
*For correspondence:

sp3449@cumc.columbia.edu (SP);

jls106@cumc.columbia.edu (JLS)

Competing interest: See

page 16

Funding: See page 16

Received: 10 August 2018

Accepted: 16 November 2018

Published: 18 December 2018

Reviewing editor: Ben Cooper,

Mahidol Oxford Tropical

Medicine Research Unit, Thailand

Copyright Pei et al. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Inference and control of the nosocomial
transmission of methicillin-resistant
Staphylococcus aureus
Sen Pei1*, Flaviano Morone2, Fredrik Liljeros3, Hernán Makse2,
Jeffrey L Shaman1*

1Department of Environmental Health Sciences, Mailman School of Public Health,
Columbia University, New York, United States; 2Levich Institute and Physics
Department, City College of New York, New York, United States; 3Department of
Sociology, Stockholm University, Stockholm, Sweden

Abstract Methicillin-resistant Staphylococcus aureus (MRSA) is a continued threat to human

health in both community and healthcare settings. In hospitals, control efforts would benefit from

accurate estimation of asymptomatic colonization and infection importation rates from the

community. However, developing such estimates remains challenging due to limited observation of

colonization and complicated transmission dynamics within hospitals and the community. Here, we

develop an inference framework that can estimate these key quantities by combining statistical

filtering techniques, an agent-based model, and real-world patient-to-patient contact networks,

and use this framework to infer nosocomial transmission and infection importation over an

outbreak spanning 6 years in 66 Swedish hospitals. In particular, we identify a small number of

patients with disproportionately high risk of colonization. In retrospective control experiments,

interventions targeted to these individuals yield a substantial improvement over heuristic strategies

informed by number of contacts, length of stay and contact tracing.

DOI: https://doi.org/10.7554/eLife.40977.001

Introduction
Antimicrobial resistance is a global concern in healthcare systems due to its substantial morbidity

and mortality burden and the lack of effective treatment options (CDC, 2013a; Magill et al., 2014;

WHO, 2018). Among antibiotic-resistant agents, Methicillin-resistant Staphylococcus aureus (MRSA)

emerges as one of the most widespread and virulent pathogens (Grundmann et al., 2006;

Klevens et al., 2007; Klein et al., 2007; Jarvis et al., 2012) and has been highlighted as a leading

cause of healthcare-associated infections (HAIs) by the U.S. Centers for Disease Control and Preven-

tion (CDC) (CDC, 2013b). Initially confined to healthcare facilities, MRSA has since become increas-

ingly prevalent in the broader population in both the United States and Europe (Chambers, 2001;

Naimi et al., 2003; Zetola et al., 2005; Hetem et al., 2012; Kouyos et al., 2013; Tosas Auguet

et al., 2016). This entwined transmission among hospitals and the community has obscured under-

standing of the dynamics and persistence of MRSA. Further, MRSA can colonize patients without

symptoms for years, during which it can be transmitted stealthily (Cooper et al., 2004a). These epi-

demiological features have greatly complicated its control and elimination.

The prevalence of MRSA has large variations across different countries. In Europe, a general

north-south gradient has been observed, with rare incidence in Scandinavian hospitals and much

higher occurrence in Mediterranean hospitals (Stefani and Varaldo, 2003; Tiemersma et al., 2004;

Johnson, 2011). In particular, Sweden remains one of the few countries with a low prevalence of

MRSA infection (Stenhem et al., 2006). A substantial proportion of MRSA cases in Sweden has
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been imported from abroad due to traveling and healthcare contacts in foreign countries

(Stenhem et al., 2010; Larsson et al., 2014). As a consequence, analyzing MRSA outbreaks in Swe-

den offers a good opportunity to study the hybrid dynamics of MRSA in hospital settings where

both nosocomial transmission and importation occurs.

To facilitate better control of MRSA in hospital settings, several critical questions need to be

answered. First, what are the relative roles of nosocomial transmission and infection importation

from the community? Public health officials require an accurate assessment of the current force of

infection within and into hospitals in order to deploy appropriate containment measures; however,

with the increasing prevalence of MRSA in the community, disentangling HAIs from infections

imported from the community has become difficult. Second, how many patients are colonized, and

who and where are these high-risk individuals? Effective control would benefit from accurate deter-

mination of asymptomatic colonization rates in the general population; failure to estimate and

account for colonization may result in long-term control issues (Cooper et al., 2004a). Although col-

onized patients can be identified using sequencing methods (Harris et al., 2010; Long et al., 2014),

the expense of these assays limits their application, particularly in underdeveloped countries where

MRSA has become endemic. In light of this situation, mathematical modeling offers an alternative

approach for locating individuals with a high probability of colonization and guiding the targeted

deployment of laboratory testing (Grundmann and Hellriegel, 2006; van Kleef et al., 2013;

Opatowski et al., 2011). However, this inference problem is again complicated by the unobserved

stealth transmission dynamics that occurs in the highly complex time-varying contact networks of the

real world (Donker et al., 2010; Vanhems et al., 2013; Jarynowski and Liljeros, 2015;

Obadia et al., 2015a; Obadia et al., 2015b; Rocha et al., 2016; Nekkab et al., 2017; Duval et al.,

2018).

To address these issues, here we develop an agent-based network model-Bayesian inference sys-

tem for estimating unobserved colonization and importation rates from simple incidence records.

We use this system to infer the transmission dynamics of the most commonly diagnosed MRSA

strain, UK EMRSA-15 (Grundmann et al., 2010; Das et al., 2013), from multiple Swedish hospitals

(Materials and methods). Key features estimated include the number of infections acquired in hospi-

tal and imported from outside, as well as the locations of individuals with a high colonization proba-

bility. Such information is crucial for designing cost-effective control measures (Cooper et al., 2003;

eLife digest Antibiotic-resistant bacteria like the Methicillin-resistant Staphylococcus aureus

(MRSA) can live in people for many years without making them sick. During this time, the bacteria

can spread to others who come in contact with the MRSA-infected person. The number of people

with stealth MRSA infections living in the community has been increasing. As a result, hospitals may

not only be dealing with MRSA infections that originated onsite, but also cases imported from the

community. That makes tracking and controlling MRSA infections in hospitals difficult.

Now, Pei et al. show that computer modeling can help identify the role MRSA infections from the

community play in hospital outbreaks and test ways to control them. In the experiments, data from

an MRSA outbreak that occurred at 66 Swedish hospitals over 6 years were analyzed using statistical

methods and computer modeling. This helped to identify patients who were likely colonized with

MRSA within the hospital and those who had acquired it in the community. Next, Pei et al. used

computer modeling to test what would have happened if these high-risk individuals had received

interventions to prevent them from spreading MRSA in the hospital. This showed that targeting

individuals at high-risk of a MRSA infection could reduce the spread of MRSA in the hospital.

The computer models developed by Pei et al. may help researchers, clinicians and public health

officials working to control the spread of antibiotic resistant bacteria. The model can improve our

understanding of how antibiotic resistant bacteria spread in healthcare facilities and may enable the

development of more effective strategies to control these pathogens. Infection-control strategies

created with this system must first be tested in isolated, real-world settings to verify they work

before they can be deployed broadly.

DOI: https://doi.org/10.7554/eLife.40977.002
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Cooper et al., 2004b; Hubben et al., 2011; Worby et al., 2013). In retrospective control experi-

ments, decolonization of potentially colonized patients outperforms heuristic intervention strategies

based on number of contacts, length of stay and contact tracing. These findings indicate that the

model-inference system can inform effective, actionable and cost-effective measures for reducing

nosocomial transmission.
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Figure 1. Observed incidence of UK EMRSA-15 and the agent-based MRSA transmission model. (A) Incidence of

UK EMRSA-15 every 4 weeks (red crosses) and cumulative cases (blue curve). (B) The raster plot for infections in

114 infected wards. Color indicates number of observed infections during 4-week periods. (C) Distributions of total

patient numbers per ward (persons, upper panel), patient average length of stay (days, middle panel) and ward

capacity (persons, lower panel) for infected and uninfected wards. (D) Overlaid degree distributions of 300 weekly

aggregated contact networks. The solid blue line is the fitting to a Weibull distribution. Inset shows an illustration

of the time-varying contact network. (E) A schematic of the model framework. The blue box defines the

transmission process within hospitals, and imported infection and colonization from outside the study hospitals are

quantified by two parameters I0 and C0.

DOI: https://doi.org/10.7554/eLife.40977.003

The following source data and figure supplements are available for figure 1:

Source data 1. Numerical data represented in Figure 1.

DOI: https://doi.org/10.7554/eLife.40977.006

Figure supplement 1. Association between infection numbers and patient-days per ward.

DOI: https://doi.org/10.7554/eLife.40977.004

Figure supplement 2. Patient traffic in the study Swedish hospitals.

DOI: https://doi.org/10.7554/eLife.40977.005
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Results

Spatiotemporal features of MRSA infection
Observed incidence over a 6-year outbreak period is reported in Figure 1A. The relative date of

diagnosis and associated ward of each observed infection were recorded; however, information on

type of ward was not provided. Previous studies indicate that heterogeneity in infection risk exists

across different types of ward (Bootsma et al., 2006). For instance, patients in intensive care units

(ICUs) typically suffer a higher risk of infection than those in non-ICU settings due to higher patient-

healthcare-worker contact rates, high levels of antibiotic use, and high patient vulnerability to infec-

tion. In this study dataset, however, we observed no clear clustering of infections in certain wards. In

Figure 1B, we use a raster plot to display the distribution of infections in 114 infected wards over

time. Infections are distributed without noticeable clustering, presumably due to effective control

measures taken in the study hospitals that maintain a low infection rate even in ICU settings

(Tiemersma et al., 2004).

Distributions of some key statistics of the patient flow in infected wards differ from those in unin-

fected ones (Figure 1C). Infected wards tend to have a higher number of inpatients, a longer aver-

age length of stay as well as a larger ward size. Intuitively, the number of MRSA infections in a ward

should increase as patient-days within the ward increase. However, the average number of infections

is not observed to increase linearly with patient-days, indicating that patient-days per ward alone

cannot explain the observed patterns of infection (Figure 1—figure supplement 1). While these raw

features provide a general understanding of MRSA transmission, they cannot be effectively

employed to assess infection or colonization risk in a specific ward due to their largely overlapping

distributions, which prevent a clear classification of risk. Instead, a quantitative analysis using mathe-

matical modeling is needed.

The agent-based model
In hospital settings, MRSA transmission between colonized/infected patients and susceptible individ-

uals is primarily mediated indirectly by healthcare workers (Lowy, 1998; Temime et al., 2009). As a

result, accurate representation of actual contact patterns is crucial for modeling MRSA transmission.

Many previous studies have formulated transmission models using ordinary differential equations

(ODEs) (Cooper et al., 2004a; Kajita et al., 2007; D’Agata et al., 2009) or stochastic processes

(Forrester et al., 2007; Kypraios et al., 2010). To account for heterogeneity among different set-

tings, several studies have included multiple facilities in a single-model construct, incorporating prior

information on facility type in order to characterize and differentiate transmission dynamics

(Bootsma et al., 2006; Forrester et al., 2007). These approaches were then generalized to permit

connection among institutions at different scales (hospitals, nursing homes and long-term healthcare

facilities, or multiple wards or units within a facility) with time-varying contact patterns

(Thomas et al., 2018).

In this work, we model nosocomial MRSA transmission using an individual-level agent-based

model (Macal et al., 2014; Assab et al., 2017). One major advantage of using an agent-based

approach is that the heterogeneity of contact in different ward types can be accounted for within

the model. For instance, even though we were provided no information about ward type, some of

the heterogeneity among wards can be represented by the contact pattern specific to each ward,

for example a longer length of stay in long-term healthcare units. Other aspects, however, are sim-

plified; for example, due to the observed absence of infection clusters (Figure 1B), we assume a uni-

form transmission rate across different wards within the model. This assumption is ultimately justified

by the good agreement between inferred dynamics and observations (as described later).

In the model, transmission occurs on the substrate of a time-varying contact network, which is

constructed using the actual hospitalization records from 66 hospitals in Stockholm County, Sweden.

In this contact network, nodes represent uniquely labeled patients, connected by undirected links

among individuals sharing a ward at a given time. The rationale behind this network construction

approach is that, if two patients stay in the same ward simultaneously, the shared healthcare person-

nel may facilitate transmission between them. The structure of the contact network is relatively sta-

ble over time, as indicated by the degree distributions of the weekly aggregated networks

(Figure 1D). In particular, the degree distributions can be well fitted by a Weibull distribution,
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PðkÞ ¼ abkb�1e�akb , where a ¼ 6:15� 10
�4 (95% CI: 5:96� 10

�4 � 6:34� 10
�4), b ¼ 2:13 (95% CI:

2:12� 2:14) (R2 ¼ 0:95).

The contact network is time-varying and exhibits high spatiotemporal complexity. The daily in-

hospital patient number fluctuates between 4000 and 7000 during the study period (Figure 1—fig-

ure supplement 2A–B). Patient hospitalization time, readmission time, and patient-to-patient con-

tact time all follow heavy-tailed distributions, spanning several orders of magnitude (Figure 1—

figure supplement 2C). Moreover, about 100 connected components coexist in the contact network

each week (Figure 1—figure supplement 2D). Connections between different connected compo-

nents change over time due to the transfer and readmission of patients. 128,119 patients were trans-

ferred from one ward to another during their stay, and another 280,506 patients were readmitted

within 1 year of their previous discharge. These patient movements connect healthcare facilities that

would otherwise be isolated in the network and facilitate long-range transmission across multiple

hospitals. A direct consequence of this patient movement is difficulty tracking the indirect transmis-

sion path of MRSA across different hospitals. For instance, a patient located in one hospital can be

involved in the transmission occurring in another when he/she moves across multiple facilities.

Detailed analyses of the contact network structure and hospitalization traffic can be found in Appen-

dix 1.

Model patients are classified into three categories: susceptible individuals who are free of MRSA

(S), colonized individuals who carry the bacteria asymptomatically (C), and confirmed positive

patients (P). The model simulates two connected dynamics: nosocomial transmission and importation

from the community. Here, the community is broadly defined as all locations outside the study hospi-

tals, and may include households and healthcare facilities not covered in the study. Within hospitals,

transitions between states (S, C, P) are governed by parameters that help define either interaction

dynamics or the progression of infection. Specifically, a susceptible individual staying in a ward with

a colonized person can become MRSA colonized with transmission probability b per day. In our

model, we assume that patients within a ward have the same rate of contact with each other, pre-

sumably mediated by the shared healthcare workers in a ward. The transmission process is density-

dependent, as the force of infection in a ward increases with the number of colonized patients within

the ward (Begon et al., 2002). Upon colonization, asymptomatic persons can return to the suscepti-

ble state at a spontaneous decolonization rate a, or they can test positive with an infection progres-

sion rate p. We assume infected patients will receive treatment, no longer spread bacteria, and

return to state S with a recovery rate �. Treatment is assumed to continue until infected patients are

clear of MRSA. Given the exponential decay of infection probability, the characteristic treatment

period is 1=� days. Note that colonization only occurs between individuals connected by a link in the

contact network, whereas decolonization, infection and recovery progress spontaneously, indepen-

dent of the contact network. Outside the study hospitals, the transmission process is not explicitly

simulated; instead, two additional parameters are introduced to represent transmission intensity. For

Table 1. Parameter ranges used in the agent-based transmission model.

Parameter Description Range Unit

a Spontaneous decolonization rate [1/525, 1/175] per day

p Infection progress rate [0.1a, 0.3a] per day

� Recovery rate with treatment [1/120, 1/20] per day

b Transmission rate in hospitals [0, 0.01] per day

I0 Infection importation rate [0, 0.001] per admission

C0 Colonization importation rate [0, 0.1] per admission

Sources for parameter ranges – a: (Cooper et al., 2004a; Bootsma et al., 2006; Eveillard et al., 2006;

Wang et al., 2013; Macal et al., 2014; Jarynowski and Liljeros, 2015); p: (Kajita et al., 2007; Jarynowski and Lil-

jeros, 2015); �: (D’Agata et al., 2009; Wang et al., 2013); b: Prior; I0: Prior; C0: Prior, (Hidron et al., 2005;

Eveillard et al., 2006; Jarvis et al., 2012). For each individual, the infection progress rate p is drawn after a is

specified.

DOI: https://doi.org/10.7554/eLife.40977.007
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patients who appear for the first time in hospital, we assume they belong to states C and P with

probability C0 and I0, respectively. As importation rates of colonized and infected patients depend

on the time-varying MRSA prevalence outside hospitals, we assume the parameters C0 and I0 are

time-dependent. Once patients appear in the contact network, the evolution of their states follows

the dynamics as defined above. After discharge, we continue tracking the progression of colonized

individuals; however, transmission outside the study hospitals is not represented. The flow of individ-

uals between categories is illustrated schematically in Figure 1E.

For a realistic scenario, disease-related model parameters may differ from person to person. To

account for this variability during implementation, parameters, for example a, p and �, for each indi-

vidual are randomly drawn from uniform ranges obtained from prior literature (Table 1). The param-

eter ranges are enlarged slightly to cover the values reported in these works. Our main objective is

to infer the three most important parameters governing transmission dynamics: the transmission rate

b, the infection importation rate I0 and the colonization importation rate C0.

Iterated filtering for agent-based models
To infer epidemiological parameters in an agent-based model, we adapt an iterated filtering (IF)

algorithm (Ionides et al., 2006; King et al., 2008; Ionides et al., 2011). IF can be used to infer the

maximum likelihood estimates (MLEs) of parameters in epidemic models and has been successfully

applied to infectious diseases such as cholera (King et al., 2008) and measles (He et al., 2010). Ini-

tially developed for ODE models, IF has subsequently been generalized for other model forms (e.g.

stochastic models) using the plug-and-play approach (He et al., 2010). Here, we adapt IF for agent-

based models, leveraging an equation-free approach (Kevrekidis et al., 2003) that allows for map-

ping between the system-level observations (e.g. weekly incidence) used for the IF and the individ-

ual-level states evolved in the agent-based model (Appendix 1). In applying the IF, we perform

multiple iterations using an efficient Bayesian filtering algorithm – the Ensemble Adjustment Kalman

Filter (EAKF) (Anderson, 2001), which has been widely used in infectious disease forecast and infer-

ence (Shaman and Karspeck, 2012; Yang et al., 2015; Pei and Shaman, 2017; Pei et al., 2018a;

Kandula et al., 2018). Details of the IF implementation can be found in Materials and methods.

Before applying the inference system to real-world data, we first need to validate its effective-

ness. For the real-world data the inference targets are unobserved, so instead we test the inference

system using model-generated synthetic outbreaks for which we know the exact values of the

parameter. Although actual MRSA transmission dynamics cannot be fully described by the simplified

agent-based model, performing synthetic tests provides validation that the inference system works if

the transmission process generally follows the model-specified dynamics.

To generate synthetic outbreak observations, we used the agent-based model to simulate weekly

incidence during a one-year period (52 weeks), and then imposed noise to produce the observations

used in inference (See details in Appendix 1). We ran 20 iterations of the EAKF within the IF frame-

work. In Figure 2A, we display the inference results for the three parameters b, I0 and C0 at different

iterations in one realization of the IF algorithm. The blue horizontal lines mark the target values used

to generate the outbreak. The orange boxes show the distribution of posterior parameters (300

ensemble members) after each iteration. The IF algorithm returns the stabilized ensemble mean as

the MLEs of parameters. As a result of the stochastic nature of model dynamics and initialization of

the inference algorithm, different runs of the IF algorithm usually return slightly different MLEs. To

obtain the credible intervals (CIs) for the MLEs, we repeated the inference for 100 times (see Materi-

als and methods). The inferred mean values and 95% CIs for the parameters b, I0 and C0 are

9:00; ½8:07; 9:68� � 10
�3, 1:91; ½1:38; 2:54� � 10

�3 and 7:18; ½5:84; 8:70� � 10
�2, with the actual values

b ¼ 9� 10
�3, I0 ¼ 2� 10

�3 and C0 ¼ 7:5� 10
�2. The inference system thus accurately estimates b

and I0 from noisy observations, and slightly underestimates C0. In its implementation, the perfor-

mance of the inference system depends on the sensitivity of the observations to each parameter. In

the agent-based model used here, observed incidence is less sensitive to C0 due to the long period

of colonization. As a consequence, estimates of C0 do not always exactly match the actual target

and are here biased low. Nevertheless, this slight underestimation does not significantly affect the

inferred dynamics. To demonstrate this insensitivity, we ran 1000 simulations using the inferred

mean parameters and obtained distributions of weekly incidence from the stochastic agent-based

model. The distributions of weekly incidence (blue boxes) are compared with the observed cases
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(red crosses) in Figure 2B. We also evaluated the agreement between the observed and simulated

incidences in Figure 2B (Figure 2—figure supplement 1; Analysis details are explained in Appendix

1). The inferred dynamics fit the observed incidence well. The Matlab code for synthetic test on an

example network is uploaded as an additional file.

A B

C

D E

Figure 2. Inference of model parameters for a synthetic outbreak. (A) Distributions of the posterior parameters b

(top), I0 (middle) and C0 (bottom) (300 ensemble members) for 20 iterations of inference in one realization of the IF

algorithm. Orange Tukey boxes show the median and interquartile (IQR, Q1 to Q3). Whiskers mark the inferred

values within the range [Q1-1.5 � IQR, Q3 + 1.5 � IQR]. Dots are outliers. Horizontal blue lines indicate the

inference targets used in generating the synthetic outbreak. (B–C) Distributions of weekly incidence (B) and

colonization (C) generated from 1000 realizations of simulations using the inferred parameters are shown by the

blue boxes. The red crosses represent the synthetic observations used during the inference (B) and actual

colonization in the outbreak (C). (D–E) Inference of the transmitted and imported infections. Blue boxes are

distributions generated from simulations, and red crosses are the actual values in the synthetic outbreak.

DOI: https://doi.org/10.7554/eLife.40977.008

The following source data and figure supplements are available for figure 2:

Source data 1. Numerical data represented in Figure 2.

DOI: https://doi.org/10.7554/eLife.40977.014

Figure supplement 1. Evaluation of the goodness of fit in Figure 2B.

DOI: https://doi.org/10.7554/eLife.40977.009

Figure supplement 2. Synthetic test of IF for an outbreak in which the majority of infections are imported.

DOI: https://doi.org/10.7554/eLife.40977.010

Figure supplement 3. Evaluation of the goodness of fit in Figure 2—figure supplement 2B.

DOI: https://doi.org/10.7554/eLife.40977.011

Figure supplement 4. Synthetic test of IF for observations every 4 weeks.

DOI: https://doi.org/10.7554/eLife.40977.012

Figure supplement 5. Evaluation of the goodness of fit in Figure 2—figure supplement 4B.

DOI: https://doi.org/10.7554/eLife.40977.013
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We repeated the above analysis for the colonized population (Figure 2C) and found that the

numbers of unobserved colonized patients can also be well estimated by the inference system.

Moreover, the inference system can distinguish the number of infections transmitted in hospital and

imported from outside the study hospitals (Figure 2D–E). More tests for alternate synthetic

A B

C

D E

Figure 3. Inference of the nosocomial transmission of UK EMRSA-15. (A) Inferred distributions of the MLEs for key

parameters b, I0 and C0 over 6 years, obtained from 100 independent realizations of the IF algorithm. (B)

Observed incidence every 4 weeks (red crosses) and corresponding distributions generated from 1000 simulated

outbreaks using the inferred mean parameters (blue boxes and whiskers). (C) Distribution of the number of

infected wards obtained from 1000 simulations. The vertical red dash line indicates 114, the observed number of

infected wards. (D) Distributions of the number of infections per ward from 1000 simulations (blue boxes and

whiskers). Red diamonds are the observed probabilities. (E) Inferred distributions of infections transmitted in

hospital (turquoise area) and imported from outside the study hospitals (pink area). The dark areas mark the IQR;

light areas show values within the range [Q1-1.5 � IQR, Q3 + 1.5 � IQR].

DOI: https://doi.org/10.7554/eLife.40977.015

The following source data and figure supplements are available for figure 3:

Source data 1. Numerical data represented in Figure 3.

DOI: https://doi.org/10.7554/eLife.40977.019

Figure supplement 1. Distributions of posterior parameters (300 ensemble members) in 20 iterations for different

years in one realization of the IF algorithm.

DOI: https://doi.org/10.7554/eLife.40977.016

Figure supplement 2. Evaluation of the goodness of fit in Figure 3B.

DOI: https://doi.org/10.7554/eLife.40977.017

Figure supplement 3. Classification of patients using days from admission to infection.

DOI: https://doi.org/10.7554/eLife.40977.018
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outbreaks and different observation frequencies were performed and are presented in Figure 2—

figure supplements 2–5.

Inference of MRSA transmission in swedish hospitals
We next applied the inference system to the UK EMRSA-15 incidence data binned every 4 weeks.

Because the UK EMRSA-15 transmission parameters are unlikely to remain constant over the entire

6-year outbreak cycle, we inferred model parameters year by year (52 weeks). Beginning with the

first year, we ran the IF inference sequentially through each year. Between 2 consecutive years, the

inferred results from the previous year were used to initialize the inference system in the next (see

Figure 3—figure supplement 1). In Figure 3A, we present the distributions of the key parameters

b, I0 and C0 for each year, generated from 100 independent realizations of the IF algorithm. The

parameter estimates together with the associated 95% CIs are reported in Table 2. All parameter

values increased in the first 3 or 4 years, and then gradually decreased thereafter.

The inferred parameters can be plugged back into the model to run simulations and obtain infor-

mation addressing our questions of interest (see Video 1 for an example). For instance, we per-

formed 1000 model simulations using the

inferred mean parameter values, and generated

distributions of incidence from the stochastic

agent-based model. These distributions are com-

pared to observations in Figure 3B. All observa-

tions fall within the whisker range of Tukey

boxplots (see more analyses in Figure 3—figure

supplement 2). To further explore whether some

of the key observed statistics can be reproduced

using the inferred parameters, we display the dis-

tribution of the number of infected wards in

Figure 3C. The observed number lies at the peak

of the simulated distribution (vertical dash line).

The spatial distribution of infections among dif-

ferent wards can be characterized by the distribu-

tion of wards with a certain number of infections

in an outbreak. In Figure 3D, we compare this

distribution obtained from 1000 simulations with

what we observed in the data (red diamonds):

the observed distribution agrees well with the

Table 2. Inferred parameters and 95% CIs across 6 years using the actual diagnostic data.

Inferred parameters and 95% CIs

Year b I0 C0

I 2:16; ½1:83; 2:60� � 10
�3

3:67; ½3:28; 4:06� � 10
�5 8:61; ½7:92; 9:47� � 10

�3

II 2:87; ½2:48; 3:44� � 10
�3

1:27; ½1:13; 1:45� � 10
�4

1:68; ½1:40; 1:98� � 10
�2

III 4:71; ½4:29; 5:13� � 10
�3

6:19; ½5:31; 7:48� � 10
�5 3:03; ½2:36; 3:62� � 10

�2

IV 2:91; ½2:47; 3:44� � 10
�3

2:31; ½1:93; 2:64� � 10
�4

2:53; ½1:85; 3:26� � 10
�2

V 3:18; ½2:61; 3:79� � 10
�4

1:62; ½1:29; 2:04� � 10
�4

2:08; ½1:51; 2:63� � 10
�2

VI 2:16; ½1:83; 2:60� � 10
�3

5:31; ½4:27; 6:30� � 10
�5 9:57; ½7:72; 12:43� � 10

�3

DOI: https://doi.org/10.7554/eLife.40977.020

The following source data is available for Table 2:

Source data 1. Numerical data represented in Table 2.

Results are obtained from 100 independent realizations of the IF algorithm.

DOI: https://doi.org/10.7554/eLife.40977.021

Video 1. One realization of the agent-based model

simulation. We visualize a single realization of the

agent-based model during a one-year period. The grey

nodes represent susceptible people, green nodes

represent colonized individuals, and red nodes

highlight infected patients. The contact network

changes from day to day.

DOI: https://doi.org/10.7554/eLife.40977.022
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simulated distributions. This close matching indicates that the model structure and inferred parame-

ters can reliably reproduce the observed outbreak pattern in both space and time (see also Fig-

ure 3—figure supplement 2). In addition to generating a good model fit, the inference system also

discriminates the burdens of nosocomial transmission and infection importation. Nosocomial and

imported infections are distinguished by the location of MRSA colonization: if patients acquire

MRSA in hospital, they are classified as nosocomial transmission cases; otherwise they are imported

cases. Figure 3E compares the distributions of both types of infections generated from 1000 simula-

tions: a substantial number of infections are inferred as importations. In clinical practice, the number

of days between hospital admission and infection is usually used to distinguish hospital-acquired

from community-acquired infections, typically with 48 hr used as the threshold. We performed this

classification and compared the findings with our inference result. As shown in Figure 3—figure sup-

plement 3, the number of imported and nosocomial cases obtained from inference generally

matches the classification result using days from admission to infection.

Our findings indicate that, at its onset, during the first year of the outbreak, UK EMRSA-15 gradu-

ally invaded the hospital system from the community. Only sporadic nosocomial transmission

occurred. With the accumulation of infected and colonized patients in the hospitals, a rise in nosoco-

mial transmission occurred, reflected by an increase of the transmission rate b during the third year

(Figure 3A). Concurrently, both the infection and colonization importation rates, I0 and C0, also

experienced growth. This simultaneous rise may have been caused by household transmission initi-

ated by asymptomatically colonized patients discharged from hospitals. After this growth phase,

10
-4

10
-3

10
-2

10
-1

10
0

T = 40A

B

C

Figure 4. Inference of asymptomatic colonization in Swedish hospitals. (A) Inferred distributions of colonized

patients through time. (B) The distribution of colonization probability for each individual in hospital at T = 40 (week

160) calculated from 104 model simulations. The red line is the power-law fitting. (C) Visualization of individual-

level colonization probability at T = 40. The probability is color-coded in a logarithmic scale. Node size reflects the

number of connections.

DOI: https://doi.org/10.7554/eLife.40977.023

The following source data and figure supplement are available for figure 4:

Source data 1. Numerical data represented in Figure 4.

DOI: https://doi.org/10.7554/eLife.40977.025

Figure supplement 1. (A) The KS statistic for different lower bounds of power-law behavior.

DOI: https://doi.org/10.7554/eLife.40977.024
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both transmission and importation rates were suppressed. Finally, the UK EMRSA-15 outbreak

appears near eliminated in Swedish hospitals, represented by the inferred low values of all parame-

ters. However, if control measures in hospital were to be relaxed, the colonized patients might spark

another outbreak due to the lengthy colonization period, which highlights the need for asymptom-

atic colonization control in order to effect MRSA elimination (Cooper et al., 2004a).

Designing cost-effective interventions
Asymptomatic colonization is a major issue hindering the control and elimination of MRSA in hospi-

tals (Cooper et al., 2004a). Screening can identify colonized patients and evaluate the general colo-

nization burden; however, it is an inefficient and costly measure that wastes resources that otherwise

could be used to solve more urgent problems. As shown above, given the heterogeneity of contact

among patients, levels of exposure to the hazard of colonization differ substantially. As a result,

more efficient intervention strategies can be designed that leverage this individual-level

heterogeneity.

Inference

Number of contacts

Length of stay

Contact tracing

Inference

Number of contacts

Length of stay

Contact tracing

C D

A B

Figure 5. Retrospective control experiment in Swedish hospitals. The cumulative cases of colonization (A) and

infection (B) after decolonizing patients with a hazard of colonization higher than a specified decolonization

threshold. Simulations were performed with decolonization success rates of 100% (blue boxes) and 75% (red

boxes). Distributions were obtained from 1000 realizations of the retrospective control experiment. The inset in (A)

reports the Pearson correlation coefficient between colonization probability estimated in real time and that

obtained using information from the whole course of the epidemic. The inset in (B) shows the number of screened

patients as a function of the decolonization threshold. (C–D) Comparison of the inference-based intervention with

heuristic control measures informed by number of contacts, length of stay and contact tracing. Curves are average

cumulative cases obtained from 1000 experiments with a 100% decolonization success rate.

DOI: https://doi.org/10.7554/eLife.40977.026

The following source data is available for figure 5:

Source data 1. Numerical data represented in Figure 5.

DOI: https://doi.org/10.7554/eLife.40977.027
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In Figure 4A, we display the inferred distribution of colonized patients in the Swedish hospitals

over time. Colonized patient numbers peak in the middle of the record and decline thereafter. To

determine who and where these high-risk individuals reside within the network, we can use the

agent-based model to quantify colonization risk at the individual level. The distribution of individual

colonization probability at T = 40 (week 160), generated from 10
4 simulations using inferred parame-

ters, is displayed in Figure 4B. A clear heavy-tailed power-law distribution y / x�2:13 emerges in

which the colonization probability spans several orders of magnitude (see Figure 4—figure supple-

ment 1 and Appendix 1 for a rigorous statistical analysis of this distribution) (Clauset et al., 2009;

Muchnik et al., 2013). The complex spatiotemporal interaction patterns within the network give rise

to a small number of patients with a disproportionately high risk of colonization. To examine how

these individuals distribute among hospitals, we visualize the colonization probability in Figure 4C.

High-risk patients tend to appear in densely connected clusters.

Cost-effective interventions can be practiced by the targeted screen and decolonization of identi-

fied high-risk patients. In order to evaluate the effectiveness of such interventions, we performed a

retrospective control experiment. Specifically, we used the inferred parameters in Figure 3A to run

the model for 6 years to reproduce the outbreak. Every 4 weeks, we used currently available infor-

mation (as would be available in real time) to estimate patient colonization probabilities (see details

in Materials and methods). The colonization probabilities estimated in real time are highly correlated

with the results obtained using information from the whole course of the epidemic, shown in

Figure 4C. During the model integration, every 4 weeks, we selected patients with an estimated col-

onization probability higher than a certain threshold for screening. If positive, these inpatients were

decolonized. To assess the impact of decolonization success rate on intervention impact, two effi-

ciencies, 100% and 75%, were tested, and we repeated the experiment 1000 times. The findings

show that the proposed intervention strategy can avert considerable numbers of colonization and

infection (Figure 5A–B). Decreasing the decolonization threshold leads to a larger screened popula-

tion (as shown in the inset of Figure 5B), and thus reduces colonization and infection further. How-

ever, the marginal benefit becomes negligible below a certain threshold value, as the remaining

colonized and infected patients are possibly caused by importation, which cannot be directly con-

trolled by inpatient intervention. The decolonization success rate also plays an important role, as

indicated by the increased colonization and infection for the lower success rate.

The advantage of the proposed inference-based intervention can be better appreciated by exam-

ining its additional benefit over other heuristic control measures. Here, we compare the performance

of the inference-based intervention with three alternative screening strategies informed by patient

number of contacts, length of stay and contact tracing. For the former two, at each month, we

ranked patients by their current total number of contacts (i.e. cumulative number of connections in

the time-varying network since admission) or length of stay in a descending order, and created the

screening list using the top-ranked patients. By varying the fraction of patients selected from the

ranking (from 0% to 5%), we can inspect the control results for different numbers of screened

patients. For contact tracing, upon each observation of infection, we tracked patients who stayed in

the same ward with an infected individual within a certain time window prior to the infection, and

screened those possibly colonized patients in hospitals. Tracing time windows ranging from 1 day to

14 days were tested. The number of screened patients does not increase significantly with tracing

times longer than 14 days. Note that, screening and decolonization are performed only within hospi-

tals. If patients listed for screening have already discharged before the diagnosis of infection, they

are screened upon their next re-admission.

In Figure 5C–D, the average numbers of colonized and infected patients are compared based on

the number of screened patients. Heuristic control measures relying on the number of contacts,

length of stay and contact tracing all limit MRSA transmission; however, a substantial additional

reduction in both colonization and infection can be achieved through inference-based intervention.

On average, inference-based screening of approximately 0.89% (6,617/743,599) of all patients can

avert up to 38% (121/315) of infections and 9% (1,610/17,810) of colonizations. In comparison, the

other three methods given similar numbers of screened patients only reduced infections and coloni-

zations by 21% and 4% (number of contacts), 27% and 6% (length of stay), and 28% and 6% (contact

tracing), respectively.

The colonization probability obtained from inference quantifies individual systemic risk given the

general situation of transmission, regardless of the specific location of undetected colonization. In
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contrast, screening based on contact tracing identifies colonized individuals related to observed

infections; however, with an unknown amount of imported colonization, this approach may overlook

a considerable number of colonized patients, who can sustain subsequent transmission. As a result,

the inference-based intervention can identify and treat the pivotal individuals, or superspreaders

(Pei and Makse, 2013; Pei et al., 2014; Pei et al., 2017; Pei et al., 2018b; Teng et al., 2016), who

may otherwise transmit MRSA asymptomatically in the first place. This preventive approach is more

effective than contact tracing in the presence of frequent importation, as it disrupts probable trans-

mission pathways. In real-world hospital settings, the proposed inference-based intervention could

be implemented and evaluated in real time: it only requires hospitalization records and ward

information.

Discussion
In this work, we have developed an agent-based model-inference framework that can estimate noso-

comial MRSA transmission dynamics in the presence of importation. Further, we have shown that

these inferred dynamics can be used to quantify patient colonization risk and guide more effective

interventions.

The transmission dynamics generated using the agent-based model are intrinsically stochastic,

that is, the observed record of UK EMRSA-15 infections is just one realization among an ensemble of

all possible outcomes of an underlying highly stochastic process. In order to evaluate the general

risk of MRSA transmission, key epidemiological parameters were inferred from the single observed

realization. Previous studies have developed methods to infer transmission risk factors and recon-

struct transmission paths using individual-level infection data for diseases such as H1N1 and MERS-

CoV (Cauchemez et al., 2011; Cauchemez and Ferguson, 2012; Cauchemez et al., 2016). In par-

ticular, Bayesian data augmentation approaches have been applied to MRSA models

(Forrester et al., 2007; Kypraios et al., 2010); however, these approaches are not readily applica-

ble to our dataset. The data assimilation scheme we developed here enables estimation of epidemi-

ological parameters and key transmission information using aggregated incidence data. As

demonstrated in the retrospective control experiment, assessment of individual colonization risk

using aggregated data can be quite useful for preventing future MRSA transmission, especially when

stealth importations are frequent.

In this study, we omitted representation of heterogeneity across different wards. This simplifica-

tion is valid for the study Swedish hospitals, as we observed no infection clusters and the model

reproduced key statistics of observations well. However, in other settings, clustering analysis and

ward information may be necessary before the application of the inference system. Should certain

wards suffer a much higher rate of infection, a separate suite of parameters can be defined and

inferred for these wards, using priors that better represent this more intense transmission. We also

only considered transmission among patients staying in the same ward. In the future, more contact

information such as healthcare workers shared by a group of patients could be incorporated into the

contact network. In addition, as the community defined in the model may include non-sampled hos-

pitals, inferred community risk may have been overestimated as it also included contributions from

those healthcare facilities outside the network.

We note that the reported inference results are obtained using only hospitalization records and

UK EMRSA-15 case numbers. Should more data (e.g. surgery or treatment records) become avail-

able, this additional information could be incorporated into the agent-based model and used to

refine the present results. Our model-inference framework provides a foundational platform for flexi-

ble simulation and inference of antibiotic resistant pathogens. In this study, we applied this system

to Swedish hospitals with low MRSA prevalence. However, in the future, it could be used to provide

actionable information for disease control in less developed settings where MRSA is endemic. In a

highly interconnected area, transmission of antibiotic resistant pathogens from endemic regions to

epidemic-free hospitals is more likely. This risk calls for containment measures in the general popula-

tion and collaborative control efforts among multiple healthcare facilities (Smith et al., 2005;

D’Agata et al., 2009; Ciccolini et al., 2014; Slayton et al., 2015).
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Materials and methods

Data description
The dataset contains admission and discharge records of 743,599 distinct patients from 66 hospitals

(271 clinics, 1041 wards) in Stockholm County, Sweden (Jarynowski and Liljeros, 2015;

Rocha et al., 2016), spanning over 3500 continuous days during the 2000s. The exact dates and

ward types are confidential for the protection of patient privacy. In total, 2,041,531 admission

records were collected. The hospitalization dataset is quite comprehensive as the patients constitute

over one third of the total 2.2 million population of Stockholm County. In addition, the dataset also

contains individual diagnostic records of MRSA, which provide relative date of diagnosis and the

strain of MRSA. Diagnosis was performed on patients with symptomatic infections as well as asymp-

tomatic patients in contact with positive cases. A total of 991 positive cases from 172 different

strains were confirmed, and the most prevalent strain was UK EMRSA-15 (289 cases). UK EMRSA-15

is present in 16 countries worldwide (Grundmann et al., 2010; Das et al., 2013). Here, we focus on

this specific strain. Although the dataset spans over 3500 days (nearly 10 years), we limit our study

to a 6-year (300-week) period with reported UK EMRSA-15 incidence. We display time series of 4-

week incidence and cumulative incidence for UK EMRSA-15 in Figure 1A.

Iterated filtering for agent-based models
We infer system epidemiological parameters using an iterated filtering (IF) algorithm (Ionides et al.,

2006; King et al., 2008; Ionides et al., 2011). This algorithm has been coupled with ODE models

and used to infer latent variables associated with the transmission of cholera (King et al., 2008) and

measles (He et al., 2010). The IF framework is designed as follows: an ensemble of system states,

which represent the distribution of parameters, are repeatedly adjusted using filtering techniques in

a series of iterations, during which the variance of the parameters is gradually tuned down. In the

process, the distribution of parameters is iteratively optimized per observations and narrowed down

to values that achieve maximum likelihood. This approach is based on an analytical proof that guar-

antees its convergence under mild assumptions (Ionides et al., 2006).

In its original implementation, the data assimilation method used in IF is sequential Monte Carlo,

or particle filtering (Arulampalam et al., 2002). Here, due to the high computational cost of the

agent-based model, we use a different efficient data assimilation algorithm - the Ensemble Adjust-

ment Kalman Filter (EAKF) (Anderson, 2001). Unlike particle filtering, which requires a large ensem-

ble size (usually of the order O(104) or higher) (Snyder et al., 2008), the EAKF can generate results

similar in performance using only hundreds of ensemble members (Shaman and Karspeck, 2012).

Originally developed for use in weather prediction, the EAKF assumes a Gaussian distribution of

both the prior and likelihood, and adjusts the prior distribution to a posterior using Bayes rule in a

deterministic way such that the first two moments (mean and variance) of an observed variable are

adjusted while higher moments remain unchanged during the update (Anderson, 2001). In epidemi-

ological studies, the EAKF has been widely used for parameter inference and forecast of infectious

diseases (Shaman and Karspeck, 2012; Yang et al., 2015; Pei and Shaman, 2017; Pei et al.,

Table 3. Inferred parameters and 95% CIs for three synthetic tests.

b I0 C0

Actual 9� 10
�3

2� 10
�3

7:5� 10
�2

Inference (weekly) 9:00; ½8:07; 9:68� � 10
�3

1:91; ½1:38; 2:54� � 10
�3

7:18; ½5:84; 8:70� � 10
�2

Actual 6� 10
�3

2� 10
�3

7:5� 10
�2

Inference (weekly) 5:54; ½4:17; 5:80� � 10
�3

2:11; ½1:52; 2:55� � 10
�3

7:05; ½5:79; 8:11� � 10
�2

Actual 9� 10
�3

2� 10
�3

7:5� 10
�2

Inference (monthly) 9:00; ½8:17; 9:66� � 10
�3

1:99; ½1:21; 2:64� � 10
�3

7:14; ½5:99; 9:04� � 10
�2

DOI: https://doi.org/10.7554/eLife.40977.029
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2018a; Kandula et al., 2018). The implementation details of the EAKF are introduced in Appendix

1.

In this study, we focus on the inference of three transmission-related parameters: the nosocomial

transmission rate b, the infection importation rate I0 and the colonization importation rate C0. The

initial prior ranges for these parameters are reported in Table 1. Other disease-related parameters,

for example the spontaneous decolonization rate a, the infection progress rate p, and the recovery

rate �, are drawn uniformly from ranges obtained from previous studies for each individual in the

agent-based model (see Table 1). Should more specific information about these parameters become

available, it may be possible in the future to better constrain the model with their incorporation into

the system. In synthetic testing of the IF-EAKF algorithm, we use weekly incidence as observations.

Given the parameter vector, z ¼ ðb; I0;C0Þ
T , the IF-EAKF algorithm proceeds per the pseudo-code in

Algorithm 1. During the EAKF update, only the parameters b, I0 and C0 were adjusted; the micro-

scopic state (S, C or P) in each ensemble member was set as the state at the end of previous time

step and was not adjusted. Detailed explanation of the IF-EAKF system is provided in Appendix 1.

In each iteration of the IF, the standard deviation of each parameter is shrunk by a factor

a 2 ð0; 1Þ (or equivalently, the variance is discounted by a factor of a2). In practice, the discount factor

a can range between 0.9 and 0.99 (Ionides et al., 2006). If a is too small, the algorithm may ‘quench’

too fast and fail to find the MLE; if it is too close to 1, the algorithm may not converge in a reason-

able time interval. We stop the IF algorithm once the estimates of the ensemble mean stabilize. The

number of iterations required for this convergence was determined by inspecting the evolution of

posterior parameter distributions, as in Figure 2A. Note that once the ensemble mean stabilizes,

increasing the iteration time will not affect the MLE, although it can lead to a further narrowing of

the ensemble distribution.

Algorithm 1 only returns the MLEs for the parameters; however, it is also desirable to obtain CIs

for those MLEs. For deterministic ODE models, Ionides et al. used ‘sliced likelihood’ to numerically

estimate the Fisher information and standard errors (SEs) of MLEs (Ionides et al., 2006). Here, for a

highly stochastic system, evaluating the Fisher information numerically is challenging. As a result, we

took another approach by running multiple realizations of the IF algorithm. In different runs, the

MLEs are slightly different due to stochasticity in the agent-based model and in the initialization of

the inference algorithm. In this work, we ran 100 independent realizations to generate the average

MLEs of inferred parameters and their corresponding 95% CIs. Results from synthetic tests indicate

that this approach is effective in calculating MLEs and quantifying their uncertainties.

Algorithm 1. IF–EAKF

Input: An agent-based model M in a time-varying contact network GðV ;E; tÞ, the number of observations T ,

incidence fotg, the observational error variance (OEV) fs2

t;og, the initial system parameters �z0 ¼ ðb; I0;C0Þ
T , the initial

covariance matrix S, a discount factor a 2 ð0; 1Þ, and the number of iterations L.
for l ¼ 1 to L do

Generate an ensemble of parameter vectors with n members using a multivariate Gaussian distribution:

fẑl
0
gn ~Nð�zl�1; a2ðl�1Þ

SÞ.
for t ¼ 1 to T do

Run the agent-based modelM with posterior fẑlt�1
gn obtained from last update for one week, and return the

ensemble of incidence: foltgn ¼ MðG; fẑlt�1
gnÞ.

Update the prior distribution of parameters b, I0 and C0 : z
l
t

� 	

n
� fẑlt�1

gn to posterior fẑltgn using the EAKF,

foltgn, fs
2

t;og and fotg. Individual states are evolved per the agent-based model and are not updated by the EAKF.

end for
Calculate the ensemble mean of the posterior over time as the input in next iteration:

�zl ¼
P

tEðfẑ
l
tgnÞ=T , where E computes the ensemble mean.

end for
Output: �zL as the MLE of the parameter vector.

An alternative method to infer posterior parameters is to use Approximate Bayesian computation

(ABC) (Beaumont et al., 2002). ABC-based methods employ numerical simulations to approximate

the likelihood function, in which the simulated samples are compared with the observed data. In a

typical ABC rejection algorithm, large numbers of parameters are sampled from the prior distribu-

tion. For each set of parameters, the distance between simulated samples (generated using the

parameters) and observed data is calculated. Parameters resulting in a distance larger than a certain

tolerance are rejected, and the retained parameters form the posterior distribution. ABC methods
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can fully explore the likelihood landscape in parameter space. However, it requires large numbers of

simulations, which may be prohibitive for the large-scale agent-based models considered here. In

addition, a good choice of the tolerance in the rejection algorithm is needed. The IF algorithm,

instead, is applicable to computationally expensive agent-based models, but may become trapped

in the local optimum of the posterior distribution. In practice, this problem can be alleviated by

exploring a larger prior parameter space and setting a slower quenching speed, that is, a smaller dis-

count factor a.

Inferred parameters and 95% CIs for three synthetic tests
We report the inferred parameters and their corresponding 95% CIs for the synthetic tests in Table 3.

The actual parameters used to generate the synthetic outbreaks are also reported. Results are

obtained from 100 independent realizations of the IF algorithm.

Inference-based intervention
To guarantee a fair comparison between the inference-based intervention and other heuristic strate-

gies, we estimated the colonization probability using only real-time information available before con-

trol measures are effected. For instance, to estimate the colonization probability at the fifth month

in the third year, we first infer the model parameters for the first 2 years, where we have data from

the whole year, and then use the partial observation in the remaining 5 months to infer the model

parameters for the third year. The inferred parameters are then used to generate 1000 synthetic out-

breaks from the beginning, and the current colonization probability for each individual is calculated

from these simulations. In the inset of Figure 5A, we show that the colonization probability esti-

mated in real time is highly correlated with that obtained using information from the entire outbreak

record. In practice, every 4 weeks, the estimated colonization probability and the decolonization list

were updated. The inference-based intervention only uses information available at the time control

measures are effected. As a consequence, it is a practical method that can be implemented in real

time.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.40977.032

Analysis of the hospitalization traffic
We performed an analysis of the admission and discharge traffic in the study hospitals. In the

hospitals, the inpatient population changed on a daily basis. To quantify the speed of patient

renewal, we define a patient overlap ratio at day t as QðtÞ ¼ jZðt � 1Þ \ ZðtÞj=jZðt � 1Þj, where

ZðtÞ is the set of patients in the hospital at day t, and jZðtÞj is the number of those patients. In

Figure 1—figure supplement 2A, we present the evolution of QðtÞ during a period of 300

days. QðtÞ exhibits a somewhat periodic behavior with a period of 7 days (see the inset of

Figure 1—figure supplement 2A). This is possibly due to reduced patient traffic during

weekends.

We next examined the total number of patients in the study hospitals. As shown in

Figure 1—figure supplement 2B, the in-hospital patient number fluctuates between 4000 and

7000. Patient numbers exhibit a periodic behavior at an annual time-scale, as well as at finer

weekly time-scale. We also present the number of new patients (with respect to the patients

present the previous day) in the hospitals each day in Figure 1—figure supplement 2B. The

number of new patients is relatively small compared with the total patients.

The distribution of patient time in hospital follows a power-law shape with a heavy tail (see

Figure 1—figure supplement 2C). Such heterogeneity leads to high spatiotemporal contact

network complexity. In fact, the contact time between all pairs of patients follows a similar

power-law distribution, as shown in the upper inset of Figure 1—figure supplement 2C. The

readmission time, that is, individual patient time between discharge and next admission, is a

key parameter in MRSA transmission models. The lower inset of Figure 1—figure supplement

2C indicates that this readmission time is also quite heterogeneous, spanning from several

days to up to a few years.

Next we examined the topological features of the weekly aggregated contact network in

Figure 1—figure supplement 2D, which shows the number of patients in the giant connected

component (GCC) and the entire contact network. While most patients belong to the GCC,

there also exist many fragmented small connected components (CCs). The total number of

CCs in the contact network is also presented in Figure 1—figure supplement 2D. About 100

CCs coexist in the network each week, but the size of small CCs is usually below 200, as

shown in the inset of Figure 1—figure supplement 2D. Connections between different CCs

change over time due to the transfer and readmission of patients. 128,119 patients were

transferred from one ward to another during their stay, and another 280,506 patients were

readmitted within one year of their previous discharge. These patient movements connect

healthcare facilities that would otherwise be isolated in the network and are responsible for

long-range transmission across multiple hospitals.

Given the large heterogeneity in the network structure and contact time, a traditional

compartmental model using ordinary differential equations (ODE) may not adequately capture

actual transmission dynamics. Therefore, in this study we adopt an individual-level agent-

based model.

Equation-Free approach
Instead of using a parsimonious ordinary differential equation model, we employ an agent-

based model to account for the spatiotemporal complexity of the underlying contact patterns.

In particular, agent-based models can be used to simulate epidemic spread using an Equation-

Free approach (Kevrekidis et al., 2003). The transmission process evolves following

microscopic update rules defined at the individual-level, and macroscopic states are

aggregated from the total simulated population.

The Equation-Free approach has been widely used for multi-scale modeling in applied

mathematics and statistical physics. It consists of three basic elements: (1), lift, which

transforms macroscopic observations through lifting to one or more consistent microscopic
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realizations; (2), evolve, which uses the microscopic simulator to evolve these realizations for a

given time; and (3), restrict, which aggregates the evolved microscopic realizations to obtain

the macroscopic observation.

In the MRSA transmission model, some quantities, for example colonization importation,

infection importation, and weekly incidence, are macroscopic values aggregated from the

individual-level states. In model simulation, we first need to lift these macroscopic quantities to

consistent microscopic realizations. To do this, we maintained multiple realizations (300

ensemble members) of individual-level states. For each new patient entering the hospitals, a

random number r was generated from a uniform distribution �~U½0; 1�. If � � I0,

I0 � � � I0 þ C0, or � � I0 þ C0, and used to designate the new patient as infected, colonized

or susceptible, respectively. This lifting procedure was performed for all realizations and

produced an ensemble of possible microscopic states. These individual-level states were then

evolved following the rules defined in the model over the time-varying contact network

GðV ;E; tÞ. The model estimate of the observed state, that is 4 week incidence, was obtained

by aggregating the total number of new infections across the entire population in the study

hospitals. This aggregated, macroscopic state is then used in conjunction with the EAKF

algorithm to update the parameter vector z ¼ ðb; I0;C0Þ
T (see Materials and methods in main

text). This multi-scale method enables system-level analysis directly from microscopic

simulations, which bypasses the need to derive macroscopic evolution equations.

The Ensemble Adjustment Kalman Filter
To represent the state-space distribution, the EAKF maintains an ensemble of system state

vectors acting as samples from the distribution. In particular, the EAKF assumes that both the

prior distribution and likelihood are Gaussian, and thus can be fully characterized by their first

two moments, that is mean and covariance. The update scheme for ensemble members is

computed using Bayes’ rule (posterior / prior � likelihood) via the convolution of the two

Gaussian distributions. For observed state variables, the posterior of the ith ensemble member

is updated through

oit;post ¼
s2

t;obs

s2

t;obs þs2
t;prior

�ot;prior þ
s2

t;prior

s2

t;obs þs2
t;prior

ot þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

t;obs

s2

t;obsþs2
t;prior

s

ðoit;prior � �ot;priorÞ: (1)

Here oit;post and oit;prior are the posterior and prior of the observed variable for the ith

ensemble member at time t; �ot;prior is the mean of the prior observed variable; s2

t;obs and s2

t;prior

are the variances of the observation and the prior observed variable; and ot is the observation

at time t. Unobserved variables and parameters are updated through their covariability with

the observed variable, which can be computed directly from the ensemble. In particular, the

ith ensemble member of unobserved variable or parameter xi is updated by

xit;post ¼ xit;prior þ
sðfxt;priorgn;fot;priorgnÞ

s2
t;prior

ðoit;post � oit;priorÞ: (2)

Here xit;post and xit;prior are the posterior and prior of the unobserved variable or parameter

for the ith ensemble member at time t; and sðfxt;priorgn; fot;priorgnÞ is the covariance between

the prior of the unobserved variable or parameter fxt;priorgn and the prior of the observed

variable fot;priorgn at time t. In the EAKF, variables and parameters are updated

deterministically so that the higher moments of the prior distribution are preserved in the

posterior.

Synthetic tests
To generate synthetic outbreak observations, we used the agent-based model to simulate

weekly incidence during a one-year period (52 weeks), and then imposed noise to produce the

observations used in inference. The synthetic outbreak tested in Figure 2 was generated with

the parameters b ¼ 9� 10
�3, I0 ¼ 2� 10

�3 and C0 ¼ 7:5� 10
�2. To mimic actual observational

error variance, we assumed an observational error variance (OEV) of
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s2

t;o ¼ 10þ ð0:1� osimulateðtÞÞ
2, which is a baseline uncertainty plus a term related to the

simulated incidence osimulateðtÞ. In reality, because we have only one data point at each

observation time point, the variance of observed incidence is unknown. As such, we have to

use a heuristic OEV in the inference algorithm. The above form of OEV has been successfully

used in real-time influenza forecast (Shaman and Karspeck, 2012; Pei and Shaman, 2017;

Pei et al., 2018a; Kandula et al., 2018), and also produces satisfactory performance in the

following synthetic tests. The observation used in the inference was drawn from a Gaussian

distribution oðtÞ~NðosimulateðtÞ;s2

t;oÞ. The initial system state �z0 was drawn from the following

ranges b 2 ½0; 0:001�, I0 2 ½0; 0:003� and C0 2 ½0; 0:1�, using Latin Hypercube Sampling (LHS)

(Tang, 1993). For simplicity, the initial covariance matrix was assumed to be diagonal

S ¼ diagððzmax � zminÞ
2=16Þ, where zmax and zmin are the vectors of the upper and lower bounds

of parameters b, I0 and C0. In each iteration, the covariance matrix was contracted by a factor

of a2 (equivalent to a reduction of the standard deviation by a factor of a). We used a discount

factor of a ¼ 0:9 and terminated the algorithm at L ¼ 20 iterations. For the EAKF, n ¼ 300

ensemble members were used.

We validated the IF-EAKF inference framework for different synthetic scenarios. Figure 2

presents the synthetic situation where nosocomial transmission accounts for the majority of

incidence (see Figure 2D–E). To evaluate the goodness of fit for incidence number in

Figure 2B, we performed the following statistical analysis. As the agent-based model is a

highly stochastic system, the observed incidence in Figure 2B is only one possible outcome of

the actual dynamics, whereas in our analysis, the stochasticity of incidence number needs to

be considered. To this end, we compared several summary statistics quantifying the goodness

of fit in Figure 2B with their distributions calculated from synthetic outbreaks (surrogate data)

generated from the inferred dynamics. We first considered the log likelihood of observations.

In particular, we generated 1000 synthetic outbreaks using the inferred parameters, and

approximated the distribution of incidence number at each week. Then we calculated the log

likelihood for the observed incidence in each synthetic outbreak, and estimated its distribution

using these 1000 log likelihood values computed from the surrogate data. In Figure 2—figure

supplement 1A, we compared the log likelihood computed from Figure 2B (vertical red line)

with this distribution (blue bars) and calculated the 2-sided p-value. The p-value is well above

zero, indicating that, in terms of log likelihood, our inferred dynamics span and thus agree well

with the observed incidence. In other words, the observed incidence in Figure 2B is a typical

outcome from our inferred dynamics. The same analysis was also applied to root-mean-square

error (RMSE), coefficient of determination (R2) and Pearson correlation coefficient (Figure 2—

figure supplement 1B–D). The RMSE, R2 and Pearson correlation coefficient were calculated

using the incidence time series in each synthetic outbreak and the mean incidence time series

averaged over 1000 simulations.

For the opposite situation in which nosocomial transmission is less than importation, we

performed the same test. In this case, we set b ¼ 6� 10
�3, I0 ¼ 2� 10

�3 and C0 ¼ 7:5� 10
�2.

The distributions of posterior parameters after each iteration (blue boxes) shown in Figure 2—

figure supplement 2A are gradually adjusted to their targets (red horizontal lines). We ran

100 independent realizations of the inference, and report the inferred values and 95% CIs for

the parameters b, I0 and C0 in Table 3. Additionally, weekly incidence, colonized population,

and nosocomial and imported infections can be generally reproduced with the inferred

parameters (see Figure 2—figure supplement 2B–E). The goodness of fit in Figure 2—figure

supplement 2B is analyzed in Figure 2—figure supplement 3.

We finally tested the effect of observation frequency. In the actual diagnostic data from the

Swedish hospitals, weekly incidence is very low. To account for the large uncertainty in weekly

observation, we instead use 4 week incidence. In Figure 2 and Figure 2—figure supplement

2, we used weekly observations; in Figure 2—figure supplement 4, we assimilated 4 week

incidence for a synthetic outbreak generated with the same parameter setting as in Figure 2.

The findings indicate that this change of observational frequency does not affect the

performance of the inference system. The inferred values and 95% CIs for the parameters b, I0
and C0 are reported in Table 3. The goodness of fit in Figure 2—figure supplement 4B is

analyzed in Figure 2—figure supplement 5.
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Inference using the actual diagnostic data
Beginning with the first year, we ran the IF inference sequentially through each year. The initial

ranges of parameters are set as b 2 ½�; 0:01�, I0 2 ½0; 0:001� and C0 2 ½0; 0:1�. The initial

covariance matrix is set as S ¼ diagððzmax � zminÞ
2=16Þ, where zmax and zmin are the vectors of

the upper and lower bound of parameters b, I0 and C0. In EAKF, the OEV is defined as

s2

t;o ¼ 1þ ð0:1� otÞ
2, where ot is the observed incidence at time t. In each year, we ran L ¼ 20

iterations using a discount parameter of a ¼ 0:9. Between two consecutive years, we used the

ensemble of inferred parameters and microscopic states of individuals in the previous year to

initialize the inference system in the next year in order to maintain the continuity of the

transmission dynamics. The evolution of the posterior parameter distributions for 20 iterations

through the 6 year record is shown in Figure 3—figure supplement 1. In general, the

ensemble means of parameters become stable after 10 iterations with the EAKF through the

record, which means our choice of L ¼ 20 is sufficient. Note that increasing L will lead to

narrower distributions of posterior parameters in Figure 3—figure supplement 1, but will not

affect the MLEs, that is the ensemble mean. We repeated the inference 100 times and

obtained the inferred parameters and corresponding 95% CIs reported in Table 2. We further

performed an evaluation of the goodness of fit in Figure 3—figure supplement 2. All

statistics have p-values well above zero. This implies the observed incidence in Figure 3B is a

plausible outcome from the inferred dynamics.

Following inference, we used the mean estimated parameters to simulate outbreaks. Key

information, for example incidence (Figure 3B), the infections transmitted in hospital and

imported from outside the study hospitals (Figure 3E), the colonized population (Figure 4A),

and the individual-level colonization rate (Figure 4B–C) were obtained from these simulations.

Statistical test of power-law distribution
We used a maximum likelihood estimator to fit and validate the power-law data in Figure 4B.

For computational convenience, we fit the count of infections of each individual among 10
4

simulations (that is, we multiply the frequency in Figure 4B by 104). Denote the count data by

X ¼ ðx1; x2; � � � ; xnÞ, and suppose the data satisfy a power-law distribution PðxiÞ / x
�g
i . Usually,

empirical data follow a power-law behavior above a lower bound: PðxiÞ / x
�g
i for

xi � xmin (Clauset et al., 2009). For a given xmin, the maximum likelihood estimator of the

power-law exponent g for discrete data is ĝ ¼ 1þ n½
Pn

i¼1
lnðxi=xmin � 1=2Þ��1 (Clauset et al.,

2009). The standard error on ĝ is estimated by s ¼ ðĝ � 1Þ=
ffiffi

ð
p

nÞ þ Oð1=nÞ. To find the best

lower bound, xmin ranging from 0 to 100 was tested. The best xmin was selected by choosing

the value that minimizes the Kolmogorov-Smirnov (KS) statistic between the data and the

fitted model. KS statistic is the maximum distance between two cumulative distribution

functions (CDFs): D ¼ maxx�xmin jSðxÞ � PðxÞj, where SðxÞ is the CDF of the data larger than xmin,

and PðxÞ is the CDF of the power-law model obtained from MLE. In Figure 4—figure

supplement 1A, the change of KS statistic for different xmin values is reported. We choose the

best xmin value as 24. The fitted power-law exponent is ĝ ¼ 2:13 with a standard deviation of

0.12.

To test the statistical significance of the power-law fitting, we generated 10
4 synthetic

datasets using the fitted model, computed their KS statistic with respect to the model, and

compared the obtained distribution with the KS statistic of the data in Figure 4—figure

supplement 1B. If the p-value of the observed KS statistic is close to 0, we reject the

hypothesis that the data are generated from the fitted model; otherwise, the power-law fitting

is statistically significant. This approach has been widely used in testing the statistical

significance of power-law fitting (Clauset et al., 2009; Muchnik et al., 2013). The 2-sided

p-value for our data is 0.5374.
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