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Abstract Eukaryotic cells modulate their metabolism by organizing metabolic components in
response to varying nutrient availability and energy demands. In rat axons, mitochondria respond
to glucose levels by halting active transport in high glucose regions. We employ quantitative
modeling to explore physical limits on spatial organization of mitochondria and localized metabolic
enhancement through regulated stopping of processive motion. We delineate the role of key
parameters, including cellular glucose uptake and consumption rates, that are expected to
modulate mitochondrial distribution and metabolic response in spatially varying glucose conditions.
Our estimates indicate that physiological brain glucose levels fall within the limited range necessary
for metabolic enhancement. Hence mitochondrial localization is shown to be a plausible regulatory
mechanism for neuronal metabolic flexibility in the presence of spatially heterogeneous glucose, as
may occur in long processes of projection neurons. These findings provide a framework for the
control of cellular bioenergetics through organelle trafficking.

DOI: https://doi.org/10.7554/eLife.40986.001

Introduction
Cellular metabolism comprises an intricate system of reactions whose fine-tuned control is critical to
cell health and function. A number of quantitative studies have focused on metabolic control
through modulating reactant and enzyme concentrations and turnover rates (Grima and Schnell,
2006; Amar et al., 2008). However, these studies generally neglect the spatial organization of meta-
bolic components within the cell. By localizing specific enzymes in regions of high metabolic demand
(Laughton et al., 2007, Zecchin et al., 2015), as well as clustering together consecutively acting
enzymes (O’Connell et al., 2012), cells have the potential to substantially enhance their metabolism.
Spatial organization is particularly critical in highly extended cells, such as mammalian neurons,
whose axons can grow to lengths on the meter scale. Metabolic demand in neurons is spatially and
temporally heterogeneous, with especially rapid ATP turnover found in the presynaptic boutons
(Rangaraju et al., 2014), and ATP requirements peaking during synaptic activity and neuronal firing
(Shulman et al., 2004; Ferreira et al., 2011, Weisova et al., 2009). Neurons rely primarily on glu-
cose as the energy source for meeting these metabolic demands (Peppiatt and Attwell, 2004). Due
to the long lengths of neural processes, the glucose supply can vary substantially over different
regions of the cell (Ferreira et al., 2011, Weisova et al., 2009, Hall et al., 2012). In myelinated neu-
rons, for instance, it has been speculated that glucose transport into the cell is localized primarily to
narrow regions around the nodes of Ranvier (Magnani et al., 1996; Harris and Attwell, 2012; Rose-
nbluth, 2009), which can be spaced hundreds of microns apart (Ibrahim et al., 1995; Butt et al.,
1998). Glucose transporters in neurons have also been shown to dynamically mobilize to active syn-
apses, providing a source of intracellular glucose heterogeneity (Ashrafi et al., 2017). Furthermore,
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elLife digest Cells are equipped with power factories called mitochondria that turn nutrients
into chemical energy to fuel processes in the cell. Hundreds of mitochondria move throughout the
cell, shifting their positions in response to energy demands. This happens via molecular motors that
pick the mitochondria up and carry them to new locations. Such movements enable the
mitochondria to accumulate in parts of the cell with the greatest energy needs.

Mitochondria of nerve cells or neurons have a particular challenging job, as neurons can be very
long and different parts within the cells can have different energy needs. It has been shown that
mitochondria stop in regions where nutrients such as sugar are most concentrated. So far, it has
been unclear whether this regulated stopping helps control energy balance in neurons.

Here, Agrawal et al. used a computational model of rat neurons to find out whether sugar levels
are sufficient in guiding mitochondria. The results showed that the mitochondria only accumulated in
high-nutrient regions when the sugar concentrations were moderate — not too low and not too high.
A specific range of sugar levels was necessary to make this mechanism useful for increasing the
efficiency of energy production. Such concentrations match the ones observed in healthy rat brains.

When neurons are unable to meet their energy demands, they stop working and sometimes even
die. This is the case in many diseases, including diabetes, dementia, and Alzheimer’s disease.
Computer models allow us to explore the complex energy regulation in detail. A better
understanding of how neurons regulate their energy production and demand may help us discover
how they become faulty in these diseases.

DOI: https://doi.org/10.7554/eLife.40986.002

varying levels of activity in the mammalian brain may lead to varying extracellular glucose levels,
resulting in spatially heterogeneous nutrient access (Hawkins et al., 1979). Individual axons have
been shown to span across multiple regions of the brain (Matsuda et al., 2009), enabling them to
encounter regions with different glucose concentrations.

Most ATP production in neurons occurs within mitochondria: motile organelles that range from
interconnected networks to individual globular structures that extend throughout the cell. As energy
powerhouses and metabolic signaling centers of the cell, mitochondria are critical for neuronal
health (Nunnari and Suomalainen, 2012). Their spatial organization within the neuron plays a pivotal
role in growth and cell physiology (Li et al., 2004). Defects in mitochondrial transport are involved in
the pathologies of several neurological disorders such as peripheral neuropathy and Charcot-Marie-
Tooth disease (Baloh, 2008; Baloh et al., 2007).

A number of studies have shown that mitochondria are localized preferentially to regions of high
metabolic demand, such as the synaptic terminals (Li et al., 2004; Chang and Reynolds, 2006).
Such localization can occur via several molecular mechanisms, mediated by the Miro-Milton mito-
chondrial motor adaptor complex that links mitochondria to the molecular motors responsible for
transport (Mishra and Chan, 2016). Increased Ca®* levels at active synapses lead to loading of cal-
cium binding sites on Miro, releasing mitochondria from the microtubule and thereby halting trans-
port (Wang and Schwarz, 2009; Macaskill et al., 2009). High glucose levels can also lead to
stalling, through the glycosylation of motor adaptor protein Milton by the glucose-activated enzyme
O-GlcNAc transferase (OGT) (Pekkurnaz et al., 2014). This mechanism has been shown to lead to
mitochondrial accumulation at glucose-rich regions in cultured neurons (Pekkurnaz et al., 2014). It
is postulated to regulate mitochondrial spatial distribution, allowing efficient metabolic response to
heterogeneous glucose availability.

Mitochondrial positioning relies on an interplay between heterogeneously distributed diffusive
signaling molecules (such as Ca?* and glucose), their consumption through metabolic and other
pathways, and their effect on motor transport kinetics. While the biochemical mechanisms and physi-
ological consequences of mitochondrial localization have been a topic of much interest in recent
years (MacAskill and Kittler, 2010; Mishra and Chan, 2016), no quantitative framework for this
phenomenon has yet been developed.

In this work we focus on glucose-mediated regulation of mitochondrial transport, developing
quantitative models to examine the consequences of this phenomenon for metabolism under
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spatially varying glucose conditions. Our approach relies on a reaction-diffusion formalism, which
describes the behavior of species subject to both consumption and diffusion. Reaction-diffusion sys-
tems have been applied to describe the spatial organization of a broad array of cellular processes
(Kondo and Miura, 2010), ranging from protein oscillations in E. coli (Howard et al., 2001), to coor-
dination of mitotic signalling (Chang and Ferrell, 2013), to pattern formation in developing embryos
(Bunow et al., 1980; Gregor et al., 2005). The response of actively moving particles to spatially het-
erogeneous, diffusive regulators has also been extensively investigated in the context of chemotaxis
(Van Haastert and Devreotes, 2004). In contrast to most chemotactic cells, however, mitochondria
have no currently known mechanism for directly sensing glucose gradients. Instead, they are
expected to accumulate in response to local glucose concentration only. Our goal is to delineate the
regimes in which such a crude form of chemotaxis can lead to substantial spatial organization and
enhancement of metabolism.

Specifically, we model the modulation of mitochondrial density with glucose concentration in a
tubular axonal region, focusing on two forms of spatial heterogeneity. In one case, we consider an
axonal domain between two localized regions of glucose entry, representing the internodal region
between nodes of Ranvier in myelinated neurons (Figure 1a). The second case focuses on an unmy-
elinated cellular region with continuous glucose permeability, embedded in an external glucose gra-
dient (Figure 1b). In both cases, we show that mitochondrial accumulation and enhanced metabolic
flux is expected to occur over a limited range of glucose concentrations, which overlaps with physio-
logical brain glucose levels. Our simplified quantitative model allows identification of a handful of
key parameters that govern the extent to which glucose-mediated mitochondrial halting can modu-
late metabolism. We establish the region of parameter space where this mechanism has a substantial
effect, and highlight its potential importance in neuronal metabolic flexibility and ability to respond
to spatially varying glucose.

Results

Minimal model for mitochondrial and glucose dynamics
We begin by formulating a quantitative model to describe the spatial localization of mitochondria
that halt in a glucose-dependent manner, in the presence of localized sources of glucose. This
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Figure 1. Schematic diagram of a simplified model for glucose-mediated mitochondrial transport regulation. (a) Myelinated axonal region, with glucose
entry localized at the nodes of Ranvier. Mitochondria accumulate at nodes due to the higher glucose concentration (b) Unmyelinated axonal region,
subject to a linear glucose gradient. Glucose permeability is uniform throughout, with mitochondrial accumulation occuring at the region of high
external glucose (c) Key steps of the metabolic pathway linking glucose availability and mitochondrial halting. (d) Mitochondrial transport states and
rates of transition between them (W.. represents retrograde and anterograde motion, S represents the stationary state).

DOI: https://doi.org/10.7554/eLife.40986.003
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situation arises in myelinated neurons, which have glucose transporters enriched at the nodes of
Ranvier, leading to highly localized sources of glucose spaced hundreds of micrometers apart within
the cell (Saab et al., 2013).

Neuronal glucose transporters are known to be bidirectional (Simpson et al., 2007), allowing glu-
cose concentration within the cell to equilibrate with external glucose. For simplicity, we assume
rapid transport of glucose through these transporters, so that the internal concentration of glucose
at the nodes where transporters are present is assumed to be fixed. The cellular region between
two glucose sources is modeled as a one-dimensional interval of length L with glucose concentration
fixed to a value ¢p at the interval boundaries (Figure 1a). Glucose diffuses throughout this interval
with diffusivity D, while being metabolized by hexokinase enzyme in the first step of mammalian glu-
cose utilization (Figure 1c) (Wilson, 2003).

The concentration of glucose is thus governed by the reaction-diffusion equation,

dG DaZG
dr ox2

—k(x)G(x) (D)

where k(x) describes the spatial distribution of the hexokinase enzyme as well as the rate of con-
sumption. In the case of spatially uniform, linear consumption [k(x) =k, a constant] this equation can
be solved directly, yielding a distribution of glucose that falls exponentially from each source bound-
ary, with a decay length A = /D/k (Kholodenko, 2006).

Hexokinase 1 (HK1), the predominant form of hexokinase expressed in neurons, is known to local-
ize preferentially to mitochondria (John et al., 2011), which in mammalian axons can form individual
organelles approximately 1 um in length (Fawcett, 1981). We carry out numerical simulations of
Equation 1 where consumption is limited to locations of individual discrete mitochondria, repre-
sented by short intervals of length A. Specifically, we define the mitochondria density as
M(x) = n(x)/(mr*A), where n(x) is the number of mitochondria overlapping position x, and r is the
axon radius. The phosphorylation of glucose by mitochondrial hexokinase is assumed to follow
Michaelis-Menten kinetics, described by

kM (x)

=50+ K @

where K is the saturation constant and kg is the turnover rate of glucose (per unit time per mito-
chondrion). The turnover rate kg incorporates both the catalytic rate of hexokinase and the number
of hexokinase enzymes per mitochondrion. This expression reduces to the case of constant linear
consumption when glucose concentration is low (G < Kj;) and mitochondria are uniformly distributed
throughout the region.

In general, glucose consumption depends on the location of mitochondria within the domain.
Mitochondrial distribution in neurons is known to be mediated through regulation of their motor-
driven motility (Chang and Reynolds, 2006; Pekkurnaz et al., 2014). Individual mitochondria switch
between processively moving and paused states, modulated by the interplay between kinesin and
dynein motors and the adaptor proteins that link these motors to the mitochondria (Schwarz, 2013).
In our model, we simulate mitochondria as stochastically switching between a processive walking
state that moves in either direction with velocity v and a stationary state. The rate of initiating a walk
(ky) is assumed to be constant, while the halting rate (k,(x)) can be spatially heterogeneous. For sim-
plicity, we assume the mitochondria are equally likely to move in the positive (+) or negative (-) direc-
tion each time they initiate a processive walk (Figure 1b).

It has recently been demonstrated that the key motor adaptor protein (Milton) is sensitive to glu-
cose levels, halting mitochondrial motility when it is modified through O-GlcNAcylation by the OGT
enzyme (Pekkurnaz et al., 2014). Our model employs a highly simplified description of mitochon-
drial dynamics, which assumes that all pauses are associated with such an O-GlcNAcylation event.
Recovery from the pause at the constant rate k,, corresponds to removal of the modification through
the activity of the complementary enzyme O-GlcNAcase (OGA). Although there is evidence indicat-
ing long-term glucose deprivation can reduce OGA expression (Zou et al., 2012), for simplicity we
assume in our model that OGA activity is independent of glucose levels. In vivo axonal mitochondria
have been observed to undergo short-lived sporadic pausing while continuing to move processively
in their previous anterograde or retrograde direction (Russo et al., 2009; Wang and Schwarz,

Agrawal et al. eLife 2018;7:€40986. DOI: https://doi.org/10.7554/eLife.40986 4 of 27


https://doi.org/10.7554/eLife.40986

LI F E Physics of Living Systems

2009). Such pauses are subsumed into an effective processive velocity v in our model. Other sources
of pausing, such as Ca®*-regulated motor disengagement, PINK1/Parkin-mediated detachment of
motors, and anchoring to the microtubules by syntaphilin (Schwarz, 2013), are not considered here
in order to focus specifically on the effect of glucose-dependent mitochondrial spatial organization.

Upon entry into the cell, the first rate-limiting step of glucose metabolism is its conversion into
glucose-6-phosphate by hexokinase. Further downstream metabolic pathways split, with much of
the flux going to glycolysis while a small fraction is funneled into the pentose phosphate pathway
and the hexosamine biosynthetic pathway (HBP). The HBP produces UDP-GIcNAc, the sugar sub-
strate for O-GlcNAcylation (Figure 1c) (Hart et al., 2011). In our model, we assume that the rate of
UDP-GIcNAc production equals the rate of glucose conversion by hexokinase, scaled by the fraction
of G6P that is channeled into the hexosamine biosynthetic pathway. This assumption is valid if, at
each point of pathway branching, the Michaelis-Menten saturation constants for the two branches
are similar. This in fact appears to be the case for both the branching of the pentose phosphate
pathway and glycolysis from the hexosamine biosynthetic pathway which is the focus of this work
(see Appendix 2). Consequently, saturation of the initial glucose conversion step will imply saturation
of the entire hexosamine biosynthetic pathway. We therefore model the kinetics of Milton modifica-
tion using the same Michaelis-Menten form as for hexokinase activity, with the pathway flux leading
to Milton modification subsumed within a rate constant for mitochondrial stopping (k).

We note that the subcellular organization of the intermediates in the conversion from glucose
into O-GlcNAcylated Milton is largely unknown. In our model, we make the extreme case assump-
tion that all intermediates are localized to mitochondria, with only the initial glucose substrate capa-
ble of diffusing through the cytoplasm. We note that cytoplasmic diffusion of any of the pathway
intermediates would attenuate the effect on mitochondrial localization. Our simplified model thus
gives an upper limit on the extent to which mitochondria can localize at high glucose regions
through the Milton modification mechanism. Following these simplified assumptions, we treat the
kinetics of mitochondrial halting as dependent only on the local glucose concentration, according to
the functional form

k) = &)

where K, is the Michaelis-Menten constant of hexokinase.

We proceed to evolve the simulation forward in time, with glucose consumption localized to
regions within £A/2 of each discrete mitochondrial position (details in Materials and methods). A
snapshot of one simulation run is shown in Figure 2a, highlighting the accumulation of stationary
mitochondria in the high glucose regions near the ends of the domain.

We are interested primarily in investigating the steady-state distribution of mitochondria and glu-
cose in this system, averaged over all possible mitochondrial trajectories. We thus proceed to
coarse-grain our model by treating the distribution of mitochondria as a continuous field
M(x) = Wo(x) + W_(x) + S(x), where W, (x) is the distribution of mitochondria walking in the positive
direction, W_(x) is the distribution of those walking in the negative direction, and S(x) is the distribu-
tion of stationary mitochondria. We can then write down the coupled differential equations govern-
ing the behavior of the mitochondrial distributions as:

dw. ow. w
i _Va_+ — ks(x)w +¥
dW_ ow_ L w. kS 4
YI‘; Vx 5('[) - 2 ( )

B = ky(x) Wy + W] — K, S.

The glucose distribution evolves according to Equation 1 with consumption rate k(x) given by
Equation 2. The boundary conditions at the ends of the domain are assumed to be reflective for the
mitochondrial distributions, and to have a fixed glucose concentration ¢;. The stationary state for
this system can be calculated numerically (see Materials and methods). The formulation with a con-
tinuous mitochondrial density faithfully represents the behavior of simulations with discrete mito-
chondria, as illustrated in Figure 2b.
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Figure 2. Mitochondrial and glucose distributions from simulations with discrete motile mitochondria. (a) Glucose distribution and positions of
individual mitochondria (b) Normalized mitochondrial distribution, M(x) /M, obtained from simulating discrete mitochondrial motion (histogram
compiled from 100 independent simulations), compared to numerical calculation of steady state continuous mitochondrial disribution (black

curve). Results shown are for parameter values: A =008, ¢ =1, ks = 100.
DOI: https://doi.org/10.7554/eLife.40986.004

The steady-state spatial distribution of mitochondria and glucose in the continuous system
depend on six parameters: k,/k,, Ky, co, D,L,k;M where M is the average mitochondrial density in
the axon (number of mitochondria per unit volume) . Estimates of physiologically relevant values are
provided in Table 1. Dimensional analysis indicates that three of these parameters can be used to
define units of time, length, and glucose concentration, leaving three dimensionless groups. We
choose to use the following three dimensionless parameters, each of which has an intuitive physical

meaning:

Table 1. Physiological parameter values estimated from published data.

Cytoplasmic glucose diffusivity D 140 um?/s
glucose turnover per mitochondrion kg 1.3 x 107"
axon radius r 0.4 um
internodal distance L 250 um
mitochondrial density M 0.3 um=3
hexokinase Michaelis-Menten constant K 0.03 mM
brain glucose levels Co 0.7 —1.3mM
ratio of stopped to moving mitochondria at high glucose ko/ky, 19
glucose permeability P 20 nm/s
glucose transporter (GLUT3) Michaelis-Menten constant K 3mM
Source: see Appendix 1 for details of parameter estimates.
DOI: https://doi.org/10.7554/eLife.40986.005

6 of 27

Agrawal et al. eLife 2018;7:€40986. DOI: https://doi.org/10.7554/eLife.40986


https://doi.org/10.7554/eLife.40986.004
https://doi.org/10.7554/eLife.40986.005
https://doi.org/10.7554/eLife.40986

LI F E Physics of Living Systems

P NN B (5)
kgML2 M

Here A is the length-scale of glucose decay relative to the domain length, & is the boundary glu-
cose concentration relative to the saturation constant Ky, and k, is the ratio of stopped to walking
mitochondria at high glucose levels. We proceed to explore the steady-state distribution of mito-
chondria and glucose as a function of these three parameters.

Mitochondrial localization requires limited range of external glucose

In order for mitochondria to preferentially accumulate at the source of glucose via a glucose-depen-
dent stopping mechanism, three criteria must be met. First, the glucose concentration needs to be
higher at the source than in the bulk of the cell, as occurs when the decay length due to consump-
tion is much smaller than the size of the domain (A < 1). Second, if glucose levels become too high
(¢o > 1) then both glucose consumption rates and stopping rates of the mitochondria become satu-
rated, leading to a flattening of glucose and mitochondrial distributions (Figure 3). There is thus an
upper limit on the possible external glucose concentrations that will yield mitochondrial localization
at the edges of the domain. Finally, the mitochondria must spend a substantial amount of time in
the stationary state, since walking mitochondria will be broadly distributed throughout the domain.
Because the stopping rate is itself dependent on the glucose concentration, this criterion implies
that very low concentrations will also not allow mitochondrial localization. Figure 3 shows the distri-
bution of glucose and mitochondria at different values of the external glucose ¢, illustrating that
accumulation of mitochondria at the edges requires intermediate glucose levels.

G
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[u—y

)

é = 0.1, A = 0.06
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Figure 3. Effect of external glucose concentration on intracellular glucose and mitochondrial distributions. (a) Normalized mitochondrial distribution
(M(x)/M), for different values of edge concentration ¢. The curve with ¢y = 56 illustrates the accumulation cutoff A = 0.2. (b) Glucose distribution
normalized by edge concentration (G(x)/co). The black dashed line in both panels indicates the analytical solution for the low glucose limit (Materials
and methods, Equation 13). Source data provided in ‘Figure 3—source data 1'.

DOI: https://doi.org/10.7554/eLife.40986.006

The following source data is available for figure 3:

Source data 1. Matlab code to calculate and plot steady-state distributions with localized glucose entry.
DOI: https://doi.org/10.7554/eLife.40986.007
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To characterize the distribution of mitochondria along the interval, we introduce an accumulation
metric A, defined by

A=60%/I*-0.5

where ¢? is the variance in the mitochondrial distribution. This metric scales from A =0 for a uniform
distribution to A =1 for two narrow peaks at the domain edges. Mitochondrial distributions with sev-
eral different values of the accumulation metric are shown in Figure 3a. We use a cutoff of A=0.2 to
define distributions where the mitochondria are localized at the glucose source.

We explore the dependence of the mitochondrial accumulation on the three dimensionless
parameters defining the behavior of the system: the stopping rate constant k,, the glucose decay
length A, and the external concentration &. Because only the stopped mitochondria localize near the
glucose sources, increasing the fraction of mitochondria in the stopped state (increased k) inevitably
raises the overall accumulation (Figure 4a). The fraction of mitochondria in the stopped state will
depend on both k, and the overall levels of glucose, as dictated by ¢ (Figure 4b). Experimental
measurements indicate that at high glucose concentrations, approximately 95% of mitochondria are
in the stationary state (Pekkurnaz et al., 2014). We are thus interested primarily in the parameter
regime of high stopping rates: k, > 10. The limited range of concentrations that lead to mitochondrial
accumulation at the edges of the domain can be seen in Figure 4a.

For a high stopping rate (k, = 10), we then calculate the mitochondrial accumulation as a function
of the remaining two parameters: A, &. Here, again, we note that only intermediate glucose concen-
trations result in accumulation, with the range of concentrations becoming narrower as the decay
length A becomes comparable to the domain size (Figure 4c). We can establish the concentration
range within which substantial accumulation is expected, by setting a cutoff A = 0.2 on the accumula-
tion metric and calculating the resulting phase diagram (Figure 4d). Below the lower concentration
cutoff, insufficient mitochondria are in the stationary state and so no localization is seen. This lower
cutoff disappears in the limit of infinite k,. At intermediate concentrations, mitochondria are localized
near the domain edges. Above the upper concentration cutoff, no localization is observed due to
saturation of the Michaelis-Menten kinetics.

Using empirically derived approximations for the rate of glucose consumption by mitochondria
and the diffusivity of glucose in cytoplasm (see Table 1), we estimate the decay length parameter as
A=0.03. The mitochondria are then expected to localize near the glucose source only if & < 66.
Because the saturation concentration for hexokinase is quite low (Kj; =0.03mM) (Wilson, 2003), we
would expect mitochondrial accumulation for glucose concentrations below about 2 mM. We note
that physiological brain glucose levels have been measured at 0.7 — 1.3 mM, depending on the
brain region (McNay et al., 2001), implying that glucose-dependent halting of mitochondrial trans-
port would be expected to result in localization of mitochondria at nodes of Ranvier.

Glucose-dependent halting can increase metabolic flux under
physiological conditions

Localizing mitochondria to the glucose entry points is expected to increase the flux of glucose enter-
ing the cell, thereby potentially enhancing the overall metabolic rate. We calculate the overall effect
of transport-based regulation on the net metabolic flux within the simplified model with localized

glucose entry. Figure 5 shows the effect of increasing mitochondrial stopping rates (k;) on the total
rate of glucose consumption in the interval between nodes of glucose influx. At low &, values, mito-
chondria are distributed uniformly throughout the interval. At high k, values and at sufficiently low
glucose concentrations, the mitochondria cluster in the regions of glucose entry, increasing the over-
all consumption rate by up to 40% at physiologically relevant glucose levels (cg = 1 mM). We note
that in hypoglycemic conditions, glucose levels can drop to 0.1 mM (Silver and Ereciriska, 1994),
further increasing the magnitude of this effect.

In the case of limited glucose transport into the cell, intracellular glucose levels could be signifi-
cantly below the concentrations outside the cell. Measurements of intracellular glucose in a variety
of cultured mammalian cell types indicate internal concentrations within the range of 0.07 — 1mM,
up to an order of magnitude lower than glucose concentrations in the medium (John et al., 2008).
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mitochondrial accumulation, showing upper and lower concentration cutoffs for accumulation above the cutoff of A.,; = 0.2. Dashed black line shows
limit of high stopping rate k. Dotted black line indicates estimate of A for physiological parameters, and corresponding upper concentration cutoff.
Source data provided in 'Figure 4—source datas 1-3'.

DOI: https://doi.org/10.7554/eLife.40986.008

The following source data is available for figure 4:

Source data 1. Matlab code to calculate and plot mitochondrial accumulation with localized glucose entry.
DOV https://doi.org/10.7554/eLife.40986.009

Source data 2. Calculated mitochondrial accumulation data for Figure 4a-b

DOV https://doi.org/10.7554/eLife.40986.010

Source data 3. Calculated mitochondrial accumulation data for Figure 4c-d

DOI: https://doi.org/10.7554/eLife.40986.011
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Figure 5. Mitochondrial stopping increases overall
metabolic flux. Total glucose consumption per
mitochondrion, averaged over the full interval, is shown
for different edge glucose concentrations (o) as a
function of the mitochondrial stopping rate k. The limit

of small k; corresponds to uniform mitochondria
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However, neuronal cells are known to express a
particularly efficient glucose transporter (GLUT3)
(Simpson et al., 2008), and these transporters
have been shown to be highly concentrated near
the nodes of Ranvier (Magnani et al., 1996;
Rosenbluth, 2009). We therefore assume that
glucose import into the nodes is not rate limiting
for myelinated neurons in physiological condi-
tions. Introducing a finite rate of glucose trans-
port would effectively decrease the intracellular
glucose concentration at the nodes ¢, increasing
the enhancement in metabolic flux due to mito-
chondrial localization. In subsequent sections, we
explore the role of limited glucose import in
unmyelinated axons with spatially uniform glu-
cose permeability.

Model for spatial organization in a
glucose gradient

distribution. Parameters for the model are taken from Extracellular brain glucose levels exhibit substan-

tial regional variation, particularly under hypogly-
cemic conditions where more than ten-fold
differences in local glucose concentrations have
been reported (Paschen et al., 1986). Because
individual neurons can traverse multiple different
brain regions (Matsuda et al., 2009), a single
axon can be subjected to heterogeneous glucose
levels along its length. This raises the possibility
that glucose-dependent mitochondrial localiza-
tion can play a role in neuronal metabolic flexibil-
ity even in the case where glucose entry into the cell is not localized to distinct nodes. We thus
extend our model to quantify the distribution of mitochondria in an axon with limited but spatially
uniform glucose permeability that is subjected to a gradient of external glucose. This situation is rel-
evant, for instance, to unmyelinated neurons in infant brains, as well as to in vitro experiments with

Table I. Source data is provided in 'Figure 5—source
data 1'.

DOI: https://doi.org/10.7554/eLife.40986.012
The following source data is available for figure 5:
Source data 1. Matlab code to calculate and plot total

glucose consumption with localized glucose sources.
DOI: https://doi.org/10.7554/eLife.40986.013

neurons cultured in a glucose gradient (Pekkurnaz et al., 2014).

In this model, the extracellular environment provides a continuous source of glucose whose influx
is limited by the permeability of the cell membrane. Intracellular glucose dynamics are then defined
by the reaction-diffusion equation

2
% DT k(x)G + P()(Gus )~ 6) ®)
where the first term corresponds to diffusive glucose spread, the second to a spatially varying
metabolism of glucose, and the third to the entry of glucose into the cell. Here, G is the external
glucose concentration, and P(x) is the membrane permeability to glucose, which we assume to
depend in a Michaelis-Menten fashion on the difference between external and internal glucose
concentration:

¥) = (Z/F)PKMP
~ Kup+|Gexi (x) — G(x)]

7)

where P is the spatially uniform permeability constant in units of length per time. This functional
form incorporates two known features of glucose transporters: (1) they are bidirectional, so that the
overall flux through the transporter at low glucose levels should scale linearly with the difference
between external and internal glucose (Carruthers, 1990); (2) neuronal glucose transporters saturate
at high glucose levels (GLUT3 Ky p=3mM (Maher et al., 1996), with an even higher saturation con-
stant for GLUT4 (Nishimura et al., 1993). When the difference in glucose levels is low, the overall
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flux of glucose entering the cell reduces to P(Gey(x) — G(x)). Mitochondria dynamics are defined as
before (Equation 4), and we again assume Michaelis-Menten kinetics for glucose metabolism by
hexokinase localized to mitochondria (Equation 2).

We note that the dynamics in Equation 6 are governed by three time-scales: the rate of glucose
transport down the length of the axon, rate of glucose consumption, and rate of glucose entry. The

first of these rates becomes negligibly small in the limit L > {/D(G + Ky)/(k,M). Because internal

glucose levels can never exceed the external concentrations, in the range where G.<10mM, the
rate of diffusive transport should become negligible for L > 150 ym. In the limit where intracellular
glucose is much less than Ky, this criterion reduces to A < 1, indicating that glucose diffuses over a
very small fraction of the interval before being consumed. The interval length L in this model repre-
sents an axonal length which can range over many orders of magnitude. We focus on axon lengths
above several hundred microns, allowing us to neglect the diffusive transport of intracellular glucose
(see Appendix 3).

The steady-state glucose profile can then be determined entirely by the local concentration of
mitochondria and external glucose. For a given mitochondrial density M(x) and external glucose pro-
file Gext(x), the corresponding intracellular glucose concentration can be found directly by solving
the quadratic steady-state version of Equation 6 without the diffusive term. However, the steady-
state mitochondrial distribution cannot be solved locally, because the limited number of mitochon-
dria within the axon couples the mitochondrial density at different positions. We thus employ an iter-
ative approach to numerically compute the steady-state solution for both glucose and mitochondrial
density under a linear external glucose gradient G = Guin + (Gmax — Guin) 7 (see Materials and
methods).

For parameter combinations where intracellular glucose concentrations are above Ky, but well
below G, the entry and consumption processes for glucose are both saturated. There is then a
steep transition between two different regimes. In one regime, glucose entry exceeds consumption
and internal glucose levels approach the external concentrations. In the other, consumption domi-
nates and glucose levels drop below saturating concentrations. The key dimensionless parameter
governing this transition can be defined as the ratio of entry to consumption rates:

2P KM Péext

-_— 8
kgM F(KMP + Gexf) ®

Y

This ratio can be modulated in the cell either by recruiting varying amounts of glucose transport-
ers (adjusting P) or changing the total amount of active hexokinase (adjusting k,M).

The remaining dimensionless parameters determining the behavior of this simplified model are
the external glucose concentration relative to the hexokinase saturation constant (Goxt = Gext/Kur),
the relative magnitude of the glucose gradient, AGoys = (Gmax — Guin)/Gext, the ratio of stopped to
walking mitochondria k= ks/ky, and the saturation constant for glucose transporters Ky p/Ky =96.
The last parameter is expected to remain approximately constant in neuronal cells. The average
external glucose concentration and glucose gradient are expected to vary substantially depending

on the glycemic environment to which the neuron is exposed. We note that AG..: has a maximum
possible value since the minimal glucose concentration cannot drop below 0zero. We proceed to
analyze the limiting case where the glucose gradient is as steep as possible for any given value of

average external glucose (AGoxs = 2).

Mitochondrial arrest enables metabolic enhancement under glucose
gradient

We quantify the amount of mitochondrial accumulation at the high glucose side of the domain by
calculating the total mitochondrial density within the distal 10% of the interval compared to a uni-
form distribution, in analogy to experimental measurements (Pekkurnaz et al., 2014). Substantial
enrichment in the high glucose region occurs when glucose entry into the cell cannot keep up with
consumption (y < 1) and the intracellular glucose levels drop below the hexokinase saturation con-
centration Ky, as can be seen in the glucose and mitochondrial distributions plotted in Figure 6a-c.
The interplay between external glucose levels and the entry/consumption rates is illustrated in
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Figure 6. Mitochondrial and glucose organization in a region with uniform glucose permeability, subjected to a gradient of external glucose. (a)
Internal glucose levels for the steady state solution with Gey /Ky = 17 (Gex; = 0.5 mM) and varying ratios of entry to consumption rate y. Black dashed
line shows external glucose levels. (b) Corresponding normalized distribution of internal glucose. (c) Corresponding normalized mitochondrial
distribution. Shaded box indicates distal region used for calculating mitochondrial enrichment and metabolic enhancement in panels (d-e). (d)
Mitochondrial enrichment in the distal 10% of the interval at highest external glucose, compared to a uniform distribution. White dot marks estimated
parameter values for neuronal cell culture experiments (Gex; = 2.5 mM). (€) Enhancement in metabolic flux in the distal region at high glucose,
compared to a uniform mitochondrial distribution. (f) Enhancement in metabolic flux over full interval. White line in (d—f) shows estimated parameter
range for physiological glycemic levels 0.5mM < Gy < 1.5 mM. Parameter values &, = 19, AGex, = 2 used throughout. Source data is provided in
'Figure 6—source datas 1-3'.

DOV https://doi.org/10.7554/eLife.40986.014

The following source data and figure supplement are available for figure 6:

Source data 1. Matlab code to calculate and plot results for model with linear glucose gradient.

DOV https://doi.org/10.7554/eLife.40986.016

Source data 2. Calculated results for linear glucose gradient, with glucose-dependent mitochondrial halting.

DOI: https://doi.org/10.7554/¢Life.40986.017

Source data 3. Calculated results for linear glucose gradient, with uniformly distributed mitochondria.

DOI: https://doi.org/10.7554/eLife.40986.018
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