected from different plants per

pot. Samples were snap-frozen in liquid nitrogen and ground to a fine powder, using a tissue lyser

(QIAGEN TissueLyser). Total RNA was extracted using a guanidinium thiocyanate-phenol-chloroform

extraction isolation protocol. Frozen powder was vortexed for 30 s in 1 ml Extraction buffer: 1M gua-

nidine thiocyanate (Amresco, 0380), 1M ammonium thiocyanate (Sigma-Aldrich, 1762-95-4), 0.1M

sodium acetate (Fisher Scientific, 127-09-3), 38% v/v AquaPhenol (MP Biomedicals, 108-95-2) and

5% v/v glycerol (Fisher Scientific, 56-81-5). Samples were incubated at room temperature (RT) for 1

min and then centrifuged for 5 min at 16,500 g. The supernatant was then transferred to a new

tube, mixed with 200 ml chloroform and vortexed for 10–15 s. After centrifuging for 5 min (16,500

g), the aqueous phase was transferred to new tubes, gently mixed by inversion with 350 ml 0.8M

sodium citrate (Sigma-Aldrich, 6132-04-3) and 350 ml isopropanol (Fischer Chemicals, 67-63-0) and

left at RT for 10 min for RNA precipitation. Samples were centrifuged for 15 min at 16,500 g (4˚C),
after which pellets were washed twice in 1 ml 70% ethanol, centrifuged at 16,500 g for 1 min, and

air-dried before dissolving in 50 ml nuclease-free water. Total RNA was quantified, using a Nanodrop

8000 Spectrophotometer (Thermo Scientific). RNA extracts were treated with DNaseI, using the RQ1

RNase-Free DNase kit (Promega, M6101). First-strand cDNA synthesis was performed from 1 mg
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RNA, using SuperScript III Reverse Transcriptase (Invitrogen, 18080093) according to the supplier’s

recommendations. The qPCR reactions were carried out with a Rotor-Gene Q real-time PCR cycler

(Qiagen) and the Rotor-Gene SYBR Green PCR Kit (Qiagen, 204074). Relative PR1 gene expression

was calculated, using Livak’s DDCT method (Livak and Schmittgen, 2001) with correction for aver-

age PCR efficiencies for each primer pair across experiment samples. Gene expression was normal-

ised against average expression values of At1G13440 (GAPDH), At5G25760 (UBC) and At2G28390

(SAND family protein) (Czechowski et al., 2005). Reactions were performed using previously

described primer sequences (López Sánchez et al., 2016). Statistically significant differences in rela-

tive expression (asterisks) were quantified by two-tailed Student’s t-test (p<0.05) in pairwise compar-

isons with Hpa-treated Wt line (#602).

Transcriptome analysis
Samples for RNA sequencing were collected at 48 and 72 hpi of 3-week-old plants. Every epi-geno-

type/treatment/time-point combination was based on three biologically replicated samples, each

consisting of 6–12 shoots from different plants. Initial RNA extraction was performed as described

for RT-qPCR reactions. Prior to library preparation, RNA concentration and integrity were measured,

using 2100 Bioanalyzer (Agilent) with provided reagents kits and according to manufacturer’s instruc-

tions. All RNA samples had RNA integrity numbers (RIN) >7.5. Sequencing libraries were prepared

from total RNA, using the TruSeq Stranded Total RNA kit and Ribo-Zero Plant leaf kit (Illumina, RS-

122–2401), according to the manufacturer’s instructions. Sequencing runs were performed on a

HiSeq1500 platform (Illumina), generating paired-end reads of 125 bp and an average quality score

(Q30) >93%. Each sample generated around 35 million paired reads.

Read quality was assessed by FastQC software (Andrews, 2010). Read length and distribution

were optimized and adapter sequences were trimmed, using Trimmomatic software (Bolger et al.,

2014). Reads were aligned and mapped to the Arabidopsis genome (TAIR10 annotation), using

splice site-guided HISAT2 alignment software (John Hopkins University, second iteration of

(Kim et al., 2015)). For all samples, more than 95% of reads could successfully be mapped once or

more onto the Arabidopsis genome. Number of reads per gene were quantified with the Python

package HTseq (Anders et al., 2015). Differential expression analysis was performed using the

DESeq2 R package, which applies a negative binomial generalized linear model to estimate mean

and dispersion of gene read counts from the average expression strength between samples

(Love et al., 2014). Prior to principal component analysis (PCA) by the plotPCA function, gene read

counts were subjected to regularized logarithmic transformation, using the rlog function

(Love et al., 2014). Likelihood ratio tests of variance within a three-factorial linear model for epige-

notype, treatment, time-point and interactions thereof were used to identify genes showing differen-

ces in expression across one or more factors (Love et al., 2014). Differentially expressed genes

(DEGs) were subjected to hierarchical clustering (Ward method) and presented as a heat map, using

the pheatmap R package (Kolde, 2015). For each gene, rlog-normalized read counts of each sample

were subtracted from the mean of all samples, and divided by the standard deviation to facilitate

heatmap visualisation (z-score). To identify DEGs between two treatment/time-point/epi-genotype

combinations, pair-wise comparisons (Wald test; q < 0.05) were performed with the DEGs selection

obtained by the lrt test, using the selection criteria illustrated in Figure 2—figure supplement 2a.

All Hpa-inducible genes in the Wt and/or epiRILs were selected for elevated expression in the more

resistant epiRILs during Hpa infection. Subsequently, these genes were divided between two groups

based on their expression profile. Group 1 genes were selected for constitutively enhanced expres-

sion in the epiRIL(s) relative to the Wt (Figure 2—figure supplements 2 and 3); Group 2 genes were

selected for enhanced levels of Hpa-induced expression in the epiRIL(s) relative to the Wt (Figure 2—

figure supplements 2 and 4). To determine the number of Group 2 genes that show a statistically

significant interaction between epigenotype x Hpa treatment (all 16,009 genes significant for this

interaction were selected from the three-factorial linear model, using the contrast function, and

cross-referenced against Group 2 genes.

Gene ontology (GO) term enrichment analysis was performed with the Plant GSEA toolkit

(Yi et al., 2013). GO terms were checked for significant enrichment against the whole genome back-

ground, using a hypergeometric test and Benjamini-Hochberg false discovery rate correction

(q < 0.05). Lists of enriched GO terms in each treatment were analysed by the GO Trimming 2.0

algorithm (Jantzen et al., 2011) to remove redundancy of terms, applying a soft trimming threshold
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of 0.40. The output list from GO Trimming 2.0 was run through GOSlim Viewer (AgBase) to reduce

GO terms according to GO slim ontologies (GO consortium). Enrichment was quantified as the per-

centage of GO term-annotated genes within a certain selection relative to the total number of Arabi-

dopsis genes in that GO term.

Methylome analysis
For each line, three independent biological replicates were collected, consisting of pooled leaves

from six plants of the same developmental stage. High-quality genomic DNA was extracted from

leaves of 5-week-old plants, using the GenElute Plant Genomic DNA Miniprep Kit (Sigma-Aldrich).

Bisulfite sequencing was performed by GATC Biotech (UK). After quality trimming of read sequen-

ces, adapter sequences were removed, and reads were filtered by Cutadapt (version 1.9; Pair end-

mode; phred score = 20, min.length = 40). Reads were mapped to an index genome, using of BS-

Seeker2 (version 2.0.10, mismatch = 0.05, maximum insert size = 1000 bp). Bowtie2 (version 2.2.2)

was used for alignment of reads, as described previously (Lauss et al., 2018). Differential methyla-

tion for promoter regions (�2 kb), gene bodies, and downstream regions (+1 kb) relative to the Wt

was called using methylkit (version 1.0.0; minimum coverage = 5 x, q = 0.05). Differentially methyl-

ated states were visualised as a heat map, using the ‘pheatmap’ R package (version 1.0.8)

(Kolde, 2015).

To differentiate Wt methylation states of all epiQTL-based genes in Group 2 (see above), gene

bodies of all nuclear genes were categorised between un-methylated, gene body methylated (gbM;

CG context only) or TE-like methylated (teM; CHG and/or CHH with or without CG). For each gene

containing 20 or more cytosines, methylated and un-methylated cytosine base calls in each context

were extracted from the sequence read alignments. Positions with less than 4x coverage were

ignored. Methylation patterns were categorised as TE-like if methylated read calls relative to un-

methylated read calls in CHG and/or CHH contexts showed a statistically significant increase over

average methylation rates of all genes across the genome in the respective context, using the

‘binom.test’ function in R (FDR-adjusted p<0.01). The remaining genes were classified either as gbM

if the same test revealed a statistically significant increase in CG context, or as un-methylated if no

statistically significant increase in DNA methylation could be detected in any sequence context.

Correlation analysis between gene expression and DNA methylation
Correlations between augmented expression ratio of Group 2 genes (see Transcriptome analysis)

and DNA hypomethylation (CG), were determined by plotting augmented gene ratios at 48 hpi

against average hypomethylation compared to Wt (%) across promoter region, gene body, and

downstream region (see Methylome analysis). To determine which type of DNA hypomethylation

correlates with augmented expression in the epiRILs, hypomethylation at gene bodies of Group 2

genes were divided between teM and gbM and plotted against the corresponding expression ratios

at 48 hpi. If hypomethylation occurred at CG context only, genes were classified as being reduced in

gene body methylation (gbM); if hypomethylation occurred all three sequence contexts (CG, CHG,

CHH), genes were classified as being reduced in TE methylation (teM). Values of gbM hypomethyla-

tion were expressed as percentage reduction in GC methylation relative to the Wt; values of teM

hypomethylation were expressed as percentage reduction in all sequence contexts. Linear regres-

sion analyses were performed using R software (v.3.5.1).

Hi-C analysis
HiC sequence libraries SRR1504819 and SRR150482464 were downloaded from NCBI SRA. Sequen-

ces were pre-processed and aligned to the TAIR10 Arabidopsis nuclear genome sequence

(Berardini et al., 2015), using HiCUP (0.5.9) (Wingett et al., 2015) and Bowtie2 (Langmead and

Salzberg, 2012) (2.2.6). Alignments were filtered and de-duplicated as part of the processing by

HiCUP, before being further processed in HOMER (Heinz et al., 2010) (4.9.1) at 5 kb resolution. Dif-

ferential interactions were assessed reciprocally, using each sample as background (analyzeHiC-

ped). Interactions were determined to be potentially dependent on genotype if the absolute z-score

of the primary versus the secondary experiment was more than 1. Visualisations were generated

using Circos (Krzywinski et al., 2009)(0.69–5), based on bundled links (-max_gap 10001).
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Data availability
Transcriptome sequencing and bisulfite sequencing reads are available from the European Nucleo-

tide Archive (ENA) under accession code PRJEB26953.
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