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Abstract Phototrophic microorganisms are promising resources for green biotechnology.

Compared to heterotrophic microorganisms, however, the cellular economy of phototrophic

growth is still insufficiently understood. We provide a quantitative analysis of light-limited, light-

saturated, and light-inhibited growth of the cyanobacterium Synechocystis sp. PCC 6803 using a

reproducible cultivation setup. We report key physiological parameters, including growth rate, cell

size, and photosynthetic activity over a wide range of light intensities. Intracellular proteins were

quantified to monitor proteome allocation as a function of growth rate. Among other physiological

acclimations, we identify an upregulation of the translational machinery and downregulation of light

harvesting components with increasing light intensity and growth rate. The resulting growth laws

are discussed in the context of a coarse-grained model of phototrophic growth and available data

obtained by a comprehensive literature search. Our insights into quantitative aspects of

cyanobacterial acclimations to different growth rates have implications to understand and optimize

photosynthetic productivity.

DOI: https://doi.org/10.7554/eLife.42508.001

Introduction
Cyanobacteria are key primary producers in many ecosystems and are an integral part of the global

biogeochemical carbon and nitrogen cycles. Due to their fast growth rates, high productivity and

amenability to genetic manipulations, cyanobacteria are considered as promising host organisms for

synthesis of renewable bioproducts from atmospheric CO2 (Al-Haj et al., 2016; Zavřel et al., 2016),

and serve as important model organisms to understand and improve photosynthetic productivity.

Understanding the cellular limits of photosynthetic productivity in cyanobacteria, however,

requires quantitative data about cellular physiology and growth: accurate accounting is central to

understand the organization, growth and proliferation of cells (Vázquez-Laslop and Mankin, 2014).

While quantitative insight into the cellular economy of phototrophic microorganisms is still scarce,

the cellular economy of heterotrophic growth has been studied extensively—starting with the semi-

nal works of Monod, Neidhardt, and others (Neidhardt et al., 1990; Neidhardt, 1999; Jun et al.,

2018) to more recent quantitative studies of microbial resource allocation (Molenaar et al., 2009;

Klumpp et al., 2009; Scott et al., 2010; Scott and Hwa, 2011; Bosdriesz et al., 2015; Maitra and

Dill, 2015; Weiße et al., 2015). In response to changing environments, heterotrophic microorgan-

isms are known to differentially allocate their resources: with increasing growth rate, heterotrophic

microorganisms typically exhibit upregulation of ribosomes and other proteins related to translation
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and protein synthesis (Scott et al., 2010; Molenaar et al., 2009; Peebo et al., 2015), exhibit com-

plex changes in transcription profiles, for example (Klumpp et al., 2009; Matsumoto et al., 2013),

and increase cell size (Kafri et al., 2016). The molecular limits of heterotrophic growth have been

described thoroughly (Kafri et al., 2016; Erickson et al., 2017; Scott et al., 2014; Metzl-Raz et al.,

2017; Klumpp et al., 2013).

In contrast, only few studies so far have addressed the limits of cyanobacterial growth from an

experimental perspective (Bernstein et al., 2016; Yu et al., 2015; Abernathy et al., 2017;

Ungerer et al., 2018; Jahn et al., 2018). Of particular interest were the acclimations that enable

fast photoautotrophic growth (Bernstein et al., 2016; Yu et al., 2015; Abernathy et al., 2017;

Ungerer et al., 2018). The cyanobacterium with the highest known photoautotrophic growth rate,

growing with a doubling time of up to TD ~ 1:5h, is the strain Synechococcus elongatus UTEX 2973

(Ungerer et al., 2018). Compared to its closest relative, Synechococcus elongatus PCC 7942, the

strain shows several physiological acclimations, such as higher PSI and cytochrome b6f content per

cell (Ungerer et al., 2018), lower metabolite pool in central metabolism, less glycogen accumula-

tion, and higher NADPH concentrations and higher energy charge (relative ATP ratio over ADP and

AMP) (Abernathy et al., 2017). Recently, a study of the primary transcriptome of Synechococcus

elongatus UTEX 2973 reported the increased transcription of genes associated with central meta-

bolic pathways, repression of phycobilisome genes, and accelerated glycogen accumulation rates in

high light compared to low light conditions (Tan et al., 2018).

While these studies point to strain-specific differences and are important for characterizing non-

model microbial metabolism (Abernathy et al., 2017), the general principles of resource allocation

in photoautotrophic metabolism and the laws of phototrophic growth are still poorly understood.

Therefore, the aim of this study is to provide a consistent quantitative dataset of cyanobacterial

physiology and protein abundance for a range of different light intensities and growth rates—and

put the data into the context of published values obtained by a comprehensive literature search as

well as into the context of a recent model of photosynthetic resource allocation (Faizi et al., 2018).

To this end, we chose the widely used model strain Synechocystis sp. PCC 6803 (Synechocystis here-

after). Since Synechocystis exhibits significant variations with respect to both genotype (Ikeuchi and

Tabata, 2001) and phenotype (Morris et al., 2017; Zavřel et al., 2017), we chose the substrain GT-

L, a strain that has a documented stable phenotype for at least four years preceding this study. All

data are obtained under highly reproducible and controlled experimental conditions, using flat-panel

photobioreactors (Nedbal et al., 2008) within an identical setup as in the previous studies

(Zavřel et al., 2015b).

The data obtained in this work provide a resource for quantitative insight into the allocation of

cellular components during light-limited, light-saturated, and photoinhibited growth. In dependence

of the light intensity and growth rate, we monitor key physiological properties, such as changes in

cell size, dry weight, gas exchange (both CO2 and O2), as well as changes in abundance of pigments,

DNA, total protein, and glycogen. Using proteomics, we show that ~57% (779 out of 1356 identified

proteins) proteins changed their abundance in dependence of growth rate, whereas the rest was

independent of growth rate. A detailed analysis of changes in individual protein fractions revealed

phototrophic ’growth laws’: abundances of proteins associated with light harvesting decreased with

increasing light intensity and growth rate, whereas abundances of proteins associated with transla-

tion and biosynthesis increased with increasing light intensity and growth rate—which is in good

agreement with recent computational models of cyanobacterial resource allocation (Burnap, 2015;

Rügen et al., 2015; Mueller et al., 2017; Reimers et al., 2017; Faizi et al., 2018).

Results

Establishing a controlled and reproducible cultivation setup
The Synechocystis substrain GT-L (Zavřel et al., 2015b) was cultivated in flat panel photobioreactors

(Figure 1A) using at least 5 independent reactors in a quasi-continuous (turbidostat) regime

(Figure 1B), with red light intensities of 27.5 � 1100 mmol(photons) m-2s-1, supplemented with a

blue light intensity of 27.5 mmol(photons) m-2s-1. The addition of blue light avoids possible growth

limitations in the absence of short wavelength photons (Golden, 1995). Steady-state specific growth

rates in turbidostat mode were calculated from monitoring the optical density measured at a
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Figure 1. Experimental setup and evaluation of Synechocystis sp. PCC 6803 (substrain GT-L) phenotype stability. Panel A: Photobioreactor setup.

Cultures were cultivated in a flat-panel photobioreactor vessel (400 mL) in a turbidostat regime according to Zavřel et al. (2015b). Dilution of actively

growing culture was based on measurements of optical density at 680 nm (OD680). Inflow air and CO2 were mixed in a gas mixing unit, the sparging gas

flow rate was controlled by a gas analyzing unit. Sparging gas was moistened in a humidifier and, after bubbling through the photobioreactor vessel,

separated from the waste culture via a liquid trap. CO2 concentration in the output gas was measured by an infrared sensor according to

Červený et al., 2009. All other parameters were set as described in Nedbal et al. (2008) and Červený et al., 2009. Panel B: Representative

measurement of the OD680 signal (black lines) within a turbidostat cultivation under increasing red light intensity (supplemented with low intensity of

blue light). Calculation of specific growth rates (blue circles) is detailed in Materials and methods. Calculation of uptake and refilling rates of selected

nutrients (including Na, (N, S, Ca, Mg, P and Fe) during the turbidostat cultivation is detailed in Figure 1—source data 1 (the elemental composition of

Synechocystis cells is based on data available in the literature). Panel C: Calculation of growth rates from the OD680 signal and from top loading

balances that monitored depletion rate of a spare cultivation medium (source data are available in Figure 1—source data 2). Panel D: Comparison of

specific growth rates using an identical experimental setup throughout four successive years 2013–2017 (source data are available in Figure 1—source

data 3). Panel E: Rates of gross photosynthesis and dark respiration, measured as O2 evolution and consumption rates directly within the

photobioreactor vessel throughout 5 min of light and dark periods in 2016–2017 (this study) and in 2015–2017 (Zavřel et al., 2017). The dashed line

represents a P-I curve fit of data from this study according to Platt et al. (1980). Source data are available in Figure 1—source data 4. Figure 1C:

n = 6–11, Figure 1D: n = 3–11, Figure 1E: n = 4–6. Error bars (Figure 1C–1E) represent standard deviations.

DOI: https://doi.org/10.7554/eLife.42508.002

The following source data is available for figure 1:

Source data 1. Uptake and refilling rates of selected nutrients during the quasi-continuous cultivation.

DOI: https://doi.org/10.7554/eLife.42508.003

Source data 2. Source data for Figure 1C.

DOI: https://doi.org/10.7554/eLife.42508.004

Source data 3. Source data for Figure 1D.

DOI: https://doi.org/10.7554/eLife.42508.005

Source data 4. Source data for Figure 1E.

DOI: https://doi.org/10.7554/eLife.42508.006
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wavelength of 680 nm (OD680) as well as from the rate of depletion of spare cultivation medium (as

measured by top loading balances). Both methods resulted in similar average values (Figure 1C).

Estimation of the specific growth rates based on the medium depletion, however, exhibited higher

variance. For further analysis, therefore, only values obtained from the OD680 signal are reported.

The measured specific growth rates increased from � ¼ 0:025� 0:002h�1 to

� ¼ 0:104� 0:009h�1 (corresponding to doubling times of TD » 27:7h� 6:9h) with increasing light

intensities up to 660 mmol(photons) m-2s-1 of red light. For higher light intensities the cultures exhib-

ited photoinhibition—a reduction of the specific growth rate induced by high light intensities. Under

the highest intensity of 1100 mmol(photons) m-2s-1, the specific growth rate decreased to

� ¼ 0:093� 0:011h�1, corresponding to a doubling time of TD ¼ 7:5h (Figure 1C–D). The growth

curve is consistent with previous measurements of cyanobacterial growth (Zavřel et al., 2015b;

Cordara et al., 2018) and can be subdivided into three phases: light-limited, light-saturated, and

photoinhibited growth.

The cultivation conditions, with (red) light intensity as the only variable, were highly controlled

and reproducible. Temperature (32˚C) and CO2 concentration in the sparging gas (0.5%) were set to

saturate Synechocystis growth in the exponential phase (OD680 ¼ 0:60� 0:66), as established in a pre-

vious study (Zavřel et al., 2015b). Refilling rate of selected nutrients (including Na, N, S, Ca, Mg, P

and Fe) during the turbidostat cultivation was sufficient to prevent potential growth limitation by

lack of any of these nutrients: see Figure 1—source data 1 for further details (the elemental compo-

sition of Synechocystis cells considered for the calculations was based on data available in the

literature).

The experimental setup, including the photobioreactor setup, light quality and intensity, tempera-

ture, composition of cultivation medium, CO2 concentration in the sparging gas, bubbling and stir-

ring rate was identical to the setup used in previous studies for this substrain (Zavřel et al., 2015b;

Zavřel et al., 2017). We therefore could evaluate the stability of the Synechocystis sp. PCC 6803

GT-L phenotype throughout a four year period (2013–2017). Figure 1D and E show a comparison of

the specific growth rates, as well as photosynthetic and respiration rates, from several previous stud-

ies (Zavřel et al., 2015b; Zavřel et al., 2017) and as yet unpublished data.

Photosynthesis and respiration increase with light intensity and growth
rate
The cultivation setup included a probe to monitor dissolved oxygen (dO2) in the cultivation medium

and a gas analyzing unit to measure CO2 in the gas efflux. Online measurements of gas exchange

rates allowed to assess dark respiration rates (measured as O2 uptake rate during a 5 min dark

period, see Materials and methods for further details) as well as photosynthetic activity (gross O2

release rate and net CO2 uptake rate). Both photosynthetic activity and dark respiration rates

increased with increasing light intensity (Figure 1E, Figure 2C–F).

Between a light intensity of 27.5 and 880 mmol(photons) m-2s-1, the gross photosynthetic activity

(O2 release) increased from 30.5 ± 5.7 mmol(O2) mmol (Chl)-1 s-1 to 251.6 ± 49.4 mmol(O2) mmol

(Chl)-1 s-1 , and the dark respiration rate increased from 5.5 ± 2.7 mmol(O2) mmol (Chl)-1 s-1 to

40.9 ± 14.6 mmol(O2) mmol (Chl)-1 s-1 (Figure 1E).

Of particular interest were changes in gas exchange as a function of the specific growth rate.

Figure 2C–D show gas exchange rates as a function of the specific growth rate per gram cellular dry

weight (gDW), as well as per cell. Relative to gDW, O2 release increased from 1.96 ± 0.691 mmol

(O2) gDW-1 h-1 to 5.92 ± 1.26 mmol (O2) gDW-1 h-1 for an increase of growth rate from

� ¼ 0:025� 0:002h�1 to � ¼ 0:099� 0:013 (Figure 2C). Dark respiration rate (O2 consumption)

increased from 0.35 ± 0.12 mmol (O2) gDW
-1 h-1 to 0.96 ± 0.21 mmol (O2) gDW

-1 h-1 (Figure 2E–F).

Net CO2 uptake rate increased from 0:78� 0:37 mmol (CO2) gDW
-1 h-1 to 4.01 ± 0.50 mmol (CO2)

gDW-1 h-1 (Figure 2E).

The measured gas exchange rates correspond to a photosynthesis:respiration (P:R) ratio (gross

O2 release relative to consumption) between 5:6� 3:0 and 7:5� 2:5. The photosynthetic quotient PQ

(net O2 release:CO2 fixation) ranged from PQ = 2.1 ± 0.5 to PQ = 1.1 ± 0.4. The changes of both

parameters (P:R and PQ) with respect to growth rate were not statistically significant (Kruskal-Wallis

test: P:R ratio: p� value ¼ 0:88, PQ: p� value ¼ 0:12).
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Cell morphology and composition acclimate to changes in light intensity
and growth rate
Culture samples were harvested under different light intensities to investigate the allocation of key

cellular components as a function of growth rate. Cellular parameters included cell count, cell size,

cell dry mass, as well as concentrations of glycogen, total protein, total DNA, phycocyanin, allophy-

cocyanin, chlorophyll a, and carotenoids. The results (data normalized per gDW as well as per cell)
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Figure 2. Variations in morphology and composition of Synechocystis cells with changing growth rate. Under increasing light intensity and changing

growth rate, the following parameters were estimated: cellular volume (A) and dry weight (B), gross photosynthesis (C, D) and dark respiration (E, F),

and content of glycogen (G, H), proteins, DNA (I, J), phycobiliproteins (K, L), chlorophyll a and carotenoids (M, N). The data are plotted relative to

cellular dry weight (C, E, G, I, K, M) as well as per cell (D, F, H, J, L, N). DNA content was normalized to its initial value after standardization per dry

weight and per cell, the measurement was only semi-quantitative. All values represent averages from 3 – 11 independent biological replicates, error

bars represent standard deviations. If error bars are not visible (panel A), the standard deviation was too small for visualization. Within each figure, data

points are displayed in three different color shades to reflect (from bright to dark) light-limited, light-saturated and light-inhibited growth. Data plotted

as a function of light intensity are available in Figure 2—figure supplement 1. Comparison with data available in the literature is summarized in

Figure 2—source data 2.

DOI: https://doi.org/10.7554/eLife.42508.007

The following source data and figure supplement are available for figure 2:

Source data 1. Source data for Figure 2.

DOI: https://doi.org/10.7554/eLife.42508.009

Source data 2. Comparison of the values measured in this study with data reported in the literature.

DOI: https://doi.org/10.7554/eLife.42508.010

Figure supplement 1. Allocation of key cellular resources as a function of light intensity.

DOI: https://doi.org/10.7554/eLife.42508.008
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are summarized in Figure 2 as a function of the specific growth rate; the results as a function of light

intensity are summarized in Figure 2—figure supplement 1.

With increasing growth rate, the volume and weight of Synechocystis cells increased (Figure 2A–

B). The cell diameter increased from 1:96� 0:03�m to 2:19� 0:03�m, and slightly decreased again

under photoinhibition. Since Synechocystis has a spherical cell shape, the estimated diameters corre-

spond to cell volumes ranging from 3:97 mm3 to 5:49 mm3 (Figure 2A). Changes in cell volume were

reflected in changes in cellular dry weight. Dry weight per cell increased from 5:3� 1:7 pg cell-1 for

the slowest specific growth rate to 11:3� 2:3 pg cell-1 at the maximal growth rate. Under photoinhi-

bition, cellular dry weight again decreased to 8:6� 2:6 pg cell-1 (Figure 2B, Figure 2—figure sup-

plement 1). The ratio of cellular dry weight to cell volume showed no significant change for different

growth rates (Kruskal-Wallis test: p� value ¼ 0:077).

The amount of glycogen per gDW increased with increasing growth rate, from 84� 28 mg gDW-1

to 199� 35 mg gDW-1 for the maximal growth rate, and further increased to 229� 72 mg gDW-1

under conditions of photoinhibition (Figure 2G). These values correspond to an increase of glycogen

per cell from 440� 79 fg cell-1 to 2329� 504 fg cell-1 (Figure 2H).

In contrast, the protein content per gDW decreased with increasing growth rate. Protein content

per cell, however, did not change significantly for different light intensities and growth rates (Krus-

kal-Wallis test: p� value ¼ 0:076). The absolute values of protein content were between 402� 144

and 227� 6 mg gDW-1 (Figure 2I), and between 2144� 482 and 2937� 466 fg cell-1 (Figure 2J).

Changes in DNA content were only estimated in relative units and are reported relative to the

DNA content at the lowest growth rate. With increasing growth rate, the DNA content normalized

per gDW decreased to 51� 11% of the initial value (Figure 2I). The (relative) DNA content per cell,

however, increased with increasing growth rate up to 137� 19% of its initial value. Under conditions

of photoinhibition, the relative DNA content per cell decreased again to 94� 29% of the initial value

(Figure 2J).

Relative to gDW, the amounts of phycobiliproteins, chlorophyll a and carotenoids decreased with

increasing growth rate. Under conditions of photoinhibition, we observed additional reduction of

these pigments per gDW (Figure 2K,M). When considering the concentrations per cell, however,

the respective amounts initially increased with increasing growth rates, and decreased again under

conditions of photoinhibition. Overall, pigment content decreased with increasing light intensity

(irrespective of normalization), with the exception of carotenoids that exhibited a slight increase per

cell as a function of light intensity. The changes of pigment amounts as a function of growth rate (rel-

ative to gDW as well as per cell) were significant (Kruskal-Wallis test: p� value< 0:05, see Materials

and methods for further details). The absolute amounts of phycocyanin were between 86:4� 30:7

and 26:5� 7:5 mg gDW-1, corresponding to 172� 29 and 620� 63 fg cell-1 (Figure 2K,L), the

amounts of allophycocyanin were between 14:8� 5:3 and 6:7� 1:9 mg gDW-1, corresponding to

57� 10 and 123� 15 fg cell-1 (Figure 2K,L). The absolute amounts of chlorophyll a were between

16� 5:2 and 5:8� 1:6 mg gDW-1, corresponding to a range between 50� 10 and 96� 14 fg cell-1

(Figure 2M,N), the absolute amounts of carotenoids were between 4:4� 0:7 and 2:6� 0:5 mg gDW-

1, corresponding to a range between 22� 3 and 29� 6 fg cell-1 (Figure 2M,N).

To put the data into context, we conducted a comprehensive literature research with respect to

reported physiological parameters of Synechocystis sp. PCC 6803. The results are summarized in

Figure 2—source data 2, and the data include also meta information on experimental conditions.

Overall, the values obtained in this study are in good agreement with the previously reported values.

Individual parameters, however, exhibit high variability due to the wide range of different experi-

mental conditions.

Proteome allocation as a function of growth rate
Culture samples for 6 light intensities were harvested to obtain quantitative proteome profiles using

mass spectrometry, with 5 biological replicates for each light intensity. We chose a label-free quanti-

fication (LFQ) approach to access relative and absolute protein amounts. Here, the peptide precur-

sor ion intensities (MS1) were used for protein quantification. The results of the proteomics analysis

are summarized in Figure 3. We identified 1356 proteins (the complete list is provided in Figure 3—

source data 1). Of these, the (relative) abundances of 779 proteins (57%) significantly changed with

growth rate (Kruskal-Wallis test: p� value< 0:05), the (relative) abundances of the remaining 577 pro-

teins (43%) were independent of growth rate. We obtained functional annotation for all 1356
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Figure 3. Synechocystis proteome allocation as a function of growth rate. Panel A: The workflow. Samples were harvested and analyzed by mass

spectrometry (the proteomics dataset is available in Figure 3—source data 1). A Kruskal-Wallis test was used to distinguish between growth-

dependent and growth-independent proteins. 779 growth-dependent and 577 growth-independent proteins were identified. Panel B: Clustering

analysis. Based on k-means clustering analysis (Figure 3—figure supplement 1), the 779 growth-dependent proteins were separated into seven

Figure 3 continued on next page
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proteins using the Gene Ontology (GO) database (Ashburner et al., 2000). Of the 779 growth-

dependent proteins, 450 were annotated with non-trivial categories (excluding categories such as

unknown or putative), of the 577 growth-independent proteins, 303 were annotated with non-trivial

categories. To facilitate the analysis, the functional annotation was mapped to a subset GO slim

(higher level GO terms, (Klopfenstein et al., 2018)), which resulted in 40 distinct GO terms (each

protein might be associated with more than one annotation). Significant differences (Fisher’s exact

test, p� value< 0:05) between growth-dependent and growth-independent annotations are summa-

rized in Table 1. Growth-dependent proteins exhibited an over-representation of categories such as

Translation, Protein folding, Cell division and Photosynthesis, among others.

To allow for a more detailed analysis of growth-dependent proteins, the changes in abundance of

the 779 proteins were grouped into 7 clusters using k-means clustering (Figure 3—figure supple-

ment 1). The number of clusters was determined using the elbow method. The identified clusters

corresponded either to upregulation (cluster 1 and 6), or downregulation of protein abundance with

growth rate (cluster 2, 5, 7) or more complex changes (cluster 3 and 4). The results of the clustering

analysis are summarized in Figure 3, along with an annotation matrix that highlights the prevalent

function (GO slim) categories for each cluster. The growth-dependent proteins encompass 37 dis-

tinct annotations mapped to GO slim categories.

Figure 3 continued

clusters. Gray dashed lines represent protein abundances as medians of 5 biological replicates, normalized by the respective means. Blue dashed lines

represent centroids of the respective clusters. Panel C: Proteins were annotated using the GO classes, the matrix represents the annotation mapped to

GO slim categories. Proteins can be associated to several GO slim categories. The highest ranking annotation per cluster is highlighted in dark blue.

DOI: https://doi.org/10.7554/eLife.42508.011

The following source data and figure supplement are available for figure 3:

Source data 1. Proteomics dataset.

DOI: https://doi.org/10.7554/eLife.42508.013

Source data 2. List of growth-dependent proteins.

DOI: https://doi.org/10.7554/eLife.42508.014

Source data 3. List of growth-independent proteins.

DOI: https://doi.org/10.7554/eLife.42508.015

Figure supplement 1. Elbow method for the identification of an appropriate number of clusters (grey dashed line at seven clusters).

DOI: https://doi.org/10.7554/eLife.42508.012

Table 1. Gene Ontology (GO) slim categories (Klopfenstein et al., 2018) with the amount of

associated growth-dependent and independent proteins.

A complete list of the GO slim categories is provided in Table 1—source data 1. Here, only catego-

ries that exhibit a significant difference (Fisher’s exact test, p� value< 0:05) between growth-depen-

dent and independent groups are listed. Shown is the number of annotations per category.

Gene ontology categories Growth dependent Growth independent

Translation 40 13

Transport 36 14

Photosynthesis 36 8

Catabolic process 32 4

Protein folding 14 3

Cell division 12 0

Cell wall organization or biogenesis 10 1

Cell cycle 9 0

DOI: https://doi.org/10.7554/eLife.42508.016

The following source data is available for Table 1:

Source data 1. List of all 40 GO slim categories with the respective amounts of growth-dependent and growth-

independent proteins (and their cluster associations).

DOI: https://doi.org/10.7554/eLife.42508.017
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Cluster 1 (192 proteins) and 6 (41 proteins) exhibit increasing abundance for increasing light

intensity and growth rate. Prevalent annotations are biosynthetic processes, such as cellular nitrogen

compound metabolic processes, cellular amino acid metabolic processes, as well as, for cluster 1,

translation. Cluster with low variation (Cluster 2, 218 proteins) and cluster with ambiguous shapes

(cluster 4, 124 proteins) exhibit a similar set of categories as cluster 1 and 6. In contrast, both clusters

that exhibit a clear decrease with increasing light intensity and growth rate (cluster 5, 65 proteins

and cluster 7, 79 proteins) are both annotated with photosynthesis as the highest-ranking annota-

tion. Finally, cluster 3 (2 proteins) exhibits a sharp upregulation during photoinhibition, with both

proteins annotated with the categories transport and transmembrane processes.

We note that, similar to some of the physiological properties as shown in Figure 2, the abundan-

ces of clusters 1, 3, 4, 6 and 7 exhibited a characteristic ’kink’ at high growth rates corresponding to

a sharp up- or downregulation under photoinhibition (Figure 3B).

Visualization of functional annotation using proteomaps
To complement the clustering analysis, we used the proteomaps software (www.proteomaps.net;

Liebermeister et al., 2014) to visualize the relative abundances of the identified proteins for differ-

ent light conditions. To this end, iBAQ intensities were used as an approximation for quantitative

protein amounts. Here, the measured precursor ion intensities (MS1) for each individual protein are

summed up and divided by the number of theoretically observable peptides for the respective pro-

tein. The number of theoretically observable peptides is calculated for each protein by an in silico

digestion of the respective database sequence and only peptides between 6 and 30 amino acids in

length are considered for the calculations. We emphasize that, while iBAQ intensities are roughly

proportional to the molar amounts of the proteins, iBAQ intensities only refer to identified proteins

and do not reflect the whole proteome: the sum of all proteins used for the generation of proteo-

maps is based on identified proteins only, with the unidentified proteins being neglected. Therefore,

the proportionality factor could change from sample to sample, and the intensities are interpreted

only as approximations that provide insight into the expected overall abundances.

Figure 4 shows proteomaps for three distinct growth regimes: light-limited growth at 27.5 mmol

(photons) m-2s-1 (specific growth rate � ¼ 0:025 h�1), light-saturated growth at 440 mmol(photons) m-

2s-1 (specific growth rate � ¼ 0:104 h�1), and photoinhibited growth at 1100 mmol(photons) m-2s-1

(specific growth rate � ¼ 0:093 h�1). The full set of proteomaps is available in Figure 4—figure sup-

plement 1.

The proteomaps (annotated using Cyanobase (Fujisawa et al., 2017) mapped to custom KEGG

annotation) show similar trends as the clustering analysis: upregulation of proteins associated with

translational processes and ribosomes with increasing light intensity and growth rate, and downregu-

lation of photosynthetic and light harvesting proteins with increasing light intensity and growth rate.

A coarse-grained model provides insight into proteome allocation
To interpret the experimental results on cyanobacterial physiology, we made use of a semi-quantita-

tive resource allocation model of cyanobacterial phototrophic growth. The model was adopted from

Faizi et al. (2018) and is summarized in Figure 5. In brief, the model includes coarse-grained prote-

ome fractions for cellular processes related to growth, including carbon uptake T, metabolism M,

photosynthesis P, and ribosomes R. The model describes light-dependent cyanobacterial growth at

saturating conditions of external inorganic carbon. Compared to the original model from Faizi et al.

(2018), we now included a growth-independent protein fraction Q that accounts for half of the pro-

teome mass. All further (minor) modifications and changes in the model definition are detailed in

Materials and methods.

Following Faizi et al. (2018), all kinetic parameters were sourced from the primary literature,

except the parameters for the photosynthetic cross section, photosynthetic turnover rate, and the

rate constant for photoinhibition (see Materials and methods for further details). These 3 parameters

were fitted numerically, such that the predicted maximal growth rate m (Figure 1C–D) matched the

experimental values (Figure 5B). The stoichiometry and energy requirements for biosynthesis were

approximated using a genome-scale model (Knoop et al., 2013). No proteomics data were used

during model parametrization and fitting. All parameters and model definitions are provided in

Supplementary file 1.
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Evaluation of the model is based on the assumption of (evolutionary) optimality. That is, the

model is solved using an optimization algorithm that maximizes the specific growth rate m as a func-

tion of protein allocation. In this way, the model is able to predict how the coarse-grained proteome

fractions are optimally allocated with increasing light intensity (Figure 5B). These predictions provide

a reference to which the experimental data can be compared. We emphasize that such a comparison

does not presuppose that proteome allocation in Synechocystis is necessarily optimal.

The model predictions are shown in Figure 6, together with data from the experimental analysis.

The model predicts that the protein fraction associated with biosynthesis (M), as well as the ribo-

somal fraction (R), increases with increasing growth rate, in accordance with known growth laws of

heterotrophic growth (Scott et al., 2010; Weiße et al., 2015). In contrast, the predicted protein

fraction associated with photosynthesis (P, light harvesting and photosystems) decreases with

increasing light intensity and growth rate. We highlight that the predicted growth laws exhibit a

characteristic ’kink’ under conditions of photoinhibition—a feature that is different from all reported

growth laws for heterotrophic growth. Model predictions for the ribosomal and photosynthetic pro-

tein fractions are in good agreement with changes observed in the proteomics data (Figure 6B),

whereas the experimentally observed fraction of the proteome assigned to metabolic functions

(using the metabolic reconstruction of Knoop et al., 2013) exhibits no significant change, in contrast

to model predictions.

Testing protein allocation using immunoblotting analysis
In addition to large-scale proteomics, we tested the changes of selected proteins as a function of

growth rate using immunoblotting analysis. Specifically, we measured the abundances of PsaC (an

essential component of PSI), PsbA (the D1 protein of PSII), the RuBisCO subunit RbcL, and the ribo-

somal proteins S1 and L1 under increasing growth rate. Additionally, the absolute amounts of PsbA,

PsaC, and RbcL proteins were estimated by serial dilution of protein standards (see Materials and

methods for details).

The immunoblotting results are summarized in Figure 6C, together with the model predictions

and selected proteomics data. Overall, the trends confirm the results of the previous sections—and
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Figure 4. Proteomaps of proteome reallocation in Synechocystis under light-limited (27.5 mmol(photons) m-2s-1), light-saturated (440 mmol(photons) m-

2s-1) and photoinhibited growth (1100 mmol(photons) m-2s-1).

DOI: https://doi.org/10.7554/eLife.42508.018

The following figure supplement is available for figure 4:

Figure supplement 1. Proteomaps of levels 2, 3 and 4.

DOI: https://doi.org/10.7554/eLife.42508.019

Zavřel et al. eLife 2019;8:e42508. DOI: https://doi.org/10.7554/eLife.42508 10 of 29

Tools and resources Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.42508.018
https://doi.org/10.7554/eLife.42508.019
https://doi.org/10.7554/eLife.42508


correspond to the changes obtained from the protein allocation model. The ribosomal proteins S1

and L1 increased with increasing growth rate, with a characteristic upwards ’kink’ under photoinhibi-

tion. The relative amount of PsbA, the D1 protein of PSII, decreased with increasing growth rate,

with a characteristic downward ’kink’ under photoinhibition (albeit less pronounced than for ribo-

somal proteins). PsaC associated to PSI followed a similar trend but with high variance. In contrast to

the overall behavior of proteins associated with metabolism, the RuBisCO subunit RbcL exhibited a

(slight) increase for increasing growth rates, in accordance with the model predictions (Figure 6C).

Quantitative evaluation of selected protein complexes
Using the combined data of iBAQ intensities and quantification by immunoblotting and mass spec-

trometry, allows us to provide estimates of absolute amounts of selected protein complexes in Syne-

chocystis cells. The results are summarized in Table 2, details of the calculations are listed in

Table 2—Source data 1.

The most abundant proteins in Synechocystis cells were proteins associated to photosynthesis

and carbon fixation, in particular proteins related to phycobilisomes, photosystems and RuBisCO.

Aside from protein complexes, the most abundant monomeric protein was the elongation factor Tu

(TufA) with approximately 2� 3 � 105 copies per cell. Abundances of photosynthetic proteins were

generally one to two orders of magnitude lower, similar to ribosomal and other proteins, including

phosphoglycerate kinase, transketolase, PII signal transducing protein, ferredoxin-NADP reductase,

D-fructose 1,6-bisphosphatase, glyceraldehyde-3-phosphate dehydrogenase, plastocyanin, superox-

ide dismutase, orange carotenoid protein, RNA polymerase, cytochrome b6f and chaperonine

GroEL.
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Figure 5. A model of phototrophic growth and reproduction of experimental growth curves. Panel A: A coarse-grained model of phototrophic growth,

adopted from Faizi et al. (2018). The model describes optimal proteome allocation under conditions of (i) light-limited, (ii) light-saturated and (iii)

light-inhibited growth. Coarse-grained cellular processes include passive (vd ) and active import (vt ) of external inorganic carbon cxi , conversion of

inorganic carbon ci into amino acids aa (vm), light harvesting and provision of cellular energy by photosynthesis (v1 and v2), as well as maintenance and

photodamage (mv and vi). Amino acids are translated into coarse-grained protein fractions for transport (T ), metabolism (M), ribosomes (R),

photosynthetic electron transport (P), as well as a growth-independent proteome fraction Q. Translation is limited by the amount of available ribosomes

R. Panel B: The model reproduces the measured growth curve (Figure 1C–D) as a function of light intensity. Shown are the specific growth rate m, as

well as the main proteome fractions predicted by the model: ribosome (R) fraction, photosynthetic electron transport (P) fraction, and metabolism (M)

fraction, as a function of light intensity.

DOI: https://doi.org/10.7554/eLife.42508.020
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Figure 6. Changes in protein abundance as a function of specific growth rate compared to the predictions obtained from a computational model of

proteome allocation. Panel A: Schematic representation of ribosome, photosynthetic units and metabolic enzyme classes considered in the proteome

allocation model. Panel B: Relative proteomics data ( LFQ, label-free quantification intensities, left axes, mean fold change ± SD) of protein classes in

comparison with the model predictions (grey lines, right axes). Panel C: Relative protein abundances obtained by immunoblotting analysis for selected

Figure 6 continued on next page
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Table 2 also includes several previous estimates of protein abundances. We note that a direct

comparison is challenging due to differences in cultivation conditions, including type of cultivation

and cultivation vessel, cultivation media, irradiance, temperature, aeration, pH and the particular

Synechocystis substrain (see Figure 2—source data 2 for further details on particular experimental

conditions).

Discussion

Quantitative resource allocation in cyanobacteria
Cyanobacteria are increasingly important host organisms for green biotechnology, but as yet insight

into resource allocation of these organisms is restricted to few studies (Abernathy et al., 2017; Bur-

nap, 2015; Faizi et al., 2018; Jahn et al., 2018). The scarcity of data is partially due to the fact that

a quantitative experimental assessment of phototrophic growth is subject to a number of technical

difficulties and standardized cultivation conditions are not available. The diversity of culture condi-

tions used in the literature (summarized in Figure 2—source data 2) makes a direct comparison of

the literature data difficult and often key parameters, such as specific growth rate, spectral proper-

ties of the light source, vessel geometry or gas exchange rates are not reported in sufficient detail.

The premise of this study was therefore to use a highly reproducible cultivation setup that enables

stable culture conditions in turbidostat mode and to provide a broad characterization of physiologi-

cal parameters that can be compared to reported literature values. The results, interpreted in the

context of a coarse-grained computational model of cyanobacterial resource allocation, provide fur-

ther understanding of resource allocation and the cellular protein economy during light-limited,

light-saturated and light-inhibited cyanobacterial growth.

Maximal growth rates and glycogen accumulation
The maximal specific growth rates of Synechocystis GT-L obtained in this study (Figure 1C,D) were

similar to the maximal growth rates of other Synechocystis substrains reported in previous studies

(Touloupakis et al., 2015; Nguyen and Rittmann, 2016; Du et al., 2016; Jahn et al., 2018). While

individual Synechocystis substrains can be more sensitive to high light (Zavřel et al., 2017), the

agreement with previously reported values suggests an upper limit of Synechocystis growth in buff-

ered BG-11 medium. However, (van Alphen et al., 2018) recently reported a specific growth rate of

0:16h�1 (TD ¼ 4:3h) using BG-11 medium with modified iron source and chelating agents. This finding

suggests that the standard composition of BG-11 medium still induces a growth limitation, even

though in our study the total concentration of iron and other elements refilled during the turbidostat

cultivation was sufficient to fully saturate Synechocystis growth (Figure 1—source data 1).

Figure 6 continued

proteins (left axes, median fold change ± SD) in comparison with coarse-grained model predictions (grey lines, right axes). Experimental values

represent averages from 5 independent experiments, the error bars represent standard deviations. Panels B-C: The experimental data points are

displayed in three different color shading to reflect (from bright to dark) light-limited, light-saturated and light-inhibited growth. The full dataset of the

immunoblotting analysis is provided in Figure 6—source data 1 and Figure 6—figure supplement 1. The list of proteins considered for ribosome,

photosynthetic unit and metabolic enzyme classes is listed in Figure 6—source data 2. The influence of constant ribosomal, photosynthetic unit and

metabolic enzyme classes on cellular growth rate is simulated in Figure 6—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.42508.021

The following source data and figure supplements are available for figure 6:

Source data 1. Results of the immunoblotting analysis.

DOI: https://doi.org/10.7554/eLife.42508.024

Source data 2. List of proteins considered for ribosome, photosynthetic unit and metabolic enzyme classes.

DOI: https://doi.org/10.7554/eLife.42508.025

Figure supplement 1. Immunoblots and a list of antibodies used for the immunoblotting analysis.

DOI: https://doi.org/10.7554/eLife.42508.022

Figure supplement 2. Model simulations for investigating the influence of constant enzyme fractions on the cellular growth rate.

DOI: https://doi.org/10.7554/eLife.42508.023
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Table 2. Quantification of selected protein complexes in Synechocystis cells.

Protein abundances were estimated as molecules per cell, as inferred from mass spectrometry, immunoblotting and spectrophotomet-

ric analysis. The stoichiometries of protein complexes were based on Uniprot (www.uniprot.org, (UniProt Consortium, 2018)) and

RCSB (www.rcsb.org, (Berman, 2000)) databases. Protein abundances are not precise estimates but indicate ranges. The range in the

second column reflects the minimal and maximal protein amounts estimated across all light intensities studied in this work. Estimation

of protein abundances is detailed in Table 2—Source data 1, a list of all proteins is provided in Table 2—Source data 2. The experi-

mental conditions of (Moal and Lagoutte, 2012) are comparable to the conditions used in this study with the exception of high light

used here and distinct Synechocystis substrains (Figure 2—source data 2).

Protein complex
Molecules per
cell Method Stoichiometry Reference

Elongation factor 179000–274000 Proteomics TufA This study

Phosphoglycerate kinase 45000–73000 Proteomics Pgk This study

Ribosome small subunit 36000–66000 Proteomics Rps1A,1B,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U This study

Phycobilisome (phycocyanin) 12000–23000 Proteomics ((CpcA,B)18,C1,C2,D,G)6 This study

26000–66000 Spectrophotometry This study

Photosystem I 31000–63000 Proteomics (PsaA,B,C,D,E,F,I,J,K,L,M,X)3 This study

96000 Spetroscopy Keren et al., 2004

540000 Spetroscopy Moal and Lagoutte,
2012

Ribosome large subunit 33000–54000 Proteomics RplA,B,C,D,E,F,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y, RpmA,
B,C,E,F,G,H,I,J

This study

Transketolase 31000–50000 Proteomics TktA2 This study

PII signal transducing protein 36000–46000 Proteomics GlnB3 This study

Photosystem II 23000–46000 Proteomics (PsbA1,A2,B,C,D,E,F,H,I,J,K,L,M,N,O,T,U,V,X,Y,Z, Ycf12)2 This study

17000–29000 Immunoblotting This study

100000 Spetroscopy Moal and Lagoutte,
2012

RuBisCO 26000–43000 Proteomics (RbcL, RbcS)8 This study

39000–63000 Immunoblotting This study

Ferredoxin-NADP reductase
(FNR)

33000–42000 Proteomics PetH This study

140000 Immunoblotting Moal and Lagoutte,
2012

D-fructose 1,6-bisphosphatase
class 2

29000–36000 Proteomics Slr20944 This study

Phycobilisome (allophycocyanin) 19000–38000 Proteomics (ApcA,B)34,C6,D2,E6,F2 This study

9000–19000 Spectrophotometry This study

G3P dehydrogenase 21000–32000 Proteomics Gap24 This study

Plastocyanin 15000–29000 Proteomics PetE This study

Superoxide dismutase [Fe] 14000–25000 Proteomics SodB2 This study

Orange carotenoid protein 15000–24000 Proteomics Slr19632 This study

RNA polymerase 8000–15000 Proteomics RpoA2,B,C1,C2,D,E,F This study

Cytochrome b6/f 8000–15000 Proteomics (PetA,B,C2,D,G,L,M,N)2 This study

Chaperonine GroEL 7000–13000 Proteomics GroL114 This study

Ribosome recycling factor 6000–7000 Proteomics Frr This study

Phosphoglycerate
dehydrogenase

3000–5000 Proteomics SerA4 This study

Pyruvate dehydrogenase 3000–4000 Proteomics (PdhA, PdhB)2 This study

Glutamine synthetase 2000–4000 Proteomics GlnA12 This study

Isocitrate dehydrogenase 2000–3000 Proteomics Icd2 This study

Table 2 continued on next page
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A sub-maximal specific growth rate in buffered BG-11 medium might also relate to the increase

in glycogen content with increasing light intensity and growth rate (Figure 2G,H). The relative

amounts of glycogen in Synechocystis observed in this study were well within values reported in the

literature (Figure 2—source data 2).

However, from the perspective of optimal resource allocation, glycogen accumulation is seem-

ingly suboptimal, since the required energy and carbon is stored and not utilized to enhance growth.

Various growth limitations are known to induce accumulation of storage products, including glyco-

gen (Monshupanee and Incharoensakdi, 2014), and a recent study showed that glycogen plays an

important role in energy balancing and energy homeostasis in Synechocystis (Cano et al., 2018). We

therefore hypothesize that the observed increase in glycogen content, in the absence of other stress

factors, is consistent with a limitation in buffered BG-11 medium. This hypothesis is also supported

by varying amounts of glycogen reported for the fast-growing strain Synechococcus elongatus UTEX

2973: while Abernathy et al. (2017) only report 1:5� 0:5% glycogen of dry weight under fastest

growth conditions, Ungerer et al. (2018) report a drastic increase in glycogen content when

entering linear growth phase, and Tan et al. (2018) report up to 54.9% glycogen of dry weight

under high light conditions (but unknown growth rate) — suggesting that glycogen accumulation is

indicative of growth limitation by other factors than light and carbon availability.

The true growth limit of Synechocystis (and other cyanobacteria) remains an open question. Com-

pared to the fast growing strain Synechococcus elongatus UTEX 2973, the strain used in this study

showed substantially lower carbon partitioning into protein content (23–40% of dry weight, com-

pared to 50% in Synechococcus 2973), and increased carbon partitioning into glycogen (8.4–22.9%

of dry weight, compared to 1.5% in Synechococcus 2973 during the fastest growth

(Abernathy et al., 2017)). The Synechocystis substrain GT-L used here also maintained a lower PSI/

PSII ratio (1.35 compared to 2–3.5 in Synechococcus 7942 and even higher in Synechococcus 2973

(Ungerer et al., 2018)) and did not increase the amount of electron transport carriers such as plasto-

cyanin (Kruskal-Wallis test: p� value ¼ 0:731) or cytochrome b6f (Kruskal-Wallis test: p� value ¼ 0:493)

with increasing light intensity and growth rate. All these factors may contribute to relatively slower

growth compared to the fastest growing cyanobacteria. The recent studies of Ungerer et al. (2018)

and Abernathy et al. (2017) demonstrate how just a few mutations in genetically very similar strains

can lead to dramatic growth differences — differences that are likely due to different, but as yet not

fully understood, cellular strategies in resource allocation. We note, however, that the main goal of

our study was not to maximize cyanobacterial growth per se, but to understand resource allocation

in a widely used model strain.

We also note that many of the commonly used strains, including substrains of Synechocystis sp.

PCC 6803, have been maintained in laboratories and in culture collections for extended periods of

Table 2 continued

Protein complex
Molecules per
cell Method Stoichiometry Reference

Glycogen synthase 2000–3000 Proteomics GlgA1 This study

DNA polymerase III 1000–2000 Proteomics DnaN2 This study

Pyruvate kinase 1000–2000 Proteomics Pyk24 This study

Acetyl-coenzyme A carboxylase 1000 Proteomics AccB, AccC, AccA2,ACCD2 This study

Carbonic anhydrase 400–700 Proteomics IcfA6 This study

Acetyl-coenzyme A reductase 300–600 Proteomics PhaB4 This study

Circadian clock proteins KaiA/
KaiB/KaiC

200–500 Proteomics KaiA2/KaiB4/KaiC6 This study

DOI: https://doi.org/10.7554/eLife.42508.026

The following source data is available for Table 2:

Source data 1. Calculations of selected protein complex copies in Synechocystis cells.

DOI: https://doi.org/10.7554/eLife.42508.027

Source data 2. List of all proteins quantified by proteomics measurements in Synechocystis cells.

DOI: https://doi.org/10.7554/eLife.42508.028
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time, and may have therefore acquired mutations that enhance viability in the lab, but concomitantly

reduce maximal growth rates. Indeed, an instance where a cyanobacterial model strain appears to

have lost, through laboratory domestication, behaviors that are important in a natural environment

was recently reported (Yang et al., 2018).

Cell morphology and variability of physiological parameters
Overall, the morphology and range of physiological data obtained in this study were in good agree-

ment with previously published values for Synechocystis (see Figure 2—figure supplement 1 and

Table 2 for detailed comparison). The cell diameter and volume (Figure 2A,B) were well within the

range of values reported in the literature (Lea-Smith et al., 2016; Zavřel et al., 2017; Rosana et al.,

2012). Likewise, the photosynthetic quotient PQ was well within values reported in the literature

(Zavřel et al., 2017; Shastri and Morgan, 2005) and did not vary significantly with growth rate. The

total protein content reported here (23 � 40% of gDW, Figure 2I) was lower than in several previous

studies (Touloupakis et al., 2015; Shastri and Morgan, 2005).

As noted above, variability in physiological parameters observed in the literature (Figure 2—fig-

ure supplement 1, Table 2) can often be attributed to differences in cultivation setup, including

selection of particular Synechocystis substrain (Morris et al., 2017; Zavřel et al., 2017). Addition-

ally, the choice of analytical technique can affect the results, especially with respect to absolute

quantification. We are aware of limitations of some techniques used in this work, including glycogen

estimation (where the extracellular polymeric substances can potentially lead to overestimation of

glycogen content), proteins extraction (where some proteins, especially those with transmembrane

domains, could be potentially extracted with reduced efficiency), total protein quantification (where

bovine serum albumin, used as a protein standard, does not have to represent cyanobacterial pro-

teins properly), quantification of individual proteins (where the mass spectrometer ionization effi-

ciency could potentially be affected for proteins with lower amount of charged amino acid), relative

DNA estimation by flow cytometry (where penetration of SYBR Green I solution to the cells as well

as SYBR Green I binding to both DNA and RNA could potentially differ under increasing light inten-

sity), or phycobiliproteins determination (where the values from proteomics analysis and spectropho-

tometric analysis differed, Table 2). Nevertheless, even taken these technical limitations into

account, the quantities reported here fit well into the previously reported ranges of Synechocystis

physiology (Figure 2—figure supplement 1, Table 2), as well as to the predictions of the proteome

allocation model (Figure 6).

Trends in physiological parameters
Of particular interest were the trends of physiological parameters with respect to increasing light

intensity and growth rate. Almost all identified parameters showed significant changes in depen-

dence of light intensity and growth rate, including cell size (diameter and volume , Figure 2A), gas

exchange rates (Figure 2C–F), as well as glycogen (Figure 2G–H), DNA and pigment content

(Figure 2K–N). Trends in physiological parameters were consistent with previous studies. The

increase in gas exchange (O2 release and basal respiration) has been observed previously

(Zavřel et al., 2015b; Zavřel et al., 2017). Likewise, the increase in cellular size with growth rate

(Figure 2A) has been reported in Synechocystis (Zavřel et al., 2017; Cordara et al., 2018) as well

as in heterotrophic bacteria, yeast or mammalian cells (Aldea et al., 2017). Light was also shown to

affect DNA content (ploidy level) in Synechocystis (Zerulla et al., 2016), however, no study of DNA

content change with growth rate is available to date.

Reduction of light harvesting pigments under high light is well documented in the literature (e.g.

(Zavřel et al., 2018a; Jahn et al., 2018)). Interestingly, we found upregulation of chlorophyll a, phy-

cobilins and both PSII and PSI proteins synthesis in Synechocystis cells in the initial part of the

growth curve (i.e. between light intensities of 27.5 � 220 mmol(photons) m-2s-1, Figure 2L,N,

Figure 6C). Similar trends have been described in Synechocystis (Zavřel et al., 2017) as well as in

other cyanobacteria and algae (Kumar et al., 2011; Wu et al., 2015). Different from most previous

studies, the range of light intensities tested here also included conditions of photoinhibition. In sev-

eral parameters, in particular glycogen content (Figure 2G–H) or pigment content (Figure 2K–N),

we observed a characteristic ’kink’, that is, a sharp in- or decrease of the respective abundances.
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This finding emphasizes photoinhibition as a distinct growth regime and distinguishes phototrophic

growth laws from their heterotrophic counterparts.

Our findings also emphasize the need to specify to which reference value the particular changes

are reported. Typically, values in the literature are reported relative to optical density as a proxy for

cellular dry weight—making a direct comparison between experimental conditions difficult. Further-

more, if cellular composition or cell size changes, these changes do not necessarily translate into cor-

responding changes per cell or per protein content.

Proteome allocation with growth rate
Beyond physiological parameters, we followed the global proteome allocation as a function of

growth rate. The most pronounced changes in proteome with increasing light intensity and growth

rate were related to upregulation of translational proteins and downregulation of photosynthetic

proteins (Table 1, Figure 6). The upregulation of proteins related to translation (Figure 6B–C) is

consistent with well-established growth laws for heterotrophic growth. In particular, E. coli shows

consistently increased proteome investment into translation-related proteins with increasing growth

rate (Peebo et al., 2015). Unique for photosynthetic organisms, we observed a decrease of (relative)

allocation to proteins annotated with photosynthesis (Figure 6B–C). These results are also consistent

with a recent study from Jahn et al. (2018). Likewise, the observed decrease is also in agreement

with predictions from resource allocation models (Burnap, 2015; Faizi et al., 2018), even for simple

models that do not consider photoinhibition (Burnap, 2015). While the RbcL subunit of RuBisCo

showed a slight increase with increasing growth rate (Figure 6C), we observed no general upregula-

tion of metabolic proteins in the proteomics data with increasing growth rate (Figure 6B)—a devia-

tion from the growth laws predicted by the model considered here, as well as from the growth laws

predicted by other (heterotrophic) models (Molenaar et al., 2009). This finding indicates that the

metabolic capacity itself is sufficient for high growth rates, even under conditions where lack of light

input limits faster growth. We hypothesize that the most pronounced changes with changing light

intensity are observed for proteins related to translation and photosynthesis due to two facts: Firstly,

translation is typically limited by ribosomal capacity, requiring an upregulation of translational capac-

ity with faster growth rates. In addition, the short half-life of the D1 protein requires the cell to adjust

the translational capacity at high light intensities. Secondly, overcapacity of light harvesting may give

rise to detrimental effects, such as increased cellular (photo-)damage. In comparison, overcapacity in

the metabolic dark reaction does not entail obvious detrimental consequences (other than the loss

of the invested resources) and therefore might be under less evolutionary pressure to change with

changing light intensity. We could further corroborate this hypothesis in silico using the proteome

allocation model: by artificially forcing a constant mass fraction of a proteome class, we were able to

evaluate the impact of such sub-optimal acclimationon the specific growth rate as a function of light

intensities. While constant mass fractions of ribosomal and photosynthetic proteins resulted in a

marked deviation in the specific growth rate, a constant metabolic fraction only resulted in a minor

deviation (Figure 6—figure supplement 2).

Interpretation of the results in the context of a coarse-grained model
The coarse-grained model of phototrophic growth allows us to interpret the physiological and prote-

omic changes in the context of (optimal) protein allocation. We emphasize that the model was not

constructed or parametrized to reproduce certain observed behavior – rather it represents an inde-

pendent null-hypothesis that provides information about the expected changes in proteome frac-

tions with increasing growth rate under the assumption of (evolutionary) optimality. In line with

models of heterotrophic growth (Molenaar et al., 2009; Weiße et al., 2015), the model predicts an

increase in allocation of ribosomal proteins as a function of growth rate (Figure 6B–C). Different to

heterotrophic models, however, the model also predicts a characteristic upward ’kink’ under condi-

tions of photoinhibition. The relative proteomics data confirms this behavior, including the ’kink’ at

high light intensities (Figure 6B–C). The sharp upregulation of ribosomes in the model is due to the

increased turnover of proteins subject to photodamage. As previously noted in Faizi et al. (2018),

the model is likely to overestimate this effect, due to the fact that within the model, photodamage is

exclusively related to an increase in protein turnover. We expect that in Synechocystis also other

repair mechanisms are active, resulting in a less pronounced upregulation of ribosomes and energy
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usage elsewhere. Indeed, the observed upregulation in the data is less pronounced than in the

model simulations (Figure 6B–C). Furthermore, the model predicts a downregulation of the light

harvesting machinery with increasing light intensity (Figure 5B) and growth rates (Figure 6B–C). The

relative proteome allocation confirms this trend, including again the predicted ’kink’ when entering

photoinhibition (Figure 6B–C). Interestingly, the characteristic ’kinks’ were not observed in the

recent study of Jahn et al. (2018) — possibly because the experimental condition used therein only

considered a single light condition in the photo-inhibited growth regime.

Finally, as for models of heterotrophic growth, the model predicts an increase in the proteome

fraction related to metabolic processes with increasing growth rate (Figure 6B–C). The metabolic

proteome fraction, in particular enzymes related to a genome-scale metabolic reconstruction

(Knoop et al., 2013), did not exhibit such a clear upregulation with the exception of the RbcL pro-

tein (a subunit of RuBisCo) that increased in relative abundance with increasing growth rate

(Figure 6C). We note that, different from our results, the recent study of Jahn et al. (2018) reported

an increase in the metabolic proteome fraction with increasing light intensity, albeit also less than

expected compared to their computational growth model. However, a direct comparison of our

results with the results of Jahn et al. (2018) is challenging, due to differences in definition of the

respective enzyme classes: the proteome fraction corresponding to the metabolic enzyme (M) class

within our analysis was assigned using the metabolic reconstruction of Knoop et al., 2013, and con-

sists only of the respective metabolic enzymes (excluding transporters and the electron transport

chain). The metabolic enzyme class of Jahn et al. (2018) follows a manually curated definition based

on annotation from Cyanobase and is considerably broader (the Ci uptake, fixation, and metabolism

class (CBM) also includes proteins annotated with translation and other processes). Furthermore, we

note that the fold changes of proteins within the M-fraction are inhomogenous: as can be observed

in Figure 3B, proteins associated with biosynthesis and small molecule metabolic processes exhibit

up- as well as down-regulation as a function of growth rate—a fact that is also reflected in the pro-

teins of the M-fraction.

Conclusions
Despite the importance of cyanobacteria as photosynthetic model organisms and as host organisms

for green biotechnology, as yet only few studies have addressed quantitative growth properties and

resource allocation even for well characterized model strains. The goal of this study was therefore to

close this gap with respect to knowledge and interpretation of key physiological parameters of the

cyanobacterial model strain Synechocystis sp. PCC 6803 in dependence of light intensity and growth

rate. We focused on light as the only variable environmental parameter – and identified trends in

key physiological parameters and proteome allocation as a function of growth rate. The interpreta-

tion of data was facilitated by a coarse-grained computational model of cyanobacterial resource allo-

cation and the data was put into the context of data available in the literature, obtained by a

comprehensive literature research. Overall, the resulting growth laws (decrease of proteome fraction

associated with light harvesting and increase of proteome fraction associated with translation with

increasing light intensity and growth rate) are in good agreement with previous theoretical (Bur-

nap, 2015; Faizi et al., 2018) and experimental studies (Jahn et al., 2018), whereas the observed

invariance of the proteome fraction associated with metabolic processes differed from model

predictions.

Light, however, is not the only factor that affects photoautotrophic growth. Further studies are

required to identify growth limitation under different environmental conditions, in particular limita-

tions induced by other biotechnologically or environmentally relevant macro- or micronutrients. Ulti-

mately, such studies will also have to take into account the diversity of cyanobacterial metabolism

(Beck et al., 2018). As indicated by rather minor genetic differences between strains with vastly dif-

ferent growth rates, we expect that differences in many biotechnologically relevant parameters

between strains are indeed a consequence of different strategies in resource allocation — making

further studies of cellular accounting a key prerequisite for successful green biotechnology. The pro-

posed reproducible cultivation setup and the coarse-grained computational model used in this study

provide a suitable framework and reference to facilitate and to contribute to such studies.
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source
or reference Identifiers

Additional
information

Antibody Rabbit Anti-
PsbA

Agrisera Cat. #: AS05 084
RRID:AB_2172617

WB (1:10000)

Antibody Rabbit Anti-
PsaC

Agrisera Cat. #: AS10 939
RRID:AB_10752085

WB (1:1000)

Antibody Rabbit Anti-
RbcL

Agrisera Cat. #: AS03 037
RRID:AB_2175406

WB (1:5000)

Antibody Rabbit Anti-S1 Agrisera Cat. #: AS08 309
RRID:AB_1271140

WB (1:2000)

Antibody Rabbit Anti-L1 Agrisera Cat. #: AS11 1738
RRID:AB_10754471

WB (1:1000)

Peptide, recombinant protein Recombinant PsbA from Synechocystissp. PCC 6803 Agrisera Cat. #: AS01 016S 41.5 kDa

Peptide, recombinant protein Recombinant PsaC from Synechocystissp. PCC 6803 Agrisera Cat. #: AS04 042S 11.5 kDa

Peptide, recombinant protein Puri1ed spinach RbcL Agrisera Cat. #: AS01 017S 52.7 kDa

Inoculum cultures
Synechocystis sp. PCC 6803 GT-L was obtained from Prof. D. A. Los (Timiryazev Institute of Plant

Physiology, Moscow, RU). The strain was cultivated in BG-11 medium (Stanier et al., 1971) supple-

mented with 17 mM HEPES (Carl Roth, Karlsruhe, Germany, pKa = 7.5). pH of the buffered BG-11

was adjusted to 8.2. The inoculum cultures were precultivated in 250 mL Erlenmeyer flasks on a stan-

dard orbital shaker (120 rpm) in a cultivation chamber tempered at 25˚C under an average illumina-

tion of 110 mmol(photons) m-2s-1 (provided by cool white light LEDs) and under 1% CO2 in the

atmosphere.

Photobioreactor
Growth experiments were performed in flat panel photobioreactors, described in detail previously

(Nedbal et al., 2008). The illumination in the photobioreactors was designed as a chessboard con-

figuration of red and blue LEDs (red: lmax » 633 nm, l1=2 » 20 nm, Luxeon LXHLPD09; blue:

lmax » 445 nm, l1=2 » 20 nm, Luxeon LXHL-PR09; all manufactured by Future Lighting Solutions,

Montreal, QC, Canada). Spectral characteristics of the LEDs are shown in Zavřel et al., 2015b. The

photobioreactor continuously measured optical density (OD) by an inbuilt densitometer and steady-

state pigment fluorescence emission yield by an inbuilt fluorometer (both described in

Nedbal et al., 2008). Dissolved O2 was monitored by the InPro6800 electrode, culture temperature

and pH were monitored by the InPro3253 electrode (all manufactured by Mettler-Toledo Inc, Colum-

bus, OH, USA). Culture homogenization was secured by the inflow gas bubbling with a rate of 200

mL min-1, complemented by rotations of a magnetic stirrer bar (f5 � 35 mm, 210 rpm) in a vertical

plane. All other photobioreactor accessories were the same as described in (Zavřel et al., 2015b).

The photobioreactor setup is visualized in Figure 1A.

Experimental setup
Growth characterization was performed in a quasi-continuous regime as described previously

(Zavřel et al., 2015b). Briefly, the exponentially growing Synechocystis cells were maintained in a

defined range of optical density (measured at 680 nm, OD680) by controlled dilution of the culture

suspension with fresh buffered BG-11 medium (turbidostat). The optical density was measured by

the photobioreactor instrument base, and the OD680 range was set to 0.60–0.66, which corre-

sponded to approximately 2 – 4 � 107 cells mL-1. Starting OD680 of all cultures was 0.1 - 0.2, which

corresponded to approximately 2 – 4 � 106 cells mL-1. Once the culture density reached OD680 0.66,

the quasi-continuous cultivation setup was initiated by starting automated cultures dilution within

the selected OD680 range. Under each light condition, the cultures were growing for at least 24 hr.
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This period was long enough to reach growth stability, that is to acclimate the cells to the specific

condition. The principal of quasi-continuous cultivation is represented in Figure 1B.

During the quasi-continuous experiments, Synechocystis was cultivated under red light intensities

of 27.5 – 1000 mmol(photons) m-2s-1. The cultures were always supplemented with low intensity of

blue light (27.5 mmol(photons) m-2s-1) in order to avoid growth limitation by complete absence of

short wavelength photons (Golden, 1995). Cultivation temperature was set to 32˚C, and the experi-

ments were performed under a CO2 concentration of 5000 ppm in the sparging gas (secured by the

Gas Mixing System GMS 150, Photon System Instruments Ltd., Brno, CZ).

Analytical methods
Growth rates determination
Specific growth rates m were evaluated from an increase of OD680 signal as recorded by the photo-

bioreactor during the quasi-continuous cultivation (after the growth stabilized under each particular

light intensity), according to Zavřel et al. (2015b):

� ¼
ln

OD680 t2
OD680 t1

t2�t1
; (1)

where OD680 t1 and OD680 t2 represent optical densities measured at 680 nm in times t1 and t2,

respectively.

As an alternative method, specific growth rates were determined from depletion of spare cultiva-

tion medium, as measured by top loading balances (Ind231, Mettler-Toledo Inc, Columbus, OH,

USA, Figure 1C), according to the following equation:

� ¼ f

V
; (2)

where f represents average flow rate of spare cultivation medium and V represents volume of the

culture suspension in the photobioreactor.

Determination of photosynthesis and respiration rates
The oxygen evolution rates as a sum of all oxygen fluxes between Synechocystis cells and cultivation

media (net photosynthesis, NP) and dark respiration rates (R) were determined from the signal of

dO2 electrode in the photobioreactor vessel by turning off aeration for 10 min, through 5 min light

and 5 min dark periods, according to Červený et al., 2009. Gross photosynthesis rates (rates of oxy-

gen production by water splitting, GP) were calculated as: GP = NP + R (photorespiration and other

processes were neglected for the GP calculations).

Carbon uptake (net CO2 uptake rate as a sum of all CO2 fluxes between Synechocystis cells and

cultivation media) was determined from the steady-state values of CO2 concentration in the photo-

bioreactor output gas, as measured by the Gas Analyzing System (Photon System Instruments Ltd.,

Brno, CZ, described in detail in Červený et al., 2009).

Pigment content measurements
Content of chlorophyll a, carotenoids and phycobilisomes was measured spectrophotometrically fol-

lowing the protocols of Zavřel et al. (2015a) and Zavřel et al. (2018a).

Measurements of glycogen, cell size and DNA content
Content of glycogen was measured spectrophotometrically, following the protocol of Zavřel et al.

(2018b). Cellular dry weight was measured using XA105DR analytical balances (Mettler Tolledo,

Greifensee, CH). Cell count was measured with the Cellometer Auto M10 (Nexcelom Bioscience,

Lawrence, MA, USA).

Cell size was determined using the ImageStream MkII imaging flow cytometer (Amnis Corp.,

Seattle, WA, USA). Right after harvesting from the photobioreactor, 500 mL of the culture suspension

was centrifuged (4 000 g, 4 min, 25C), supernatant was discarded, pellet was resuspended in 0.25%

glutaraldehyde solution and the samples were incubated for 10 min at laboratory temperature. The

fixed cells were stored in -80˚C until further processing (up to 2 months in total). For further analysis,

the samples were thawed on ice for 2 hr, and they were kept at laboratory temperature in dark for
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additional 30 min after thawing (after 20 min, 5 mL of SYBR Green I solution was added to each sam-

ple for DNA content estimation; for details see the next paragraph). During the cytometric analysis,

only bright field images were collected by the imaging flow cytometer. Gating of the measured pop-

ulations was applied to discriminate: a) focused objects (using combination of both RMS gradient

and Treshold Mask features of IDEAS software), and b) round objects (width/length ratio between

0.9 – 1.0). The imaging flow cytometer was calibrated with non-fluorescent microspheres (1 – 15 mm,

Thermo Fisher Scientific, Waltham MA, USA) and the results were validated with the light micro-

scope Axio Imager 2 (Carl Zeiss, Oberkochen, DE). During the cytometric analysis, also chlorophyll

fluorescence (excitation: 488 nm, detection: 480 - 560 nm) and phycobilisomes fluorescence (excita-

tion: 642 nm, detection: 642 nm - 745 nm) were measured to validate selection of the cells within all

measured objects.

DNA content was measured in the same samples as the cell size. After the samples thawing on

ice for 2 hr and at laboratory temperature for 20 min (see the previous paragraph for details), 5 mL

of SYBR Green I solution (Thermo Fisher Scientific, Waltham, MA USA, diluted 1:100 in DMSO) was

added to 500 mL of the culture suspension to mark cellular DNA, and the samples were further incu-

bated for 10 min in dark at laboratory temperature. During the cytometric analysis, a 488 nm argon

laser was used to excite both SYBR Green I and chlorophyll a, and another 642 nm laser was used to

excite phycobilisomes. To identify Synechocystis cells within all measured objects, the same gating

as described in the previous paragraph was used.

Protein extraction
Protein extraction was performed according to Brown et al. (2008) with modifications. For each

sample, 90 mL of the culture suspension was withdrawn from the photobioreactor, centrifuged (4

000 xg, 5 min, 32˚C), supernatant was partially discarded (leaving 0.5–1 ml of liquid in the original 50

mL conical tube) and the pellet was resuspended and transferred to 1.5 mL Eppendorf tube. The

tubes were centrifuged (20 000 x g, 4 min, 32˚C), supernatants were completely discarded and the

tubes were stored at �80˚C until further processing (up to 4 months). All following steps of protein

isolation were performed at 4˚C. The frozen pellets were resuspended in 0.8 mL of a protein extrac-

tion buffer (50 mM Tris-HCl (pH 7.6); 2 mM EDTA; 10 mM MgCl2; 250 mM sucrose, 1% of protease

inhibitor cocktail P9599, Sigma-Aldrich, St. Louis, MO, USA). The mixture was transferred to 2 mL

tubes with a rubber o-ring (containing 0.5 mL of sand and glass beads) and the cells were disrupted

by 6 � 30 s homogenization pulses on the laboratory mixer (BeadBug Microtube Homogenizer,

Benchmark Scientific, Sayreville, NJ, USA). Between each pulse, the samples were kept on ice. After

the first step of homogenization, the samples were shortly centrifuged, 200 mL of 10% SDS was

added to each tube (to reach the final concentration of 2%), and the samples were mixed and frozen

in liquid nitrogen. Right after freezing, the cells were additionally sonicated in an ultrasound bath

with ice until thawing (six cycles, between each cycle the samples were frozen in liquid nitrogen).

After ultrasound homogenization, the samples were centrifuged (10 000 x g, 3 min, 4˚C) to remove

unbroken cells and cell debris, and 500 mL of the supernatant protein fraction was transferred to a

new 1.5 mL Eppendorf tube. The total protein concentration was measured in triplicates with a bicin-

choninic acid assay kit (BCA1-1KT, Sigma-Aldrich, USA) by the method of Smith et al. (1985) using

bovine serum albumin (A7906, Sigma-Aldrich, USA) as a standard. The samples were used for both

immunoblotting and proteomics measurements.

Immunoblotting protein analysis
Immunoblotting and protein quantification was done according to Brown et al. (2008) with modifi-

cations. 100 ml of each sample was diluted with equal volume of 2x loading buffer (100 mM Tris-HCl

(pH 7.6); 20 mM DTT, 4% SDS 0.02% bromphenol blue, 20% glycerol), denatured for 20 min at 37˚C
and centrifuged (10 000 x g, 20 min, laboratory temperature) before loading. Samples containing 4

mg of total protein were separated in 12.5% (for detection of RbcL, S1, L1) or 15% (for detection of

D1, PsaC) 0.75 mm thick polyacrylamide mini gels by SDS-PAGE at 200 V for 40–50 min in a MiniPro-

tean Tetra Cell (Bio-Rad, Hercules, CA, USA). Separated proteins were transferred to 45 mm nitrocel-

lulose membranes (Hybond-C Extra, GE Healthcare Life Sciences, Chicago, Il, USA) using the Trans-

Blot Turbo Transfer system (BioRad, Hercules, CA, USA) at 25 V, 1.0 A, laboratory temperature, and

cycle duration of 30 min. The nitrocellulose membranes were blocked immediately after transfer in
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TBST-G buffer (10 mM Tris-HCl (pH7.6); 150 mM NaCl; 0.05% (v/v) Tween-20; 1% cold-water fish

gelatin) for 2 hr at laboratory temperature. Primary antibodies diluted in TBST-G buffer were used

according to recommendations of the manufacturer. The list of primary antibodies is provided in Fig-

ure 6—figure supplement 1. After incubation of the membranes in the primary antibody solutions

for 1 hr at laboratory temperature, the solutions were poured off and the membranes were briefly

rinsed and washed 3 times for 15 min in TBST buffer at laboratory temperature. For signal detection,

the membranes were incubated with goat anti-rabbit immunoglobulin G horseradish peroxidase

conjugated antibodies diluted 1:75000 in TBST buffer for 1 hr at laboratory temperature. Mem-

branes were washed as described above and developed with Clarity Western ECL Substrate (Bio-

Rad, Hercules, CA, USA) according to the manufacturer’s instructions. Images of the blots were

obtained using a Gel Doc XR + system (Bio-Rad, Hercules, CA, USA).

Intensity of protein bands on immunoblots was estimated by densitometric analysis with the

Image Lab 5.1 software (Bio-Rad, Hercules, CA, USA). The protein concentrations were quantified as

relative to the lowest light intensity (27.5 mmol(photons) m-2s-1). In addition, absolute amounts of

PsbA, PsaC, and RbcL proteins were estimated from standard curves prepared by serial dilutions of

corresponding standard proteins. The list of protein standards is provided in Figure 6—figure sup-

plement 1.

Quantitative proteomics
Protein lysates of 5 individually grown replicate samples per group (27.5-55-110-220-440-1100 mmol

(photons) m-2s-1) were prepared for mass spectrometric analysis by shortly stacking 5 mg proteins

per sample in a 4 - 12% Bis-Tris sodium dodecyl sulfate (SDS)-polyacrylamide gel (Thermo Scientific,

Darmstadt, Germany) over a 4 mm running distance. Proteins were further processed as described

previously (Poschmann et al., 2014). Briefly, gels were subjected to a silver staining protein contain-

ing bands cut out from the gel, destained, washed, reduced with dithiothreitol and alkylated with

iodoacetamide. Subsequently, proteins were digested for 16 hr at 37˚C with 0.1 mg trypsin (Serva,

Heidelberg, Germany), peptides were extracted from the gel and after drying in a vacuum concen-

trator resuspended in 0.1% trifluoroacetic acid. 500 ng of sobulized peptides per sample were then

analyzed by a liquid chromatography (Ultimate 3000 Rapid Separation Liquid Chromatography sys-

tem, RSLC, Thermo Fisher Scientific, Dreieich, Germany) coupled with quantitative mass spectrome-

try. First, peptides were loaded for 10 min at a flow rate of 6 ml/min on a trap column (Acclaim

PepMap100 trap column, 3 mm C18 particle size, 100 Å pore size, 75 mm inner diameter, 2 cm

length, Thermo Fisher Scientific, Dreieich, Germany) using 0.1 % trifluoroacetic acid as mobile phase.

Subsequently, peptides were separated at 60˚C on an analytical column (Acclaim PepMapRSLC, 2

mm C18 particle size, 100 Å pore size, 75 mm inner diameter, 25 cm length, Thermo Scientific,

Dreieich, Germany) at a flow rate of 300 nl/min using a 2 hr gradient from 4 to 40% solvent B (sol-

vent A: 0.1% (v/v) formic acid in water, solvent B: 0.1% (v/v) formic acid, 84% (v/v) acetonitrile in

water).

Separated peptides were injected via distal coated SilicaTip emitters (New Objective, Woburn,

MA, USA) into a Q Exactive plus Orbitrap mass spectrometer (Thermo Fisher Scientific, Dreieich,

Germany) online coupled via a nanosource electrospray interface. The mass spectrometer was oper-

ated in data dependent positive mode with a capillary temperature of 250˚C and spray voltage set

to 1 400 V. First, full scans were recorded in profile mode at a resolution of 70,000 over a scan range

from 350 to 2 000 m/z. Ions were accumulated for a maximum of 80 ms and the target value for

automatic gain control was set to 3,000,000. Second, a maximum of ten two- or threefold charged

precursor ions were selected within a 2 m/z window using the build in quadrupole, fragmented via

higher-energy collisional dissociation and fragments analyzed in the Orbitrap over a maximal scan

range from 200 to 2 000 m/z at a resolution of 17,500. Here, the automatic gain control was set to

100,000 and the maximum ion time was 60 ms. For the next 100 s already fragmented precursors

were excluded from further analysis.

Peptide and protein identification
For peptide and protein identification and quantification the MaxQuant software suite (version

1.6.1.0, MPI for Biochemistry, Planegg, Germany) was used with standard parameters if not other-

wise stated. For database searches 3507 protein entries from the UP000001425 Synechocystis sp.
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strain PCC 6803 downloaded on the 20th of November 2017 from the UniProtKB were considered.

Searches were conducted using following parameters: carbamidomethylation at cysteines as fixed

and oxidation at methionine and N-terminal protein acetylation as variable modification, false dis-

covery rate on peptide and protein level 1%, match between runs enabled as well as label-free quan-

tification and iBAQ, tryptic cleavage specificity with a maximum of two missed cleavage sites. A first

search was conducted with a precursor mass tolerance of 20 ppm and after recalibration by Max-

Quant, 4.5 ppm precursor mass tolerances were applied. The mass tolerances for fragment spectra

signals were set to 20 ppm.

Quantitative information for identified proteins was further processed within the Perseus frame-

work (version 1.6.1.1, MPI for Biochemistry, Planegg, Germany). Here, only non-contaminant pro-

teins identified with at least two different peptides were considered. Additionally, all proteins were

filtered out which - in at least one group – did not show any missing values in the label-free quantifi-

cation data which then was used after log2 transformation for statistical analysis and relative protein

amount comparisons between the different light intensity groups. Calculations of protein stoichio-

metries and comparison to quantitative protein data derived from other methods was done on abso-

lute quantitative data based on iBAQ intensities. First, iBAQ intensities were normalized on the sum

iBAQ intensities of four proteins (Q55806, P72587, P73505, Q59978) showing a small standard devi-

ation, similar intensity range and ratio close to one between the mean intensities of the 27.5 and

1100 mmol(photons) m-2s-1 group. Second, a calibration of absolute intensities was performed using

the PsaC Western blot data (mean of 104 fmol/ml). The mass spectrometry proteomics data have

been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaı́no et al., 2016) partner

repository with the dataset identifier PXD009626.

Proteomaps
For generating proteomaps, the version 1.0 of the visualization tool at www.proteomaps.net

(Liebermeister et al., 2014) was used, choosing absolute quantitative values and Synechocystis sp.

6803 as organism. To be compatible with the proteomaps tool, the mass spectrometric data was

searched against the 3661 entries from the GCA 000009725.1 protein dataset from CyanoBase

downloaded on 22th January 2018.

Statistical analysis
Kruskal-Wallis test
For the identification of cellular resources that significantly changed with growth rate (including each

single protein out of total 1356 identified proteins), we performed a Kruskal-Wallis test (Python

scipy.stats module) for each resource (null hypothesis was that the median of all compared groups is

equal) and did a pair-by-pair comparison of two conditions in each case. For the test we compared

only those measurements with at least three samples. Cellular components and proteins determined

as significantly changing with light intensity and growth rate were those that had at least one pair

that differed significantly with a p� value< 0:05.

Fisher’s exact test
We further performed a Fisher’s exact test to investigate which of the GO categories filtered out

from the proteomics dataset are significantly associated to growth related proteins. For this test we

used the GO slim categories. Therefore, we classified the 1356 proteins into growth dependent (779

proteins) and independent groups (577 proteins). The second classification criterion referred to

being in one specific gene ontology group or not. The test was then performed for each GO slim

category. An imbalance for one GO slim category, between the amount of growth-dependent and

growth-independent proteins, was determined as significant for a p� value< 0:05.

A coarse-grained proteome allocation model
Model overview
The previously published model of proteome allocation of Faizi et al. (2018) was extended with a

growth-independent protein class Q that accounts for approximately half of the proteome. The

growth-dependent proteome is comprised of transporter (T), ribosomes (R), metabolic enzymes (M)

and photosynthetic units (P). Furthermore, protein degradation and an energy maintenance term
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were added, resulting in a basal energy expenditure. A description of the modified model with all

reaction rates and parameters is provided in Figure 5 and Supplementary file 1.

The proteome allocation model gives rise to an optimization problem. We assume that the objec-

tive of a unicellular organism is to maximize its growth rate while the proteome mass remains con-

stant. The maximization of the cellular growth rate, for a given external condition, is achieved by re-

adjusting the amount of ribosomes that are delegated to translate a specific protein. The optimiza-

tion problem was solved using the APMonitor Optimization Suite (Hedengren et al., 2014) with the

steady-state optimization mode and the IPOPT (Interior Point Optimizer) solver option. The python

interface was used to run the model.

Model parametrization and fitting
The model describes growth per cellular dry weight. Cell size only affects the estimated parameter

for diffusion of inorganic carbon. For simplicity, the diffusion parameter is set constant (with a cell

diameter of approximately 2 mM). Parameters were as in Faizi et al. (2018) and sourced from the

primary literature (Mangan and Brenner, 2014; Marcus et al., 2005; Dornmair et al., 1989;

Omata et al., 2002; Bremer and Dennis, 2008; Maier et al., 2011; Knoop et al., 2013). Only three

parameters t (turnover rate of the photosynthetic unit), kd (photodamage) and s (effective absorp-

tion cross-section) were then fitted to the measured growth rates. No protein data were used in the

fitting. Parameter estimation was done for an external inorganic carbon concentration of cxi = 100

mM (cxi saturated condition). To minimize the computational effort, a pre-defined set of values for

these parameters was specified prior to fitting,

t ¼ f50;75;100g; (3)

kd ¼ f5 � 10�7;6 � 10�7; :::;4 � 10�6;5 � 10�6g; (4)

s¼ f0:1;0:2 ; :::;0:1g: (5)

To select the best fit, the negative logarithm of the likelihood was calculated for each parameter

set:

lð�Þ ¼
X

i

ðyið�Þ� xiÞ
2

e2i
þ logð2 �p � e2i Þ; (6)

where xi represents the here measured growth rates with their uncertainties ei and yið�Þ the simu-

lated growth rates calculated with the model parameters �. The best fit lð�Þ = -51.46, was obtained

with t = 75 s-1, kd = 10-6 and s = 0.7 nm2. Compared to the original model, the addition of the

growth-independent protein fraction enhances the energy demand of the cell, and increases the

turnover rate and absorption cross-section of the photosystem. We emphasize that the purpose of

the model was not to provide an exact fit to the data, but to guide the interpretation of the results.

Impact of non-adaptive protein fractions on the estimated growth rate
To investigate the potential influence of a constant (non-adaptive) protein mass fraction of Ribo-

some, Photosynthetic unit, and Metabolic proteins classes (as shown in Figure 6) on the predicted

growth rate, an additional constraint was added to the optimization problem, such that the concen-

tration of the respective protein class is

½Z� ¼
’Z �Dc

nZ
; (7)

where Dc is the cell density (in units of amino acids per cell), nZ determines the length of the enzyme

Z, and ’Z is the (constant) mass fraction of the protein class Z. In addition, to account for the fact

that proteins can be de- or activated (by post-translational modifications such as phophorylation), an

additional variable aZ was introduced that determines the amount of active enzymes (such that the

amount of catalytically active enzyme Za is ½Za� ¼ aZ � ½Z�). The growth rate is then optimized using the

remaining protein classes, as well as the parameter aZ as variables. The value for the constant pro-

tein fraction was set such that it corresponds to the mass fraction of the respective protein class at

the highest growth rate.
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Zavřel et al. eLife 2019;8:e42508. DOI: https://doi.org/10.7554/eLife.42508 27 of 29

Tools and resources Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.1007/s00227-008-0933-z
https://doi.org/10.1007/s00227-008-0933-z
https://doi.org/10.3389/fbioe.2015.00001
https://doi.org/10.1016/j.celrep.2018.03.083
https://doi.org/10.1016/j.celrep.2018.03.083
http://www.ncbi.nlm.nih.gov/pubmed/29669272
https://doi.org/10.1002/elsc.200800123
https://doi.org/10.7717/peerj.5256
http://www.ncbi.nlm.nih.gov/pubmed/30065870
https://doi.org/10.1016/j.algal.2016.10.004
https://doi.org/10.1038/nature24299
https://doi.org/10.1038/nature24299
http://www.ncbi.nlm.nih.gov/pubmed/29072300
https://doi.org/10.1016/j.biosystems.2018.02.004
http://www.ncbi.nlm.nih.gov/pubmed/29476802
http://www.ncbi.nlm.nih.gov/pubmed/29476802
https://doi.org/10.1093/nar/gkw1131
http://www.ncbi.nlm.nih.gov/pubmed/27899668
https://doi.org/10.1128/jb.177.7.1651-1654.1995
http://www.ncbi.nlm.nih.gov/pubmed/7896684
https://doi.org/10.1016/j.compchemeng.2014.04.013
https://doi.org/10.1016/j.compchemeng.2014.04.013
https://doi.org/10.1023/A:1013887908680
http://www.ncbi.nlm.nih.gov/pubmed/16228363
https://doi.org/10.1016/j.celrep.2018.09.040
http://www.ncbi.nlm.nih.gov/pubmed/30304686
https://doi.org/10.1088/1361-6633/aaa628
https://doi.org/10.1088/1361-6633/aaa628
http://www.ncbi.nlm.nih.gov/pubmed/29313526
https://doi.org/10.1016/j.celrep.2015.12.015
http://www.ncbi.nlm.nih.gov/pubmed/26725116
https://doi.org/10.1104/pp.104.042770
http://www.ncbi.nlm.nih.gov/pubmed/15247377
https://doi.org/10.1038/s41598-018-28948-z
http://www.ncbi.nlm.nih.gov/pubmed/30022098
https://doi.org/10.1016/j.cell.2009.12.001
http://www.ncbi.nlm.nih.gov/pubmed/20064380
https://doi.org/10.1073/pnas.1310377110
http://www.ncbi.nlm.nih.gov/pubmed/24082144
https://doi.org/10.1371/journal.pcbi.1003081
http://www.ncbi.nlm.nih.gov/pubmed/23843751
https://doi.org/10.1590/S1517-83822011000300034
http://www.ncbi.nlm.nih.gov/pubmed/24031731
https://doi.org/10.1104/pp.16.01205
http://www.ncbi.nlm.nih.gov/pubmed/27707888
https://doi.org/10.1073/pnas.1314810111
http://www.ncbi.nlm.nih.gov/pubmed/24889604
https://doi.org/10.7554/eLife.42508
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Zavřel T, Sinetova MA, Búzová D, Literáková P, Červený J. 2015b. Characterization of a model cyanobacterium
Synechocystis sp. PCC 6803 autotrophic growth in a flat-panel photobioreactor . Engineering in Life Sciences
15:122–132. DOI: https://doi.org/10.1002/elsc.201300165
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