TY - JOUR TI - Cytoskeletal tension and Bazooka tune interface geometry to ensure fusion fidelity and sheet integrity during dorsal closure AU - Das Gupta, Piyal Taru AU - Narasimha, Maithreyi A2 - Knust, Elisabeth A2 - Akhmanova, Anna VL - 8 PY - 2019 DA - 2019/04/17 SP - e41091 C1 - eLife 2019;8:e41091 DO - 10.7554/eLife.41091 UR - https://doi.org/10.7554/eLife.41091 AB - Epithelial fusion establishes continuity between the separated flanks of epithelial sheets. Despite its importance in creating resilient barriers, the mechanisms that ensure stable continuity and preserve morphological and molecular symmetry upon fusion remain unclear. Using the segmented embryonic epidermis whose flanks fuse during Drosophila dorsal closure, we demonstrate that epidermal flanks modulate cell numbers and geometry of their fusing fronts to achieve fusion fidelity. While fusing flanks become more matched for both parameters before fusion, differences persisting at fusion are corrected by modulating fusing front width within each segment to ensure alignment of segment boundaries. We show that fusing cell interfaces are remodelled from en-face contacts at fusion to an interlocking arrangement after fusion, and demonstrate that changes in interface length and geometry are dependent on the spatiotemporal regulation of cytoskeletal tension and Bazooka/Par3. Our work uncovers genetically constrained and mechanically triggered adaptive mechanisms contributing to fusion fidelity and epithelial continuity. KW - reepithelialisation KW - precision KW - symmetry KW - embryonic segments KW - junction remodeling KW - emergent mechanisms JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -