
*For correspondence:

jforejt@img.cas.cz

†These authors contributed

equally to this work

Present address: ‡Department

of Genetics and Genome

Sciences, School of Medicine,

Case Western Reserve University,

Cleveland, United States

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 12

Received: 03 October 2018

Accepted: 27 December 2018

Published: 28 December 2018

Reviewing editor: Patricia J

Wittkopp, University of

Michigan, United States

Copyright Wang et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Cisplatin-induced DNA double-strand
breaks promote meiotic chromosome
synapsis in PRDM9-controlled mouse
hybrid sterility
Liu Wang1†‡, Barbora Valiskova1,2†, Jiri Forejt1*

1BIOCEV Division, Institute of Molecular Genetics, Czech Academy of Sciences,
Vestec, Czech Republic; 2Faculty of Science, Charles University, Prague, Czech
Republic

Abstract PR domain containing 9 (Prdm9) is specifying hotspots of meiotic recombination but in

hybrids between two mouse subspecies Prdm9 controls failure of meiotic chromosome synapsis

and hybrid male sterility. We have previously reported that Prdm9-controlled asynapsis and meiotic

arrest are conditioned by the inter-subspecific heterozygosity of the hybrid genome and we

presumed that the insufficient number of properly repaired PRDM9-dependent DNA double-strand

breaks (DSBs) causes asynapsis of chromosomes and meiotic arrest (Gregorova et al., 2018). We

now extend the evidence for the lack of properly processed DSBs by improving meiotic

chromosome synapsis with exogenous DSBs. A single injection of chemotherapeutic drug cisplatin

increased frequency of RPA and DMC1 foci at the zygotene stage of sterile hybrids, enhanced

homolog recognition and increased the proportion of spermatocytes with fully synapsed homologs

at pachytene. The results bring a new evidence for a DSB-dependent mechanism of synapsis failure

and infertility of intersubspecific hybrids.

DOI: https://doi.org/10.7554/eLife.42511.001

Introduction
Proper synapsis of homologous chromosomes is an important meiotic checkpoint preventing germ-

line transfer of harmful genic and chromosomal mutations to the next generations (Schimenti, 2005;

Zickler and Kleckner, 2015; Rinaldi et al., 2017). Synapsis of homologous chromosomes is initiated

at the leptotene stage of the first meiotic prophase by induction of developmentally programmed,

SPO11-induced DNA double-strand breaks (DSBs) (Keeney et al., 1997; Keeney et al., 1999;

Romanienko and Camerini-Otero, 2000). After 5’ to 3’ resection of each end of DSB, replication

protein A (RPA) binds the 3’ overhang to save it from degradation, later being displaced by RAD51

and DMC1 recombinases (Inagaki et al., 2010) but see (Moens et al., 2007; Chan et al., 2018). The

resulting nucleoprotein filament is engaged in homology search in the process leading to DSBs

repair by homologous recombination and to synapsis of homologous chromosomes. The SPO11-

induced DSBs are nonrandomly clustered into narrow 1–2 kilobase-pair intervals called recombina-

tion hotspots and their localization is predetermined by the PRDM9 binding to specific motifs inside

these intervals and PRDM9-driven induced trimethylation of histone H3 at lysine 4 and lysine 36 on

adjacent nucleosomes (Baudat et al., 2010; Myers et al., 2010; Parvanov et al., 2010; Eram et al.,

2014; Lange et al., 2016; Powers et al., 2016, for recent reviews see Grey et al., 2018 and

Paigen and Petkov, 2018).

The Prdm9 gene, besides determining position of the recombination hotspots, acts as the major

hybrid sterility gene in certain hybrids between house mouse subspecies of Mus m. musculus (mouse
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strain PWD) and Mus m. domesticus (mouse strain C57BL/6, hereafter B6) (Mihola et al., 2009;

Dzur-Gejdosova et al., 2012; Forejt et al., 2012; Bhattacharyya et al., 2013;

Bhattacharyya et al., 2014). Disrupted synapsis of homologous chromosomes and dysregulation of

meiotic sex chromosome inactivation are two major cellular phenotypes controlled by the Prdm9

gene in sterile (PWD x B6)F1 (hereafter PBF1) hybrids (Forejt and Iványi, 1974; Mihola et al., 2009;

Bhattacharyya et al., 2014; Gregorova et al., 2018).

When the mouse Prdm9 gene was ‘humanized’ by substitution of the C2H2 zinc-finger (ZnF)

DNA-binding domain for its human ortholog, the humanized PBF1-Prdm9Hu/PWD meiocytes regained

normal meiotic pairing and hybrid males became fertile. This unexpected finding provided direct evi-

dence for the role of PRDM9 ZnF array in the control of hybrid sterility (Davies et al., 2016). The

asynapsis and male sterility were proposed to be mainly a consequence of the evolutionary erosion

of PRDM9 binding sites (Figure 1). Because the heterozygous allelic sites with lower PRDM9 binding

affinity are used preferentially as a template for DSB repair in gene-conversion events, the sites with

higher binding affinity mutate much faster than the rest of the genome. As a result, the majority of

the PRDM9PWD-determined hotspots in PBF1 sterile males are found on B6 homologs and vice versa.

Such hotspot asymmetry can result in a delay or inability to repair DSBs using homologous chromo-

some as a template, thus preventing successful pairing and synapsis of homologs (Davies et al.,

2016).

We recently rescued synapsis of homologous chromosomes in meiosis of PBF1 sterile hybrids by

elimination of PRDM9 hotspot asymmetry in random chromosomal intervals (�27 Mb), with paternal

and maternal copies originating from the same PWD subspecies (Gregorova et al., 2018). When

synapsis of the four chromosomes most strongly affected by asynapsis in the sterile hybrids was

restored in this way, male fertility was regained (Gregorova et al., 2018). To further test the idea

Figure 1. DSB asymmetry model based on historical erosion of PRDM9 binding sites. A simplified scheme of a

pair of homologous chromosomes in PWD (Mus m. musculus) and B6 (Mus m. domesticus) mice and sterile (PWD

x B6) intersubspecific male F1 hybrids. Eroded PRDM9B6 binding sites are not recognized or hardly recognized by

the PRDM9B6 zinc-finger array in B6 meiosis, but the same sites were saved from erosion during the evolution of

the other subspecies. Thus, in (PWD x B6)F1 hybrids PRDM9B6 often binds to the sites on PWD chromosome that

are erased on B6 homolog and, vice versa, PRDM9PWD more often binds to the sites on B6 homolog, eroded in

PWD. The proportion of such asymmetric sites exceeds 70% of all DSBs in (PWD x B6)F1 hybrid meiosis

(Davies et al., 2016) and interferes with chromosome synapsis and meiotic progression. The higher activity of

these asymmetric hotspots estimated by DMC1-ChIP-seq is explained by a delay or failure of DSB repair.

DOI: https://doi.org/10.7554/eLife.42511.002
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that the failure of proper meiotic synapsis in hybrid males is due to an insufficient number of timely

repaired ’symmetric’ DSBs and to evaluate the unlikely possibility that the rescue was caused by mul-

tiple recessive genetic factors of PWD origin, we increased the number of DSBs per cell by inflicting

random exogenous DSBs to meiotic cells. We report that the exogenous DSBs generated by chemo-

therapeutic drug cisplatin (Basu and Krishnamurthy, 2010) enhanced meiotic synapsis of homolo-

gous chromosomes in sterile mouse inter-subspecies hybrids, thus bringing independent evidence

on the mechanism of meiotic chromosome asynapsis (Gregorova et al., 2018) and supporting the

’asymmetry’ hypothesis (Davies et al., 2016).

Results and discussion
Cisplatin (cis-platinum diamminedichloride, hereafter cisPt) is known to create DNA inter-strand (ICL)

and intra-strand cross-links. In replicating yeast and mammalian somatic cells removal of ICLs results

in DNA DSBs, which can be repaired by the nonhomologous end joining or by homologous recombi-

nation, the latter being favored in the germline (Lawrence et al., 2016). Removal of the cisPt-DNA

adducts without creating DSBs was reported in quiescent somatic cells (Frankenberg-

Schwager et al., 2005). In the mouse, cisPt was reported to increase meiotic crossing-over

(Hanneman et al., 1997). Moreover, significant improvement of meiotic chromosome synapsis was

observed in SPO11-/- meiocytes treated with cisPt or X rays, indicating that exogenous DSBs can at

least partially substitute the role of the SPO11-induced DSBs in pairing of homologous chromo-

somes (Romanienko and Camerini-Otero, 2000; Carofiglio et al., 2018).

To assess an effect of exogenous DSBs on meiotic pairing in sterile hybrids we treated the adult

(4–8 weeks) PBF1 hybrid males with cisPt and with the 5-ethynyl-2’-deoxyuridine (EdU), a nucleoside

analog of thymidine (Salic and Mitchison, 2008) to distinguish the spermatogenic cells replicating

their DNA at the moment of cisPt injection (Figure 2A). The males received a single i.p. injection of

cisPt at a dose of 1, 5 or 10 mg/kg body weight together with 50 mg/kg of EdU. Based on the pub-

lished estimates of duration of the meiotic S-phase (20 hr), leptotene (24–48 hr), zygotene (24–32 hr)

and pachytene (160 hr) stages of the first meiotic prophase (OAKBERG, 1956; Oud et al., 1979;

Goetz et al., 1984) the males were sacrificed 40 hr after cisPt and EdU injection to quantify the

DSBs at the first meiotic prophase, or after 8 days to monitor the chromosome synapsis at the

pachytene stage.

CisPt induced DSBs in early meiotic prophase of sterile male hybrids
Forty hours after cisPt and EdU injection, 84.1 ± 3.3% (mean ±SE) of leptonemas and 49.3 ± 2.2% of

zygonemas were EdU-positive, thus being at the S-phase at the time of injection or shortly after

that. The EdU-negative leptonemas (15.9%) most likely started their S-phase 20 hr or more after

EdU injection, after assumed depletion of free EdU (Figure 2B, Figure 2—source data 1), while

EdU-negative zygonemas finished their DNA replication before CisPt and EdU injection. All pachyne-

mas finished DNA replication before the treatment and were EdU-negative (Figure 2B). The occur-

rence of EdU-positive cells fitted better with the shorter reported estimates of the duration of

leptotene and zygotene stages.

Since the RPA protein was reported to bind ssDNA soon after resection of DSBs in mitotic and

meiotic cells (Ribeiro et al., 2016; Pacheco et al., 2018), we used the RPA foci as an early cytologi-

cal marker of DSBs (Figure 3A). We found out that in spite of the large variation in the number of

RPA foci in individual leptonemas and zygonemas (see also Kauppi et al., 2013), cells treated with

10 mg/kg of cisPt showed significant increase of RPA foci in leptotene and zygotene stages

(Figure 3B, Figure 3—source data 1). The leptotene median number of 162 RPA foci per cell in

control males increased to 229 foci in males treated with 10 mg/kg of cisPt (p=0.0313 Mann-Whitney

U test). Control zygotene median of 194 RPA foci increased to 210.5 foci after treatment with 10

mg/kg of cisPt (p=0.0483). The numbers of RPA foci decline at the pachytene stage of meiotic pro-

phase in fertile male mice (Li et al., 2007; Inagaki et al., 2010) but persist in high numbers in sterile

untreated hybrids (median 119 RPA foci per pachynema). CisPt did not affect frequency of RPA foci

in pachynemas 40 hr after injection (Figure 3B). To evaluate the impact of RPA foci on pachynemas

and because beside asynapsis, the unrepaired DSBs are known to induce apoptosis, we compared

the frequency of RPA foci in early, mid and late pachynemas of control (0 mg/kg of cisPt) sterile

PBF1 males with fertile PWD and B6 parental controls (Figure 3, Figure 3—figure supplement 1).
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Unexpectedly, but in accord with Moens et al. (2007), the RPA foci persisted in early pachynemas

of fertile controls, but significantly dropped in mid pachynemas (median 38 and 14 RPA foci in PWD

and B6 compared to 98 foci in PBF1, p<0.0001) and virtually disappeared at the late pachytene

stage.

Surprisingly, when zygonemas were split to EdU-positive and negative, only EdU-positive cells

showed a significant increase in the cisPt dosage-dependent RPA foci (Figure 3B, Figure 3—source

data 2). The doses of 1 mg/kg, 5 mg/kg and 10 mg/kg of injected cisPt increased the median of

RPA foci from 200.5 in controls to 239, 255 and 250, respectively (p=0.0043, 0.0026 and 0.0006,

Mann-Whitney U test). As shown above, approximately half of the zygonemas were EdU-negative,

apparently finishing S-phase before EdU and CisPt injection, while the EdU-positive zygonemas were

in the mid or late S-phase at the time of the treatment. Since little is known about the timing of enzy-

matic removal of cisPt interstrand crosslinks (Johnsson et al., 1995), the formation of DSBs cannot
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Figure 2. Determination of the cell cycle phase at the time of cisPt injection. (A) Forty h after EdU and CisPt

injection, EdU-negative and positive zygonemas represent cells before and after the premeiotic S phase at the

time of injection. Immunostaining of SYCP3 protein (violet) made chromosome axes visible. The RPA foci (green)

associate with ssDNA of endogenous, SPO11-induced, and exogenous, cisPt-generated DSBs. Visualization of

EdU-labeled DNA is based on the click reaction method (Salic and Mitchison, 2008). Scale bar 10 mM. (B)

Proportion of EdU positive cells and EdU-negative cells at three prophase stages 40 hr after EdU treatment of

eight males further analyzed in Figures 3 and 4. Numbers of examined cells: leptonemas 126, zygonemas 507,

pachynemas 473.

DOI: https://doi.org/10.7554/eLife.42511.003

The following source data is available for figure 2:

Source data 1. Distribution of Edu + and EdU- spermatocytes at the first prophase 40 hr after EdU and cisPt

injection.

DOI: https://doi.org/10.7554/eLife.42511.004
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Figure 3. CisPt increases the frequency of exogenous DSBs monitored as RPA foci. (A) Images of RPA foci during zygotene and pachytene stages of

the first meiotic prophase. RPA foci (green) harbored on chromosome axes visualized by immunostaining of SYCP3 protein (violet). Scale bar 10 mM. (B)

Numbers of RPA foci per cell 40 hr after CisPt injection. In spite of the large variation of RPA foci between individual cells of the same cohort a

significant increase (p<0.05) after cisPt application can be seen in leptotene and zygotene stages, while no indication of RPA foci increase is apparent at

pachytene spermatocytes (C). When EdU-positive and -negative zygotene spermatocytes were analyzed separately, the enhancing effect of cisPt on the

number of RPA foci was confined to EdU-positive cells. A significant dependence of RPA foci frequency on the dosage of cisPt is shown.

DOI: https://doi.org/10.7554/eLife.42511.005

The following source data and figure supplements are available for figure 3:

Source data 1. RPA foci in leptonemas (L), zygonemas (Z) and pachynemas (P) of PBF1 hybrid males treated with cisPt.

DOI: https://doi.org/10.7554/eLife.42511.008

Source data 2. RPA foci in EdU-negative (E-) and EdU-positive (E+) zygonemas of PBF1 hybrid males treated with cisPt.

DOI: https://doi.org/10.7554/eLife.42511.009

Figure 3 continued on next page
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be precisely specified in respect of the end of DNA replication. The cisPt-induced DSBs could arise

anytime during the meiotic S-phase and/or at the beginning of leptotene stage.

Since RPA is an ssDNA-binding protein, it could mark other forms of DNA damage beside DSBs

(Wang et al., 2005); therefore, we quantified the foci of DNA meiotic recombination 1 (DMC1), a

meiosis-specific strand exchange protein, which is recruited to SPO11-induced DSBs (Figure 4A).

The DMC1 response to cisPt was similar to that of RPA. The combined EdU-positive and -negative

zygonemas showed an enhancing effect of cisPt on the frequency of DMC1 foci (Figure 4B, Fig-

ure 4—source data 1). The median number of DMC1 foci increased from 215 to 241, 233 and 251

after 1, 5 and 10 mg/kg of cisPt (p=0.0208, 0.0263 and 0.0048, Mann-Whitney U), respectively. CisPt

treatment did not influence the high frequency of DMC1 foci in PBF1 spermatocytes at pachytene

stage. Contrary to RPA, the DMC1 foci significantly dropped (Figure 4, Figure 4—figure supple-

ment 1) in early pachynemas of fertile PWD and B6 controls (median 60 and 31 DMC1 foci in PWD

and B6 compared to 111 foci in PBF1, p<0.0001) and virtually disappeared at the mid pachytene

stage (median 10 and 0 of DMC1 foci in PWD and B6 compared to 85 foci in PBF1, p<0.0001).

When split according to the EdU phenotype, the EdU-positive zygonemas showed a significant

increase of DMC1 foci at all three concentrations (Figure 4C, Figure 4—source data 2), from 225.5

to 260.5, 269 and 259.5 foci, respectively (p=0.0025, 0.0192 and 0.0442, Mann-Whitney U test),

while in EdU-negative cells the steady DMC1 increase became significant at 10 mg/kg dose

(p=0.0246).

CisPt treatment enhances meiotic synapsis of homologous
chromosomes in sterile hybrids
Provided that the paucity of symmetric DSBs hotspots is indeed the main cause of meiotic synapsis

failure (Davies et al., 2016; Gregorova et al., 2018) and that the increased frequency of DMC1 foci

reflects cisPt-induced DSBs, then in spite of cytotoxicity of cisPt to proliferating cells, the exogenous

DSBs should improve synapsis of the homologous chromosomes in the PBF1 testis. To verify this

assumption, we analyzed the asynapsis rate by immunostaining the lateral elements of synaptonemal

complexes with antibody against synaptonemal complex protein 3 (SYCP3) and unsynapsed axial

cores of homologous chromosomes with antibodies specific for HORMA domain containing two pro-

teins (HORMAD 2) (Kogo et al., 2012; Wojtasz et al., 2012) (Figure 5A). First, we tested in a pilot

experiment the optimal effect of cisPt treatment by comparing the frequency pachynemas with a

complete set of synapsed autosomes (hereafter ‘fully synapsed pachynemas’) at 4, 5, 7 and 8 days

after a single injection of 10 mg/kg of cisPt. The percentage of pachynemas with fully synapsed biva-

lents dramatically increased from 5.66% in the control male (0 mg/kg of cisPt) to 48.78% and 46.70%

in the males on the 7th and 8th day after treatment (Figure 5B, Figure 5—source data 1). In the

next experiment, we combined the injection of cisPt (5 mg/kg or 10 mg/kg) with EdU (50 mg/kg) to

distinguish the spermatogenic cells replicating their DNA at the moment of cisPt injection. For each

cisPt dose, three males were sacrificed on day 8. The results confirmed the positive effect of cisPt on

meiotic synapsis seen in the pilot experiment. The control males displayed the mean frequency of

8.61% (5.80; 12.12) (95% CI) of fully synapsed pachynemas in contrast to the males treated with 5

mg/kg and 10 mg/kg of cisPt, which showed a threefold increase of fully synapsed pachynemas,

24.68% (19.41; 30.49) (p=1.6 � 10�9, Tukey’s post-hoc test) and 28.71% (22.86; 35.08)

(p=7.3 � 10�13), respectively (Figure 5C, Figure 5—source data 2).

We assessed synapsis of homologous chromosomes at early, mid and late pachytene stages.

However, for statistical evaluation the mid and late pachynemas were merged because of the scar-

city of the latest stage. While the cisPt treatment caused a nonsignificant increase of fully synapsed

early pachynemas, the enhancement of synapsis was dramatic in mid-late pachynemas (Figure 5D,

Figure 5—source data 2). We assume that the efficiency of repair of cisPt-induced DSBs by

Figure 3 continued

Figure supplement 1. RPA foci in spermatocytes of PWD, B6 and (PWDxB6)F1 males.

DOI: https://doi.org/10.7554/eLife.42511.006

Figure supplement 1—source data 1. RPA foci in spermatocytes of PWD, B6 and PBF1 males.

DOI: https://doi.org/10.7554/eLife.42511.007
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Figure 4. CisPt increases the frequency of exogenous DSBs monitored as DMC1 foci. (A) Images of DMC1 foci (green) during zygotene and pachytene

stages of the first meiotic prophase. Scale bar 10 mM. (B) The numbers of DMC1 foci 40 hr after CisPt injection increase in a dose-dependent manner in

zygonemas but do not change in spermatocytes at the pachytene stage. (C) The enhancing effect of cisPt on the number of DMC1 foci at the zygotene

stage is barely significant in EdU-negative cells but detectable at all three cisPt doses in EdU-positive zygonemas.

DOI: https://doi.org/10.7554/eLife.42511.010

The following source data and figure supplements are available for figure 4:

Source data 1. DMC1 foci in zygonemas (Z) and pachynemas (P) of PBF1 hybrid males treated with cisPt.

DOI: https://doi.org/10.7554/eLife.42511.013

Source data 2. DMC1 foci in EdU-negative (E-) and EdU-positive (E+) zygonemas of PBF1 hybrid males treated with cisPt.

DOI: https://doi.org/10.7554/eLife.42511.014

Figure supplement 1. DMC1 foci in spermatocytes of PWD, B6 and (PWDxB6)F1 males.

DOI: https://doi.org/10.7554/eLife.42511.011

Figure 4 continued on next page
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standard homologous recombination is low in general and/or that a significant fraction of spermato-

cytes carrying them do not survive until early pachytene stage. Those spermatocytes with multiple

asynapsed autosomes that survive to the early pachytene stage are mostly eliminated before reach-

ing the mid-late pachytene stage as reported previously (Bhattacharyya et al., 2013). This multiple

filtering effect thus enhances the apparent efficiency of cisPt monitored as a proportion of fully syn-

apsed pachynemas at the mid-late stage.

When divided according the cell cycle stage at the time of cisPt injection, the synapsis was mar-

ginally significantly more frequent (p=0.0433, GLM model) in EdU-negative than in EdU-positive

pachynemas (Figure 5E), on average 1.69 times (1.02; 2.84, 95 % CI; Figure 5—source data 2). The

EdU-negative fully synapsed pachynemas could arise from a subset of cells with exogenous DSBs

generated at leptotene/early zygotene at the time of cisPt and EdU injection. It is tempting to sug-

gest that also the EdU-positive cells that were at the preleptotene S-phase at the time of injection

removed the cisPt induced ICLs at early leptotene stage.

No sperm was found in the ductus epididymis of the males 30 days after injection. Histological

sections showed atrophy of seminiferous tubules caused by the lethal effect of cisPt on proliferating

spermatogonia and somatic cells of seminiferous tubules (not shown). Beside the increased fre-

quency of fully synapsed pachynemas, a short-term effect was apparent from the increased relative

incidence of late pachynemas. While in untreated control hybrids the late pachynemas represented

2.03% (4/107) of all pachynemas recorded from the meiotic spreads, the frequency increased to

12.12% (28/231) and 13.10% (30/229) after 5 mg/kg and 10 mg/kg cisPt treatment, respectively.

Improved synapsis of meiotic chromosomes by exogenous DNA DSBs
points to the insufficient number of properly repaired DSBs as the
ultimate cause of meiotic asynapsis and hybrid sterility
The genetic network controlling incomplete synapsis of homologous chromosomes, early meiotic

arrest, and male sterility of mouse inter-subspecific PBF1 hybrids is formed by three components,

Prdm9PWD/B6 heterozygosity (Mihola et al., 2009), PWD allele at the Hstx2 locus on Chromosome X

(Storchová et al., 2004; Bhattacharyya et al., 2014 for review, see Forejt et al., 2012), and auto-

somal PWD/B6 heterozygosity (Dzur-Gejdosova et al., 2012; Gregorova et al., 2018). While the

molecular mechanism of the Hstx2 action is still unclear, four mutually nonexclusive explanations of

PRDM9-controlled meiotic arrest have been proposed. Originally, we hypothesized that a diver-

gence of fast evolving noncoding DNA and/or RNA sequences could interfere with the homology

search of single-strand 3’ ends on a heterosubspecific template during the DSB repair, thus interfer-

ing with chromosome synapsis (Bhattacharyya et al., 2014). However, our hypothesis offered no

explanation for the role of Prdm9 in the presumed impairment of homology search. Later, using our

PBF1 hybrid sterility model, Davies et al. (2016) found that ~70% of PRDM9-directed hotspots were

enriched on a ‘nonself’ chromosome (e.g. PRDM9B6 on PWD chromosome and vice versa). DSBs in

these hotspots are difficult to repair or they repair too late, perhaps using sister chromatids as a

template (Faieta et al., 2016; Li et al., 2018). Chromosomal distribution of asymmetric DSB hot-

spots correlated well with the asynapsis rate of particular chromosomes (Davies et al., 2016;

Gregorova et al., 2018) and indicated that the insufficient number of DSBs generated at symmetric

hotspots may limit their pairing and normal progression of spermatogenesis. The present results

show that, indeed, addition of repairable, non-DSBs in the form of exogenous DSBs significantly

improved the faulty synapsis of homologous chromosomes.

Another possible mechanism explaining the role of Prdm9 in meiotic arrest points to a significant

enrichment of the default, PRDM9-independent DSB hotspots in PBF1 spermatocytes

(Smagulova et al., 2016). Such hotspots were observed in Prdm9-/- sterile males and are preferen-

tially located in promoters and other regulatory sequences. This observation could indicate func-

tional deficiency of PRDM9 in hybrid males, such as inefficient PRDM9 multimers (Baker et al.,

2015; Altemose et al., 2017) the improvement of which is difficult to envisage by adding

Figure 4 continued

Figure supplement 1—source data 1. DMC1 foci in spermatocytes of PWD, B6 and PBF1 males.

DOI: https://doi.org/10.7554/eLife.42511.012
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Figure 5. CisPt supports full synapsis of homologous chromosomes at the pachytene stage. (A) Examples of control and cisPt-treated pachynemas 8

days after cisPt injection. Unsynapsed parts of X and Y chromosomes (5 and 10 mg cisPt/kg) together with unsynapsed autosomal axes (control) were

visualized by anti-HORMAD2 antibody (violet). Axial elements of unsynapsed chromosomes and lateral elements of synaptonemal complexes were

decorated by anti-SYCP3 antibody (green) and DNA painted by DAPI. The displayed spermatocytes are at early (control and 5 mg/kg) and late (10 mg/

Figure 5 continued on next page

Wang et al. eLife 2018;7:e42511. DOI: https://doi.org/10.7554/eLife.42511 9 of 15

Research advance Chromosomes and Gene Expression Genetics and Genomics

https://doi.org/10.7554/eLife.42511


exogenous DSBs. Finally, since a recent report uncovered about 30% of PRDM9-controlled DSBs in

repetitive sequences including transposons, their homology at nonallelic sites could destabilize

genome integrity and interfere with the DSB repair (Yamada et al., 2017). Such a mechanism could

operate independently of and in parallel with the symmetric DSB-dependent pachytene checkpoint.

To conclude, our results complement our previous findings (Gregorova et al., 2018) bringing

new evidence for the deficiency in properly repaired DSBs as one of the major causes of meiotic

asynapsis and male sterility of PBF1 inter-subspecific hybrids. Although our results do not exclude

the role of PRDM9 default or retroposon-directed hotspots in meiotic failure, they bring a new and

independent evidence in favor of DSB hotspot asymmetry caused by PRDM9 hotspot erasure as the

main cause of chromosome asynapsis and meiotic arrest in PBF1 intersubspecific hybrid sterility.

Materials and methods

Key resources table

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Mus m. domesticus)

C57BL/6J The Jackson
Laboratory

Stock No:
000664 | Black 6

Laboratory inbred strain,
predominantly of Mus
m. domesticus origin

Strain, strain
background
(Mus m. musculus)

PWD/Ph Institute of
Molecular
Genetics,
ASCR, Prague

N/A Wild-derived
inbred strain
of Mus
m. musculus
origin

Antibody anti SYCP3
(mouse monoclonal)

Santa Cruz
Biotechnology

Santa Cruz:
sc-74569;
RRID:AB_2197353

(1:50)

Antibody anti HORMAD2
(rabbit polyclonal)

gift from Attila Toth N/A (1:700)

Antibody anti HORMAD2
(rabbit polyclonal
, C-18)

Santa Cruz
Biotechnology

Santa Cruz:sc-82192;
RRID:AB_2121124

(1:500)

Antibody Anti RPA
(rabbit polyclonal)

gift from Willy
M. Baarends

N/A (1:150)

Antibody Anti DMC1
((rabbit polyclonal)

Santa Cruz Santa Cruz: SC-22768;
RRID:AB_2277191

(1:300)

Antibody anti-rabbit IgG -
AlexaFluor568
(goat polyclonal)

Molecular Probes Molecular Probes:
A-11036;
RRID:AB_10563566

(1:500)

Antibody anti-mouse IgG -
AlexaFluor647
(goat polyclonal)

Molecular Probes Molecular Probes:
A-21235;
RRID:AB_141693

(1:500)

Continued on next page

Figure 5 continued

kg) pachytene stage. Scale bar 10 mM. (B) Frequency of fully synapsed pachynemas +-S.E. (based on GLMM model), after a single dose of 10 mg/kg of

cis Pt; a pilot experiment. Treated males were sacrificed from day 4 to day eight after injection. Each column represents a single male. (C) CisPt

dosage-dependent improvement of meiotic chromosome synapsis. Eight days after cisPt injection the percentage of fully synapsed pachynemas

significantly increased after cisPt treatment (based on GLMM model and Tukey’s post-hoc test). (D) The effect of cisPt on meiotic synapsis is apparent

in mid and late pachytene stages. (E) The meiotic synapsis is slightly enhanced in EdU-negative pachynemas. See text for details.

DOI: https://doi.org/10.7554/eLife.42511.015

The following source data is available for figure 5:

Source data 1. The effect of cisPt (10 mg/kg) on chromosome synapsis at pachytene in sterile PBF1 hybrid males 0 to 8 days after treatment.

DOI: https://doi.org/10.7554/eLife.42511.016

Source data 2. Evaluation of meiotic chromosome synapsis at pachytene stage in PBF1 males treated with cisPt.

DOI: https://doi.org/10.7554/eLife.42511.017
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Other normal goat
serum from
healthy animals

Chemicon Chemicon:
S26-100ML

Commercial
assay or kit

Base-click EdU IV
Imaging kit 555S

Baseclick BaseClick:
BCK-EdU555

Chemical
compound, drug

cisplatin Sigma-Aldrich-
Merck

Sigma-Aldrich:
C2210000

1, 5, or 10 mg/kg

Mice, cisplatin and EdU application
The mice were maintained at the Institute of Molecular Genetics in Prague and Vestec, Czech

Republic. The project was approved by the Animal Care and Use Committee of the Institute of

Molecular Genetics AS CR, protocol No 141/2012. The principles of laboratory animal care, Czech

Act No. 246/1992 Sb., compatible with EU Council Directive 86/609/EEC and Appendix of the Coun-

cil of Europe Convention ETS, were observed. The origin of the PWD/Ph and C57BL/6J mouse

strains, the PBF1 hybrids and their handling were described in the previous paper (Gregorova et al.,

2018). Cisplatin (Merck, C2210000) was freshly dissolved in 0.9% NaCl, 1 mg/ml, and intraperitone-

ally injected at 1, 5 or 10 mg per 1 kg of body weight. EdU was dissolved in PBS and injected at 50

mg/kg.

Immunostaining and image capture
For immunocytochemistry, the spread nuclei were prepared as described (Anderson et al., 1999)

with modifications. Briefly, single-cell suspension of spermatogenic cells in 0.1M sucrose with prote-

ase inhibitors (Roche) was dropped on 1% paraformaldehyde-treated slides and allowed to settle for

3 hr in a humidified box at 4˚C. After brief H2O and PBS washing and blocking with 5% goat sera in

PBS (vol/vol), the cells were immunolabeled using a standard protocol with the following antibodies:

anti-HORMAD2 (1:700, rabbit polyclonal antibody, gift from Attila Toth) and SYCP3 (1:50, mouse

monoclonal antibody, Santa Cruz, #74569). Secondary antibodies were used at 1:500 dilutions and

incubated at room temperature for 60 min; goat anti-rabbit IgG-AlexaFluor568 (MolecularProbes,

A-11036) and goat anti-mouse IgG-AlexaFluor647 (MolecularProbes, A-21235). Visualization of EdU-

labeled nuclei was done using an EdU in vivo kit (Baseclick) according to the manufacturer’s instruc-

tions. The images were acquired and examined in a Nikon Eclipse 400 microscope with a motorized

stage control using a Plan Fluor objective, 60x (MRH00601; Nikon) and captured using a DS-QiMc

monochrome CCD camera (Nikon) and the NIS-Elements program (Nikon). To quantify RPA and

DMC1 foci in spread nuclei we used ImageJ (Wayne Rasband, National Institute of Health, USA,

http://imagej.nih.gov/ij). Images were processed using the Adobe Photoshop CS software (Adobe

Systems). The estimates of the mean asynapsis rate, their standard errors and 95% confidence inter-

vals were based on the Generalized Linear Mixed Model (GLMM) described in the previous paper

(Gregorova et al., 2018).
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