Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes

  1. Florian Baier
  2. Nansook Hong
  3. Gloria Yang
  4. Anna Pabis
  5. Charlotte M Miton
  6. Alexandre Barrozo
  7. Paul D Carr
  8. Shina CL Kamerlin
  9. Colin J Jackson
  10. Nobuhiko Tokuriki  Is a corresponding author
  1. University of British Columbia, Canada
  2. Australian National University, Australia
  3. Uppsala University, Sweden

Abstract

Genetic variation among orthologous proteins can cause cryptic phenotypic properties that only manifest in changing environments. Such variation may impact the evolvability of proteins, but the underlying molecular basis remains unclear. Here, we performed comparative directed evolution of four orthologous metallo-β-lactamases toward a new function and found that different starting genotypes evolved to distinct evolutionary outcomes. Despite a low initial fitness, one ortholog reached a significantly higher fitness plateau than its counterparts, via increasing catalytic activity. By contrast, the ortholog with the highest initial activity evolved to a less-optimal and phenotypically distinct outcome through changes in expression, oligomerization and activity. We show how cryptic molecular properties and conformational variation of active site residues in the initial genotypes cause epistasis, that could lead to distinct evolutionary outcomes. Our work highlights the importance of understanding the molecular details that connect genetic variation to protein function to improve the prediction of protein evolution.

Data availability

Diffraction data have been deposited in PDB under the accession code 5JQJ, 5K4M and 6BM9

The following data sets were generated

Article and author information

Author details

  1. Florian Baier

    Michael Smith Laboratory, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Nansook Hong

    Research School of Chemistry, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Gloria Yang

    Michael Smith Laboratory, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Pabis

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Charlotte M Miton

    Michael Smith Laboratory, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2374-303X
  6. Alexandre Barrozo

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  7. Paul D Carr

    Research School of Chemistry, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Shina CL Kamerlin

    Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3190-1173
  9. Colin J Jackson

    Research School of Chemistry, Australian National University, Canberra, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6150-3822
  10. Nobuhiko Tokuriki

    Michael Smith Laboratory, University of British Columbia, Vancouver, Canada
    For correspondence
    tokuriki@msl.ubc.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8235-1829

Funding

Natural Sciences and Engineering Research Council of Canada (RGPIN 418262-12)

  • Nobuhiko Tokuriki

Canadian Institutes of Health Research (353714)

  • Nobuhiko Tokuriki

Natural Sciences and Engineering Research Council of Canada (RGPIN 2017-04909)

  • Nobuhiko Tokuriki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrei N Lupas, Max Planck Institute for Developmental Biology, Germany

Version history

  1. Received: August 5, 2018
  2. Accepted: January 22, 2019
  3. Accepted Manuscript published: February 5, 2019 (version 1)
  4. Version of Record published: February 12, 2019 (version 2)

Copyright

© 2019, Baier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,135
    views
  • 619
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Baier
  2. Nansook Hong
  3. Gloria Yang
  4. Anna Pabis
  5. Charlotte M Miton
  6. Alexandre Barrozo
  7. Paul D Carr
  8. Shina CL Kamerlin
  9. Colin J Jackson
  10. Nobuhiko Tokuriki
(2019)
Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes
eLife 8:e40789.
https://doi.org/10.7554/eLife.40789

Share this article

https://doi.org/10.7554/eLife.40789

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.