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Visualization of currents in neural models
with similar behavior and different
conductance densities
Leandro M Alonso*, Eve Marder

Volen Center and Biology Department, Brandeis University, Waltham, United States

Abstract Conductance-based models of neural activity produce large amounts of data that can

be hard to visualize and interpret. We introduce visualization methods to display the dynamics of

the ionic currents and to display the models’ response to perturbations. To visualize the currents’

dynamics, we compute the percent contribution of each current and display them over time using

stacked-area plots. The waveform of the membrane potential and the contribution of each current

change as the models are perturbed. To represent these changes over a range of the perturbation

control parameter, we compute and display the distributions of these waveforms. We illustrate

these procedures in six examples of bursting model neurons with similar activity but that differ as

much as threefold in their conductance densities. These visualization methods provide heuristic

insight into why individual neurons or networks with similar behavior can respond widely differently

to perturbations.

DOI: https://doi.org/10.7554/eLife.42722.001

Introduction
Experimental and computational studies have clearly demonstrated that neurons and circuits with

similar behaviors can, nonetheless, have very different values of the conductances that control intrin-

sic excitability and synaptic strength. Using a model of the crustacean stomatogastric ganglion

(STG), Prinz et al. (2004) showed that similar network activity can arise from widely different sets of

membrane and synaptic conductances. Recent experimental measurements have shown two- to six-

fold variability in individual components in the same identified neurons (Schulz et al., 2006;

Schulz et al., 2007; Roffman et al., 2012; Swensen and Bean, 2005). The use of RNA sequencing

and other molecular measurements have shown significant cell-to-cell variability in the expression of

ion channels (Temporal et al., 2012; Temporal et al., 2014; Tobin et al., 2009). Together these

results suggest that similar activities arise from different cellular and network mechanisms. Here, we

use conductance-based models to explore how different these mechanisms are and how they

respond to perturbation.

Because of the intrinsic variability, canonical models that capture the mean behavior of a set of

observations are not sufficient to address these issues (Golowasch et al., 2002; Balachandar and

Prescott, 2018). To incorporate intrinsic biophysical variability Prinz et al. (2004) introduced an

ensemble modeling approach. They constructed a database with millions of model parameter com-

binations, analyzed their solutions to assess network function, and screened for conductance values

for which the activity resembled the data (Calabrese, 2018). An alternative was used by Achard and

De Schutter (2006). They combined evolutionary strategies with a fitness function based on a

phase-plane analysis of the models’ solutions to find parameters that reproduce complex features in

electrophysiological recordings of neuronal activity, and applied their procedure to obtain 20 very

different computational models of cerebellar Purkinje cells. Here, we adopt a similar approach and
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apply evolutionary techniques to optimize a different family of landscape functions that rely on

thresholds or Poincaré sections to characterize the models’ solutions.

In some respects, biological systems are a black-box because one cannot read out the values

over time of all their underlying components. In contrast, computational models allow us to inspect

how all the components interact and this can be used to develop intuitions and predictions about

how these systems will respond to perturbations. Despite this, much modeling work focuses on the

variables of the models that are routinely measured in experiments, such as the membrane potential.

While in the models we have access to all state variables, this information can be hard to represent

when many conductances are at play. Similarly, the effect of perturbations – such as the effect of

partially or completely blocking or removing a particular channel – can be complex and also hard to

display in a compact fashion. Here, we address these difficulties and illustrate two novel visualization

methods. We represent the currents in a model neuron using stacked area plots: at each time step,

we display the shared contribution of each current to the total current through the membrane. This

representation is useful to visualize which currents are most important at each instant and allows the

development of insight into how these currents behave when the system is perturbed. Perturbation

typically results in drastic changes of the waveform of the activity and these changes depend on the

kind of perturbation under consideration. Additionally, we developed a novel representation that

relies on computing the probability of VðtÞ, which allows a visualization of these changes. We illus-

trate the utility of these procedures using models of single neuron bursters or oscillators.

Results

Finding parameters: landscape optimization
The numerical exploration of conductance-based models of neurons is a commonplace approach to

address fundamental questions in neuroscience (Dayan and Abbott, 2001). These models can dis-

play much of the phenomenology exhibited by intracellular recordings of single neurons and have

the major advantage that many of their parameters correspond to measurable quantities

(Herz et al., 2006). However, finding parameters for these models so that their solutions resemble

experimental observations is a difficult task. This difficulty arises because the models are nonlinear,

eLife digest The nervous system contains networks of neurons that generate electrical signals to

communicate with each other and the rest of the body. Such electrical signals are due to the flow of

ions into or out of the neurons via proteins known as ion channels. Neurons have many different

kinds of ion channels that only allow specific ions to pass. Therefore, for a neuron to produce an

electrical signal, the activities of several different ion channels need to be coordinated so that they

all open and close at certain times.

Researchers have previously used data collected from various experiments to develop detailed

models of electrical signals in neurons. These models incorporate information about how and when

the ion channels may open and close, and can produce numerical simulations of the different ionic

currents. However, it can be difficult to display the currents and observe how they change when

several different ion channels are involved.

Alonso and Marder used simple mathematical concepts to develop new methods to display ionic

currents in computational models of neurons. These tools use color to capture changes in ionic

currents and provide insights into how the opening and closing of ion channels shape electrical

signals.

The methods developed by Alonso and Marder could be adapted to display the behavior of

biochemical reactions or other topics in biology and may, therefore, be useful to analyze data

generated by computational models of many different types of cells. Additionally, these methods

may potentially be used as educational tools to illustrate the coordinated opening and closing of ion

channels in neurons and other fundamental principles of neuroscience that are otherwise hard to

demonstrate.

DOI: https://doi.org/10.7554/eLife.42722.002
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they have many state variables and they contain a large number of parameters (Bhalla and Bower,

1993). These models are complex, and we are not aware of a general procedure that would allow

the prediction of how an arbitrary perturbation in any of the parameters will affect their solutions.

The problem of finding sets of parameters so that a nonlinear system will display a target behavior is

ubiquitous in the natural sciences. A general approach to this problem consists of optimizing a score

function that compares features of the models’ solutions to a set of target features. Consequently,

landscape-based optimization techniques for finding parameters in compartmental models of neu-

rons have been proposed before (Achard and De Schutter, 2006; Druckmann et al., 2007; Ben-

Shalom et al., 2012). Here, we employ these ideas to develop a family of score functions that are

useful to find parameters so that their activities reach a desired target.

In this work, we started with a well-studied model of neural activity described previously

(Liu et al., 1998; Goldman et al., 2001; Prinz et al., 2004; O’Leary et al., 2014). The neuron is

modeled according to the Hodgkin-Huxley formalism using a single compartment with eight cur-

rents. Following Liu et al. (1998), the neuron has a sodium current, INa; transient and slow calcium

currents, ICaT and ICaS; a transient potassium current, IA; a calcium-dependent potassium current,

IKCa; a delayed rectifier potassium current, IKd; a hyperpolarization-activated inward current, IH ; and

a leak current Ileak.

We explored the space of solutions of the model using landscape optimization. The procedure

consists of three steps. First, we generate voltage traces by integration of Equation 5

(Materials and methods). We then score the traces using an objective or landscape function that

defines a target activity. Finally, we attempt to find minima of the objective function. The procedures

used to build objective functions whose minima correspond to sets of conductances that yield the

target activities are shown in Figure 1. Voltage traces were generated by integration of Equation 5

and were then scored according to a set of simple measures. The procedure is efficient in part

because we chose measures that require little computing power and yet are sufficient to build suc-

cessful target functions. For example, we avoid the use of Spike Density Functions (SDF) and Fourier

transforms when estimating burst frequencies and burst durations. In this section, we describe target
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Figure 1. Landscape optimization can be used to find models with specific sets of features. (A) Example model

bursting neuron. The activity is described by the burst frequency and the burst duration in units of the period (duty

cycle). The spikes detection threshold (red line) is used to determine the spike times. The ISI threshold (cyan) is

used to determine which spikes are bursts starts (bs) and bursts ends (be). The slow wave threshold (blue line) is

used to ensure that slow wave activity is separated from spiking activity. (B) Example model spiking neuron. We

use thresholds as before to measure the frequency and the duty cycle of the cell. The additional slow wave

thresholds (purple) are used to control the waveform during spike repolarization.
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functions whose minima correspond to bursting and tonic activity in single compartment models.

This approach can also be applied to the case of small circuits of neurons (Prinz et al., 2004).

We begin with the case of bursters (Figure 1A). We targeted this type of activity by measuring

the bursting frequency, the duty cycle, and the number of crossings at a threshold value to ensure

that spiking activity is well separated from slow wave activity. To measure the burst frequency and

duty cycle of a solution, we first compute the time stamps at which the cell spikes. Given the

sequence of values V ¼ fVng we determine that a spike occurs every time that V crosses the spike

detection threshold Tsp ¼ �20mV (red in Figure 1). We build a sequence of spike times S ¼ fsig by

going through the sequence of voltages fVng and keeping the values of n for which

Vn � Tsp andVnþ1 > Tsp (we consider upward crossings). Each element si of the sequence S contains

the time step at which the i-th spike is detected. Bursts are determined from the sequence of spike

times S; if two spikes happen within a temporal interval shorter than dspt ¼ 100msec they are part of a

burst. Using this criterion we can find which of the spike times in S correspond to the start and end

of bursts. The starts (bs) and ends (be) of bursts are used to estimate the duty cycle and burst fre-

quency. We loop over the sequence of spike times and determine that a burst starts at si if

siþ1 � si < dspt and si � si�1 > dspt. After a burst starts, we define the end of the burst at sk if

skþ1 � sk > dspt and sk � sk�1 < dspt. When a burst ends we can measure the burst duration as db ¼ sk � si

and since the next burst starts (by definition) at skþ1 we also can measure the ‘period’ (if periodic) of

the oscillation as tb ¼ db þ ðskþ1 � skÞ. Every time a burst starts and ends we get an instance of the

burst frequency fb ¼
1

tb
and the duty cycle dc ¼

db
tb
. We build distributions of these quantities by loop-

ing over the sequence S and define the burst frequency and duty cycle as the mean values < fb > and

< dc>. Finally, we count downward crossings in the sequence Vn with two slow wave thresholds #sw

(with tsw ¼ �50� 1mV ) and the total number of bursts #b in S.

For any given set of conductances, we simulated the model for 20 s and dropped the first 10 s to

mitigate the effects of transient activity. We then computed the burst frequency < fb >, the duty cycle

< dc>, the number of crossings with the slow wave thresholds #sw and the number of bursts #b. We

discard unstable solutions; a solution is discarded if stdðffbgÞ � ð< fb >� 0:1Þ or

stdðfdcgÞ � ð< dc>� 0:2Þ. If a solution is not discarded, we can use the following quantities to mea-

sure how close it is to the target behavior,

Ef ¼ ðftg �< fb>iÞ
2

Edc ¼ ðdctg�<dc>iÞ
2

Esw ¼ ð
#sw

2
�#bÞ

2

(1)

Here, Ef measures the mismatch of the bursting frequency of the model cell with a target fre-

quency ftg and Edc accounts for the duty cycle. Esw measures the difference between the number of

bursts and the number of crossings with the slow wave thresholds tsw ¼�50� 1mV . Because we want

a clear separation between slow wave activity and spiking activity, we ask that #sw ¼#b. Note that if

during a burst V goes below tsw this solution would be penalized (factor 1

2
accounts for using two

slow wave thresholds). Let g denote a set of parameters, we can then define an objective function

EðgÞ ¼ aEf þbEdcþgEsw; (2)

where the weights ða;b;gÞ determine the relative importance of the different sources of penalties. In

this work we used a¼ 1, b¼ 100, g¼ 1, and the penalties Ei were calculated using T ¼ 10 seconds

with dt¼ 0:1 msecs. The target behavior for bursters was defined by dctg ¼ 0:2 (duty cycle 20%)

(dctg ¼ 0:2) and bursting frequency ftg ¼ 1Hz.

We can use similar procedures to target tonic spiking activity. Note that the procedure we

described previously to determine bursts from the sequence of spike times S is also useful in this

case. If a given spike satisfies the definition of burst start and it also satisfies the definition of burst

end then it is a single spike and the burst duration is zero. Therefore, we compute the bursts and

duty cycles as before and ask that the the target duty cycle is zero.

There are multiple ways to produce tonic spiking in this model and some solutions display very

different slow wave activity. To further restrict the models, we placed a middle threshold at

tmid ¼ �35mV and detected downward crossings at this value. We defined Elag as the lag between
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the upward crossings at the spiking threshold (tspk ¼ �20mV ) and downward crossings at tmid: Elag is

useful because it takes different values for tonic spikers than it does for single-spike bursters even

though their spiking patterns can be identical. Finally, we found that the model attempts to minimize

Elag at the expense of hyperpolarizing the membrane beyond �50mV and introducing a wiggle that

can be different in different solutions. To penalize this we included additional thresholds between

�35mV and �45mV , counted the number of downward crossings at these values #midi , and asked

that these numbers are equal to the number of spikes #s. With these definitions, we define the par-

tial errors as before,

Ef ¼ ðftg �< fb>iÞ
2

Edc ¼ ðdctg�<dc>iÞ
2

Emid ¼
X

i

ð#midi �#sÞ
2

Esw ¼ ð#swÞ
2:

(3)

The total error as a function of the conductances reads as follows,

EðgÞ ¼ aEf þbEdcþgEmid þ dEsw þhElag: (4)

The values a¼ 1000, b¼ 1000, g¼ 100, d¼ 100 and h¼ 1, produce solutions that are almost identi-

cal to the one displayed in Figure 1B.

In all cases, evaluation of the objective functions requires that the models are simulated for a

number of seconds and this is the part of the procedure that requires most computing power. Lon-

ger simulations will provide better estimations for the burst frequency and duty cycle of the cells,

but will linearly increase the time it takes to evaluate the objective function. If the simulations are

shorter, evaluations of the objective function are faster but the minimization may be more difficult

due to transient behaviors and its minima may not correspond to stable solutions. In this work, we

minimized the objective function using a standard genetic algorithm (Holland, 1992; Goldberg and

Holland, 1988). The choice of the optimization routine and the choice of the numerical scheme for

the simulations are independent of the functions. See Materials and methods for details on the how

we performed this optimization. The same functions can be utilized to estimate parameters in mod-

els with different channel types.

Visualizing the dynamics of ionic currents: currentscapes
Most modeling work focuses on the variables of the models that are routinely measured in experi-

ments such as the membrane potential as is shown in Figure 2A for a bursting neuron. While in the

models we have access to all state variables, this information can be hard to represent when several

current types are at play. One difficulty is that some currents like Na and Kd vary over several orders

of magnitude, while other currents like the leak and H span smaller ranges. Additionally, the relative

contribution of each current to the total flux through the membrane varies over time. Here, we intro-

duce a novel representation that is simple and permits displaying the dynamics of the currents in a

cohesive fashion.

At any given time stamp, we can compute the total inward and outward currents. We can then

express the values of each current as a percentage of this quantity. The normalized values of the cur-

rents at any time can be displayed as a pie chart representing the share of each current type

(Figure 2B). Because we want to observe how these percentages change in time, we display the

shares in a bar instead of a disk. The currentscapes are constructed by applying this procedure to all

time stamps and stacking the bars. These types of plots are known as stacked area plots and their

application to this problem is novel. Figure 2C shows the currentscape of a periodically bursting

model neuron over one cycle. The shares of each current type to the total inward and outward cur-

rents are displayed in colors, and the total inward and outward currents are represented by the filled

black curves in logarithmic scale in the top and bottom.

Visualizing changes in the waveforms as a parameter is changed
To visualize changes in the activity as a conductance is gradually removed we computed the distribu-

tion of membrane potential V values. This reduction contains information about the waveform of the
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membrane potential, while all temporal information such as frequency can no longer be recovered.

The number of times that a given value of V is sampled is proportional to the time the system

spends at that value. Figure 3A shows the distribution of V for a periodic burster with fb » 1Hz and

dc » 20% sampled from 30 s of simulation. The count is larger than 10
4 for values between �52mV

and �40mV , and smaller than 10
3 for V between �35mv and 20mV . The areas of the shaded regions

are proportional to the probability that the system will be observed at the corresponding V range

(Figure 3B). Note that the area of the dark gray region is 105 while the light gray is 0:5� 10
4, so the

probability that the cell is, at any given time, in a hyperpolarized state is more than 20 times larger

than the probability that the cell is spiking.

The distribution of V features sharp peaks. In many cases, the peaks in these distributions corre-

spond to features of the waveform, such as the amplitudes of the individual spikes, or the minimum

membrane potential (see Figure 3—figure supplement 1). This happens because every time the

membrane potential reaches a maxima or minima (in time) the derivative dV
dt

is close to zero. The sys-

tem spends more time close to values of V where the velocity dV
dt

is small than in regions where dV
dt

is

large, as it occurs during the flanks of spikes. Therefore, when we sample a solution at a random

instant, it is more likely that V corresponds to the peak of a spike than to either flank of the spike,

while the most likely outcome is that V is in the hyperpolarized range (<� 40mV ). In this particular

burster, there are 12 spikes in the burst but there are only 7 peaks in the distribution (between 10mV

and 20mV ); some spikes have similar amplitudes so they add to a larger peak in the distribution. The

overall or total amplitude of the oscillation can be read from the distribution since the count of V is

zero outside a range (�52mV to 20mV ). These distributions can also be represented by a graded bar
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Figure 2. Currentscape of a model bursting neuron. A simple visualization of the dynamics of ionic currents in conductance-based model neurons. (A)

Membrane potential of a periodic burster. (B) Percent contribution of each current type to the total inward and outward currents displayed as pie charts

and bars at times T1 and T2 (C) Percent contribution of each current to the total outward and inward currents at each time stamp. The black filled curves

on the top and bottom indicate total inward outward currents respectively on a logarithmic scale. The color curves show the time evolution of each

current as a percentage of the total current at that time. For example, at t ¼ T1 the total outward current is » 2:5nA and the orange shows a large

contribution of KCa. At t ¼ T2 the total outward current has increased to » 4nA and the KCa current is contributing less to the total.
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Figure 3. Membrane potential V distributions. (A) Distribution of membrane potential V values. The total number of samples is N ¼ 2:2� 10
6. Y-axis

scale is logarithmic. The area of the dark shaded region can be used to estimate of the probability that the activity is sampled between �50mV and

�40mV , and the area of the light shaded region is proportional to the probability that VðtÞ is sampled between �30mV and 20mV . The area of the dark

region is 20 times larger than the light region. (B) The same distribution in (A) represented as a graded bar. (C) Distribution of V as a function of V and

Figure 3 continued on next page
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as shown in Figure 3B. As conductances are gradually removed the waveform of the activity changes

and so does the distribution of V values.

Figure 3C shows how the distribution of V changes as gNa is decreased. The waveforms at a few

values of gNa are shown for reference. For each value in the range (100%gNa to 0%gNa with N ¼ 1001

values) we computed the count pðV ; gNaÞ and display log10ðpðV ; gNaÞ þ 1Þ in gray scales. In this exam-

ple, the cell remains in a bursting regime up to » 85%gNa and transitions abruptly into a single-spike

bursting mode for further decrements (%80gNa). The spikes produce thin ridges in the distribution

that show how their individual amplitudes change. The colored symbols indicate the correspondence

between features in the waveform and ridges in the distribution. In this example, the peak ampli-

tudes of the spikes are similar for values of gNa greater than %85gNa. After the transition, the ampli-

tudes of the spikes are very different; two spikes go beyond 0mV and the rest accumulate near

�25mV . As gNa ! 0 the oscillations collapse onto a small band at » � 20mV and only one spike is

left.

The distributions allow the visualization of the amplitudes of the individual spikes, the slow waves,

and other features as the parameter gNa is changed. To highlight ridges in the distributions, the cen-

ter panel in Figure 3D shows the derivative qV log10ðpðVÞÞ in color. This operation is similar to per-

forming a Sobel filtering (Sobel and Feldman, 1968) of the image in Figure 3C. The traces on each

side of this panel correspond to the control (left) and 80%gNa conditions. Notice how the amplitudes

of each spike, features of the slow wave, and overall amplitude correspond to features in the proba-

bility distribution. This representation permits displaying how the features of the waveform change

for many values of the perturbation parameter gNa.

The maximal conductances do not fully predict the currentscapes
We explored the solutions of a classic conductance-based model of neural activity using landscape

optimization and found many sets of parameters that produce similar bursting activity. Inspired by

intracellular recording performed in the Pyloric Dilator (PD) neurons in crabs and lobsters we tar-

geted bursters with frequencies fb » 1Hz and duty cycles dc » 20%. We built 1000 bursting model neu-

rons and visually inspected the dynamics of their currents using their currentscapes. Based on this,

we selected six models that display similar membrane activity via different current compositions for

further study. Because the models are nonlinear, the relationship between the dynamics of a given

current type and the value of its maximal conductance is non-trivial. Figure 4 shows the values of

the maximal conductances in the models (top) and their corresponding activity together with their

currentscapes (bottom).

It can be difficult to predict the currentscapes based on the values of the maximal conductances.

In most cases, it appears that the larger the value of the maximal conductance, the larger the contri-

bution of the corresponding current. However, this does not hold in all cases. For example, burster

(f) shows the largest A current contribution, but bursters (c) and (e) have larger values of gA. The

maximal conductance of the CaS current is low in model (f) but the contribution of this current to the

total is similar to that in models (a) and (b). The values of gKCa are similar for bursters (e) and (f) but

the contribution of this current is visibly different in each model.

Response to current injection
The models produce similar activity with different current dynamics. To further reveal differences in

how these activities are generated, we subjected the models to simple perturbations. We begin

describing the response to constant current injections in Figure 5. Figure 5A and Figure 5B show

Figure 3 continued

gNa, and waveforms for several gNa values.The symbols indicate features of the waveforms and their correspondence to the ridges of the distribution of

V . (D) Waveforms under two conditions and their correspondence to the ridges of the distribution of V . The ridges were enhanced by computing the

derivative of the distribution along the V direction.

DOI: https://doi.org/10.7554/eLife.42722.005

The following figure supplement is available for figure 3:

Figure supplement 1. Probability distributions of membrane potential.

DOI: https://doi.org/10.7554/eLife.42722.006

Alonso and Marder. eLife 2019;8:e42722. DOI: https://doi.org/10.7554/eLife.42722 8 of 28

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.42722.005
https://doi.org/10.7554/eLife.42722.006
https://doi.org/10.7554/eLife.42722


the membrane potential of model (a) for different values of injected current. In control, the activity

corresponds to regular bursting and larger depolarizing currents result in a plethora of different

regimes. The distributions of inter-spike intervals (ISI) provide a means to characterize these regimes

(Figure 5C). When the cell is bursting regularly such as in control and in the 0:8nA condition, the

interspike interval distributions consist of one large value that corresponds to the interburst interval

(a)

Time [2 τ]

(b) (c)

(d)

Na

CaT

CaS

A

KCa

Kd

H

L

(f)(e)

+
[n

A
]

in
 %

o
u

t 
%

-[
n
A

]

500
50
5

500
50
5

-50

-20

[m
V

]

gNa gCaT gCaS gA gKCa gKd gH gL

Figure 4. Currentscapes of model bursting neurons. (top) Maximal conductances of all model bursters. (bottom) The panels show the membrane

potential of the cell and the percent contribution of each current over two cycles.
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( » 640msec in control) and several smaller values around 10msec which correspond to the ISI within a

burst. There are values of current for which the activity appears irregular and correspondingly, the

ISI values are more diverse. Figure 5B shows the response of the model to larger depolarizing cur-

rents. The activity undergoes a sequence of interesting transitions that result in tonic spiking. When

Ie ¼ 3:45nA the activity is periodic and there are 4 ISI values. Larger currents result in 2 ISI values and

tonic spiking produces one ISI value. Figure 5C shows the ISI distributions (y-axis, logarithmic scale)

for each value of injected current (x-axis).

All these bursters transition into tonic spiking regimes for depolarizing currents larger than 5nA

but they do so in different ways. To explore these transitions in detail, we computed the inter-spike

interval (ISI) distributions over intervals of 60sec for different values of the injected current. Figure 6

shows the ISI distributions for the six models at N ¼ 1001 equally spaced values of injected current

over the shown range. The y-axis shows the values of all ISIs on a logarithmic scale and the x-axis

corresponds to injected current. In the control, the ISI distribution consists of a few small values

(<100msec) that correspond to the ISIs of spikes within a burst, and a single larger value (>100msec)

that corresponds to the interval between the last spike of a burst and the first spike of the next

burst. When the cell fires tonically the ISI distributions consist of a single value. The ISI distributions

exhibit complicated dependences on the control parameter that result in beautiful patterns. For

some current values, the cells produce small sets of ISI values indicating that the activity is periodic.

However, this activity is quite different across regions. Interspersed with the regions of periodicity
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Figure 5. Response to current injections and interspike-intervals (ISI) distributions of model (a). (A) (top) Control traces (no current injected 0nA), regular

bursting (0:8nA), irregular bursting 1:95nA. (B) (top) Fast regular bursting (fb » 6Hz), quadruplets (3:45nA), doublets (3:75nA) and singlets (4:5nA) (tonic

spiking). (C) ISI distributions over a range of injected current.
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there are regions where the ISI distributions densely cover a band of values indicating non-periodic

activity. Overall the patterns feature nested forking structures that are reminiscent of classical period

doubling routes to chaos (Feigenbaum, 1978; Canavier et al., 1990).

Extracting insights from these visualization tools
Detailed conductance-based models show complex and rich behaviors in response to all kinds of

perturbations. There is a vast amount of information that can be seen in these models and their visu-

alizations in Figures 7 - 15. It is entirely impossible for us to point out even a fraction of what can be

seen or learned from these figures. Nonetheless, we will illustrate a few examples of what can be

seen using these methods, knowing that these details will be different for models that are con-

structed in the future and analyzed using these and similar methods.

Perturbing the models with gradual decrements of the maximal
conductances
Figures 7 and 8 show the effects of gradually decreasing each of the currents in these bursters from

100% to 0% for all six models. This type of analysis might be relevant to some kinds of pharmacologi-

cal manipulations or studies of neuromodulators that decrease a given current. The figures show 3 s

of data for each condition. In all panels, the top traces correspond to the control condition (100%)

and the traces below show the activity that results from decreasing the maximal conductance. The

dashed lines are placed for reference at �50mV and 0mV . Each panel shows the traces for 11 values

of the corresponding maximal conductance equally spaced between 100% (control) and 0%

(completely removed). Each row of panels corresponds to a current type and the columns corre-

spond to the different model bursters. Figure 7 displays the perturbations for the inward currents

and Figure 8 shows the outward and leak currents.

Taken together Figures 7 and 8 illustrate that each model (a-f) changes its behavior differently in

response to decreases in each current. Additionally, decreases in some currents have only relatively

small effects but decreases in others have much more profound effects. Because the description of

all that can be seen in these figures is beyond the scope of this paper, we chose to focus on the

effects of decreasing the CaT because it has rich and unexpected behaviors.
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Figure 6. ISI distributions of the six model bursting neurons over a range of injected current. The panels show all

ISI values of each model burster over a range on injected currents (vertical axis is logarithmic). All bursters

transition into tonic spiking regimes for injected currents larger than 5nA and the details of the transitions are

different across models.
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The effect of decreasing the CaT conductance is quite diverse across models. The activities of the

models at the intermediate values of gCaT shows visible differences. When gCaT ! 0:7gCaT models

(a), (b) and (c) show bursting activity at different frequencies and with different duty cycles. Models

(d), (e) and (f) become tonic spikers at this condition, but their frequencies are different. Note that in

the case of model (e) the spiking activity is not regular and the ISIs take several different values.

When gCaT ! 0:2gCaT most models spike tonically but now (e) is regular and (f) shows doublets.

When CaT is completely removed, most models transition into a tonic spiking regime with the

exception of model (a), that displays a low frequency bursting regime with duty cycle » 0:5.

Gradually removing one current impacts the dynamics of all currents
Decreasing any conductance can trigger qualitative changes in the waveform of the membrane

potential and in the contributions of each current to the activity. In Figure 9 we plot currentscapes

for the effects of decreasing CaT in model (f). This allows us to examine at higher resolution the
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Figure 7. Effects of decreasing maximal conductances: inward currents. The figure shows the membrane potential V of all model cells as the maximal

conductance gi of each current is gradually decreased from 100% to 0% . Each panel shows 11 traces with a duration of 3 s. Dashed lines are placed at

0mV and �50mV . The shading indicates values of maximal conductance for which the activity the models differs the most.
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changed contributions of currents that give rise to the interesting dynamics seen in Figure 7. Each

panel in Figure 9 corresponds to a different decrement value and shows the membrane potential on

top, and the currentscapes at the bottom. The top panels show 1 second of data and correspond to

the 100%gCaT (control), 90%gCaT and 80%gCaT conditions. The center panels show 0:1 s of data for

decrements ranging from 70% to 20% and the bottom panels show 2 s for the 10% and 0% condi-

tions. As CaT is gradually removed the activity transitions from a bursting regime to a tonic spiking

regime.

When gCaT ! 90%gCaT the neuron produces bursts but these become irregular and their dura-

tions change. Decreasing the conductance to 80%gCaT results in completely different activity. The

spiking pattern appears to be periodic but there are at least three different ISI values. It is hard to

see changes in the CaT contribution across these conditions, but changes in other currents are more

discernible. The contribution of the A current that is large in the control and 90%gCaT conditions, is

much smaller in the 80%gCaT condition. Additionally, the Na and KCa currents show larger
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Figure 8. Effects of decreasing maximal conductances: outward currents. The figure shows the membrane potential V of all model cells as the maximal

conductance gi of each current is gradually decreased from 100% to 0%. Each panel shows 11 traces with a duration of 3 s. Dashed lines are placed at

0mV and �50mV . The shading indicates values of maximal conductance for which the activity the models differs the most.
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contributions, the CaS current contributes less and the H current is negligible. Further increments in

simulated blocker concentration result in tonic spiking regimes with frequencies ranging from » 20Hz

to » 10Hz. The center panels in Figure 9 show the currentscapes for these conditions on a different

time scale to highlight the contributions of CaT. The leftmost panel shows the 70%gCaT condition. In

this panel, we placed vertical lines indicating the time stamps at which the peak of the spike and the

minimum occur. Notice the large contribution of the Na current prior to the peak of the spike, and

the large contribution of the Kd current for the next » 10msec. When the membrane potential is at its

minimum value the CaT current dominates the inward currents and remains the largest contributor

for the next » 10msec. The CaT current reduces its share drastically by the time the Na current is visi-

ble and CaS takes over. The contribution of CaT remains approximately constant during repolariza-

tion and vanishes as the membrane becomes depolarized and the Na current becomes dominant.

The effect of removing CaT is visible on this scale. The waveform of the contribution remains qualita-

tively the same: largest at the minimum voltage and approximately constant until the next spike.

However, the contribution of CaT during repolarization becomes smaller, and for larger conductance

decrements results in a thinner band. Finally, the bottom panels show the cases 10%gCaT and

0%gCaT which correspond to a two-spike burster and a tonic spiker, respectively. Note that even

though the contribution of CaT is barely visible, complete removal of this current results in a very dif-

ferent pattern. The activity switched from bursting to spiking and the current composition is differ-

ent; KCa disappeared in the 0% condition and the A current takes over. Notice also the larger

contribution of the H current.

Modeling current deletions
There has been a great deal of work studying the effects of genetic and/or pharmacological dele-

tions of currents. One of the puzzles is why some currents, known to be physiologically important,

can have relatively little phenotype in some, or all individuals. For this reason in Figures 10 and

11, we show the effects of deletion of each current in all six models. Each panel shows 2 seconds of

Figure 10. Complete removal of one current: inward currents. The figure shows the traces and currentscapes for all bursters when one current is

completely removed.

DOI: https://doi.org/10.7554/eLife.42722.013

Alonso and Marder. eLife 2019;8:e42722. DOI: https://doi.org/10.7554/eLife.42722 15 of 28

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.42722.013
https://doi.org/10.7554/eLife.42722


data. The inward currents are portrayed in Figure 10 and the outward and leak currents are shown

in Figure 11.

Removal of some currents has little obvious phenotype differences across the population

although the currentscapes are different, such as seen for the gNa and gCaS cases. Removal of some

currents produces similar phenotypes in most, but not all of the six models as seen in the gH and gA

cases. Removal of Kd had virtually identical effects both on the phenotype and the currents. For

other currents, such as KCa and the Leak, we find two types of responses with nearly half of the mod-

els for each case (the exception is model (d) Leak). In the case of the CaT current both the phenotype

and the currents composition are very diverse across models.

Changes in waveform as conductances are gradually decreased
A fuller description of the behavior/phenotype of all of the models for all values of conductance dec-

rements can be seen in Figures 12 and 13. These figures use the probability scheme described in

Figure 3 and Figure 3—figure supplement 1. Using these methods, it is possible to see exactly

how the waveforms change and the boundaries of activity for each model and each conductance.

The panels show the ridges of the probability distributions pðVÞ of the membrane potential VðtÞ for

1001 values of maximal conductance values (see Materials and methods). The probability of VðtÞ was

computed using 30 s of data after dropping a transient period of 120 s. It was estimated using

Nb ¼ 1001 bins in the range ð�70; 35Þmv and N » 2� 10
6 samples for each maximal conductance

value. The system spends more time in regions where dV
dt

» 0 and is sampled more at those values.

Therefore, features such as the amplitudes of the spikes appear as sharp peaks in the probability dis-

tributions. To highlight these peaks and visualize how they change as currents are gradually

decreased, we plot the derivative or sharpness of the distribution in colors (see color scale in

Figure 3D). Overall, these plots show that for any given current, there are ranges of the conduc-

tance values where a small change results in a smooth deformation of the waveform, and there are

specific values at which abrupt transitions take place. As before there is too much detail to describe

Figure 11. Complete removal of one current: outward currents. The figure shows the traces and currentscapes for all bursters when one current is

completely removed.
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everything in these figures so we will discuss a subset of the features highlighted by this

representation.

The top rows in Figure 12 correspond to removing the Na current in the models. Note that the

minimum value of V in control (left) is close to �50mV and a small decrement in gNa results in larger

amplitude. The colored curves inside the envelopes correspond to the spikes’ amplitudes and fea-

tures of the slow waves. For instance, when the Na current is completely removed (right) the ampli-

tude of the oscillation is » 40mV and the activity corresponds to a single-spike bursting mode. The

spike amplitude is given by the top edge of the colored region and the curve near » � 20mV indi-

cates the burst ‘belly’: the membrane hyperpolarizes slowly after spike termination and there is a

wiggle at this transition.
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Figure 12. Changes in waveform as currents are gradually removed. Inward currents. The figure shows the ridges of the probability distribution of VðtÞ

as a function of V and each maximal conductance pðV ; giÞ. The ridges of the probability distributions appear as curves and correspond to values of V

where the system spends more time, such as extrema. The panels show how different features of the waveform such as total amplitude, and the

amplitude of each spike, change as each current is gradually decreased.
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Removing CaT in model (a) does not disrupt bursting activity immediately. Notice that the ampli-

tude of the bursts remains approximately constant over a range of gCaT values. The dim red and yel-

low lines at » 20mV show that the amplitudes of the spikes are different and have different

dependences with gCaT. When the model transitions into a tonic spiking regime, the amplitude of

the spikes is the same and there is only one amplitude value. This value stays constant over a range

but the minimum membrane potential decreases and the overall amplitude therefore increases. The

model returns to a bursting regime for values of gCaT smaller than 30%gCaT. Notice that in model

(a) the membrane potential during bursts goes below �50mV , unlike in the control condition. Notice

that the waveform of the membrane potential changes abruptly as gCaT is reduced and the models

transition into a spiking regime. Model (f) is less resilient to this perturbation and this transition takes

place at lower conductance values.
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Figure 13. Changes in waveform as currents are gradually removed. Outward and leak currents. The figure shows the ridges of the probability

distribution of VðtÞ as a function of V and each maximal conductance pðV ; giÞ. See Figure 12.
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Removing CaS does not much change the waveform, but it alters the temporal properties of the

activity. The models remain bursting up to a critical value and the amplitude of the spikes was

changed little. The features of the slow wave do not much change either except in model (f). Model

(c) is less resilient to this perturbation since it becomes quiescent for lower decrements of the maxi-

mal conductance than the other models. The effect of gradually removing H appears similar to CaS

in this representation. In this case again, the morphology of the waveform is less altered than its

temporal properties (except in model (e) where a transition takes place).

Figure 13 shows the same plots for the outward and leak currents. The A current in model (a) is

very small (gA » 10�S) and its removal has little effect on the activity. This translates into curves that

appear as parallel lines indicating spikes with different amplitudes that remain unchanged. The rest

of the models exhibit a transition into a different regime. The waveforms of this regime appears sim-

ilar to the waveforms which result from removing gNa (see Figure 7) but in this representation it is

easier to observe differences such as the overall amplitude of the oscillation. The amplitude

decreases as gNa is decreased and increases as gA is decreased. Removing KCa has a similar effect

to removing gCaT in that the models transition into tonic spiking regimes. The difference is that the

spiking regimes that result from removing KCa have smaller amplitudes and also correspond to

more depolarized states.

All models are very sensitive to removing Kd and low values result in single-spike bursting modes

with large amplitudes. Model (c) is least fragile to this perturbation and exhibits a visible range

( ~ 100% to ~ 90%) with bursting modes. These oscillations break down in a similar way to the Na

case and display similar patterns. However, an important difference is that unlike in the gNa case,

the overall amplitude of the oscillation increases as gKd is decreased. As before, the top edge corre-

sponds to the amplitude of the large spike and the curves in the colored region correspond to

extrema of the oscillation. After spiking, the membrane remains at a constant depolarized value

( » � 20mV ) for a long period and produces a high-frequency oscillation before hyperpolarization.

The amplitude of this oscillation increases as Kd is further decreased, and this results in a white curve

that starts above 0mV and ends above 0mV . The beginning of this curve corresponds to a high-fre-

quency oscillation that occurs after spike termination. This type of activity is termed plateau oscilla-

tions and was reported in models of leech heart interneurons (Cymbalyuk and Calabrese, 2000)

and in experiments in lamprey spinal neurons (Wang et al., 2014). These features are hardly visible

in the traces in Figure 8 and are highlighted by this representation. Finally, the Leak case appears

similar to mixture of the Na and A cases. The cells remain bursting over a range of values and some

of them transition into a single-spike bursting mode that is different from the KCa case.
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Figure 14. Changes in waveform of current shares as one current is gradually decreased. The panels show the probability distribution of the share of

each current ĈiðtÞ for model (f) as CaT is decreased (see Figure 14—figure supplement 1).
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Figure supplement 1. Probability distributions of currents shares.
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Changes in current contributions as conductances are gradually
decreased
The key to the visualization method in Figures 12 and 13 is to consider VðtÞ not as a time series but

as a stochastic variable with a probability distribution (see Figure 3 and supplement). The same pro-

cedure can be applied to the time series of each current. However, because the contributions of the

currents are different at different times, and at different decrements of conductance values, it is not

possible to display this information using the same scale for all channels. To overcome this, we pro-

ceed as in the currentscapes and instead focus on the normalized currents or shares to the total
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Figure 15. Changes in waveform of current shares as each current is gradually decreased. The panels show the probability distribution of the share of

each current ĈiðtÞ for model (c) as each current is decreased.
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inward and outward currents (the rows of matrices Ĉþ and Ĉ�, see Materials and methods). The cur-

rent shares ĈiðtÞ correspond to the width of the color bands in the currentscapes and can also be

represented by a time series that is normalized to the interval ½0; 1�. The probability distribution of

ĈiðtÞ permits displaying changes in the contributions of each current to the activity as one current is

gradually removed. Interpreting these distributions is straightforward as before: the number of times

the system is sampled in a given current share configuration is proportional to the time the system

spends there. The aim of plotting these distributions is to visualize how the currentscapes would

change for all values of the conductance decrement. To illustrate this procedure, we return to CaT

to explore further the causes of the complex behavior of model (f) (see Figure 9).

Figure 14 shows the probability distributions of the current shares as CaT is gradually decreased

in model (f) (see also Figure 9 and Figure 14—figure supplement 1). The panels show the share of

each current as CaT is gradually decreased and the probability is indicated in colors. In control the

Na and CaT current shares are distributed in a similar way. Both currents can at times be responsible

for » 90% of the inward current, but most of the time they contribute » 20%. The Na current is larger

right before spike repolarization and the CaT amounts to » 90% of the small ( » 5nA) total inward cur-

rent. For larger decrements, the system transitions into tonic spiking and the contribution of the Na

current is more evenly distributed over a wider range. The contribution of the CaT current is pre-

dominantly » 15% and trends to zero as gCaT ! 0. Note also that as the contribution of CaT

decreases, the contribution of CaS increases to values larger than 75% while in control it contributes

with » 50%. The contribution of the H current is small (� 25%) between 100%gCaT and » 80%gCaT; it

becomes negligible between » 80%gCaT and » 20%gCaT and becomes dominant after 20%gCaT.

The A current behaves similarly to the H. It contributes » 90% of the (small » 2nA) total outward cur-

rent before burst initiation and its contribution decreases drastically when the system transitions into

tonic spiking. As CaT is removed further the A current is more likely to contribute with a larger share.

The contribution of the KCa current decreases as gCaT is decreased and some of it persists even

when gCaT is completely removed. In contrast, the contribution of the Kd current does not appear

to change much and nor does its role in the activity.

Performing the same analysis for all conductances results in a large amount of information.

Despite this and because we are plotting the normalized currents or current shares, our representa-

tion allows us to display this information in a coherent fashion. As an example, in Figure 15 we show

the effect of gradually decreasing each current on all the currents in model (c). The rows indicate

which conductance is decreased and the columns show the effect of this perturbation on the corre-

sponding current. The first row shows how the shares of each current change as the Na current is

decreased. For instance, the effect of decreasing gNa on the Na current (indicated by *) is as

expected, with the maxima of the distribution trending to zero as gNa ! 0. The effect of removing

gNa on the other currents is non-trivial and is displayed along the same row. Notice that while the

effect of removing a current on that same current (diagonal panels) is relatively predictable, the rest

of the currents become rearranged in complicated ways.

Again, a full description of these diagrams is beyond the scope of this work so we will only make

some observations. When the pertubations are negligible or weak (100% to » 90%) all currents play a

role because there are periods of time in which they contribute to at least » 20% of the total current.

There are ranges of the conductances over which small changes result in smooth transformations of

the current configuration, there are specific values at which sharp transitions take place, and these

values are different depending on the current that is decreased. While some of this information can

also be extracted from Figures 12 and 13, the diagrams in Figure 15 show how the currents get

reorganized at these transitions. In addition, this arrangement is convenient for comparing the effect

of decreasing each conductance on a given current. For example, the contributions of the Na and Kd

currents change little for most perturbations (except when these conductances are decreased). In

contrast, the contributions of CaT, CaS, H, KCa, and the leak change more noticeably. Finally, the

contribution of the A current increases for most conductance decrements of any type, except at the

transition values where it can grow or shrink in an abrupt manner.
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Discussion
There is an ever larger availability of experimental data to inform detailed models of identified neu-

ron types (McDougal et al., 2017). Experimenters have determined the kinetics of many channel

types, both in vertebrate and invertebrate neurons. There are also model databases with thousands

of parameters which permit the development of large scale models of neural tissue (Bezaire et al.,

2016). One difficulty in ensemble modeling is the necessity of incorporating the biological variability

observed in some of the parameters – such as the conductances – at the same time that we require

the models to capture some target activity. In other words, we may be interested in modeling a type

of cell that displays some sterotypical behavior, and would like to obtain many different versions of

such models. Two main approaches to this problem were introduced in the past. One consists of

building a database of model solutions over a search domain and screening for target solutions: this

considers all possible value combinations within an allowed range up to a numerical resolution and

then applies quantitative criteria to determine which solutions correspond to the target activity

(Prinz et al., 2004). An alternative approach consists of designing a target function that assigns a

score to the models’ solutions in such a way that lower scores correspond to solutions that meet the

targets, and then optimizing these functions (Achard and De Schutter, 2006; Druckmann et al.,

2007; Ben-Shalom et al., 2012).

Both approaches have advantages and shortcomings. In the case of the database approach, try-

ing all posible parameter combinations in a search range becomes prohibitively expensive as more

parameters are allowed to vary. One advantage of this approach is that it provides a notion of how

likely it is to find conductances within a search range that will produce the activity. In the landscape

approach, we find solutions by optimization and – without further analysis – we do not know how

likely a given solution type is. This approach has the advantage that it can be scaled to include large

numbers of parameters. Additionally, if a particular solution is interesting, we can use genetic algo-

rithms on successful target functions to ‘breed’ as many closely related models as desired. Ulti-

mately, any optimization heuristic requires blind testing random combinations of the parameters,

and developing quantitative criteria for screening solutions in a database results in some sort of

score function, so the two approaches are complementary. A successful target function can deter-

mine if a random perturbation results in disruption of the activity and this can be used to perform

population-based sensitivity analyses (Devenyi and Sobie, 2016).

Regardless of the optimization approach, most work is devoted to the design of successful target

functions. Different modeling problems require different target functions (Roemschied et al., 2014;

Fox et al., 2017; Migliore et al., 2018) and one challenge in their design is that sometimes we do

not know a priori if the model contains solutions that will produce good minima. In addition, a poorly

constrained target function can feature multiple local minima that could make the optimization

harder, so even if there are good minima they may be hard to find. One difference between the

landscape functions in Achard and De Schutter (2006) and the ones utilized here is that in their

setup model solutions are compared to a target time series via a phase-plane method. The functions

introduced in this work use an analysis based on Poincaré sections or thresholds to characterize the

waveform and to define an error or score. Instead of targeting a particular waveform, we ask that

some features of the waveform – such as the frequency and the burst duration – are tightly con-

strained, while other features – such as the concavity of the slow waves – can be diverse. This is moti-

vated by the fact that across individuals and species, the activity of the pyloric neurons can be

diverse but the neurons always fire in the same sequence and the burst durations have a well-

defined mean. Our approach is successful in finding hundreds of models that display a target activity

in minutes using a commercially available desktop computer. Application of evolutionary techniques

to optimize these functions provides a natural means to model the intrinsic variability observed in

biological populations.

One of the main benefits of computational modeling is that once a behavior of interest is success-

fully captured we then possess a mechanistic description of the phenomena that can be used to test

ideas and inform experiments (Coggan et al., 2011; Lee et al., 2016; Devenyi and Sobie, 2016;

Gong and Sobie, 2018). As the models gain biophysical detail these advantages wane in the face of

the complexity imposed by larger numbers of variables and parameters. Conductance-based models

of neural activity generate large amounts of data that can be hard to visualize and interpret. The

development of novel visualization procedures has the potential to assist intuition into the details of
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how these models work (Gutierrez et al., 2013). Here, we introduced a novel representation of the

dynamics of the ionic currents in a single compartment neuron. Our representation is simple and dis-

plays in a concise way the contribution of each current to the activity. This representation is easily

generalizable to multi-compartment models and small networks, and to any type of electrically excit-

able cell, such as models of cardiac cells (Britton et al., 2017).

We employed these procedures to build many similar bursting models with different conductance

densities and to study their response to perturbations. The responses of the models to current injec-

tions and gradual decrements of their conductances can be diverse and complex. Inspection of the

ISI distributions revealed wide ranges of parameter values for which the activity appears irregular,

and similar regimes can be attained by gradually removing some of the currents. Period doubling

routes to chaos in neurons have been observed experimentally and in conductance-based models

(Hayashi et al., 1982; Hayashi and Ishizuka, 1992; Szücs et al., 2001; Canavier et al., 1990;

Xu et al., 2017). The sort of bifurcation diagrams displayed by these models upon current injection

are qualitatively similar to those exhibited by simplified models of spiking neurons for which further

theoretical insight is possible (Touboul and Brette, 2008). Period doubling bifurcations and low

dimensional chaos arise repeatedly in neural models of different natures including rate models

(Ermentrout, 1984; Alonso, 2017). The bursters studied here are close (in parameter space) to ape-

riodic or irregular regimes suggesting that such regimes are ubiquitous and not special cases.

We showed that in these model neurons similar membrane activities can be attained by multiple

mechanisms that correspond to different current compositions. Because the dynamical mechanisms

driving the activity are different in different models, perturbations can result in qualitatively different

scenarios. Our visualization methods allow us to gather intuition on how different these responses

can be and to explore the contribution of each current type to the neural activity. Even in the case of

single compartment bursters, the response to perturbations of a population can be diverse and hard

to describe. To gain intuition into the kind of behaviors the models display upon perturbation, we

developed a representation based on the probability of the membrane potential V . This representa-

tion permits displaying changes in the waveform of V as each current is blocked. This representation

shows that the models respond to perturbations in different ways, but that there are also similarities

among their responses. A concise representation of the effect of a perturbation is a necessary step

towards developing a classification scheme for the responses.

Materials and methods
Numerical data and data analysis and plotting code, sufficient to reproduce the figures in the paper

are available on Dryad Digital Repository (https://dx.doi.org/10.5061/dryad.d0779mb).

Model equations
The membrane potential V of a cell containing N channels and membrane capacitance C is given by:

C
dV

dt
¼ Ie �

X8

i¼1

Ii: (5)

Each term in the sum corresponds to a current Ii ¼ gim
pihqiðV �EiÞ and Ie is externally applied cur-

rent. The maximal conductance of each channel is given by gi, m and h are the activation and inacti-

vation variables, the integers pi and qi are the number of gates in each channel, and Ei is the reversal

potential of the ion associated with the i-th current. The reversal potential of the Na, K, H and leak

currents were kept fixed at ENa ¼ 30mV , EK ¼�80mV , EH ¼�20mV and Eleak ¼�50mV while the cal-

cium reversal potential ECa was computed dynamically using the Nernst equation assuming an extra-

cellular calcium concentration of 3� 10
3�M. The kinetic equations describing the seven voltage-

gated conductances were modeled as in Liu et al. (1998),

tmi
ðVÞ

dmi

dt
¼ m¥i

ðVÞ � mi

thiðVÞ
dhi

dt
¼ h¥i

ðVÞ� hi:

(6)

The functions tmi
ðVÞ, m¥i

ðVÞ, thiðVÞ and h¥i
ðVÞ are based on the experimental work of
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Turrigiano et al., 1995 and are listed in refs. (Liu et al., 1998; Turrigiano et al., 1995). The activa-

tion functions of the KCa current require a measure of the internal calcium concentration

½Caþ2� (Liu et al., 1998). This is an important state variable of the cell and its dynamics are given by,

tCa

d½Caþ2�

dt
¼�CaFðICaT þ ICaSÞ� ½Caþ2� þCa0: (7)

Here, CaF ¼ 0:94 �M
nA

is a current-to-concentration factor and Ca0 ¼ 0:05�M. These values were

originally taken from Liu et al. and were kept fixed. Finally, C¼ 10nF. The number of state variables

or dimension of the model is 13. We explored the solutions of this model in a range of values of the

maximal conductances and calcium buffering time scales. The units for voltage are mV , the conduc-

tances are expressed in �S and currents in nA. Voltage traces were obtained by numerical integration

of Equation 5 using a Runge-Kutta order 4 (RK4) method with a time step of

dt¼ 0:1msec (Press et al., 1988). We used the same set of initial conditions for all simulations in this

work V ¼�51mV , m;hi ¼ 0 and ½Caþ2� ¼ 5�M. For some values of the parameters, the system (Equa-

tion 5) can display multistability (Cymbalyuk et al., 2002; Shilnikov et al., 2005).

Optimization of target function
Optimization of the objective function Equation 2 is useful to produce sets of parameters g that

result in bursting regimes. In this work, the optimization was performed over a search space of

allowed values listed here: we searched for gNa 2 ½0; 2� 10
3� ([�S]), gCaT 2 ½0; 2� 10

2�,

gCaS 2 ½0; 2� 10
2�, gA 2 2� ½0; 102�, gKCa 2 ½0; 2� 10

3�, gKd 2 ½0; 2� 10
2�, gH 2 ½0; 2� 10

2�,

gL 2 ½0; 2� 10�, tCa 2 ½0; 103� ([msecs]). We minimized the objective function using a standard genetic

algorithm Holland (1992). This is optimization technique is useful to produce large pools of

different solutions and is routinely utilized to estimate parameters in biophysical models (see for

example Assaneo and Trevisan, 2010). The algorithm was started with a population of 1000 random

seeds that were evolved for » 10000 generations. The mutation rate was 5%. Fitter individuals were

chosen more often to breed new solutions (elitism parameter was 1:2 with 1 corresponding to equal

breeding probability). The computation was performed on a multicore desktop computer (32

threads) and takes about » 1 hr to produce good solutions.

Currentscapes
The currentscapes are stacked area plots of the normalized currents. Although it is easy to describe

their meaning, a precise mathematical definition of the images in Figure 2 can appear daunting in a

first glance. Fortunately, the implementation of this procedure results in simple python code.

The time series of the 8 currents can be represented by a matrix C with 8 rows and nsecs �
1

dt
¼ N

columns. For simplicity, we give a formal definition of the currentscapes for positive currents. The

definition is identical for both current signs and is applied independently for each. We construct a

matrix of positive currents Cþ by setting all negative elements of C to zero, Cþ
i; j ¼ Ci; j j Ci; j > 0 and

Cþ
i;j ¼ 0 j Ci;j � 0. Summing Cþ over rows results in a normalization vector nþ with N elements

Table 1. Parameters used in this study and error value.

gNa gCaT gCaS gA gKCa gKd gH gL tCa EðgÞ

model (a) 1076.392 6.4056 10.048 8.0384 17.584 124.0928 0.11304 0.17584 653.5 0.051

model (b) 1165.568 6.6568 9.5456 54.5104 16.328 110.7792 0.0628 0.10676 813.88 0.053

model (c) 1228.368 7.0336 11.0528 117.5616 16.328 111.2816 0.13816 0.10676 605.98 0.027

model (d) 1203.248 6.6568 10.5504 59.5344 16.328 111.4072 0.0 0.10676 653.5 0.471

model (e) 1210.784 8.164 6.28 113.04 12.56 118.4408 0.1256 0.0314 393.13 0.109

model (f) 1245.952 7.7872 6.7824 84.6544 12.56 113.9192 0.02512 0.0 174.34 0.047

model (Figure 2) 1228.368 7.0336 11.0528 117.5616 16.328 110.7792 0.13816 0.10048 605.98 0.007

model (Figure 3) 895.528 3.8936 16.5792 116.4312 21.352 115.6776 0.0 0.08792 828.73 0.058

DOI: https://doi.org/10.7554/eLife.42722.020
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nþj ¼
P

i C
þ
i;j. The normalized positive currents can be obtained as Ĉþ ¼ Cþ=nþ (element by element

or entry-wise product). Matrix Ĉþ is hard to visualize as it is. The columns of Ĉþ correspond to the

shares of each positive current and can be displayed as pie charts (see Figure 2). Here, instead of

mapping the shares to a pie we map them to a segmented vertical ‘churro’. The currentscapes are

generated by constructing a new matrix CS whose number of rows is given by a resolution factor

R ¼ 2000, and the same number of columns N as C. Each column j of Ĉþ produces one column j of

CS. Introducing the auxiliary variable pi;j ¼ Ĉþ
i;j � R we can define the currentscape as,

CSi; j ¼ k j
Xk

m

pm; j � i<pkþ1; j þ
Xk

m

pm; j: (8)

The current types are indexed by k 2 ½0;7� and we assume
Pk¼0

m pm; j ¼ 0. The black filled curve in

Figure 2B corresponds to the normalization vector nþ plotted in logarithmic scale. We placed dot-

ted lines at 5nA, 50nA and 500nA for reference throughout this work. The currentscapes for the nega-

tive currents are obtained by applying definition (Equation 8) to a matrix of negative C� currents

defined in an analogous way as Cþ. Finally, note that matrices Ĉþ and Ĉ� are difficult to visualize as

they are. The transformation given by definition (Equation 8) is useful to display their contents.

ISI distributions
We inspected the effects of injecting currents in our models by computing the inter-spike interval ISI

distributions. For this, we started the models from the same initial condition and simulated them for

580 s. We dropped the first 240 s to remove transient activity and kept the last 240 s for analysis.

Spikes were detected as described before. We collected ISI values for N ¼ 1001 values of injected

current equally spaced between �1nA and 5nA.

V distributions
To sample the distributions of V we simulated the system with high temporal resolution

(dt ¼ 0:001msec ) for 30 s, after dropping the first 120 s to remove transients. We then sampled the

numerical solution at random time stamps and kept 2� 10
6 samples V ¼ fVig for each percent value.

We took 1001 values between 1 and 0.

Parameters
Model parameters used in this study are listed in Table 1.
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Druckmann S, Banitt Y, Gidon A, Schürmann F, Markram H, Segev I. 2007. A novel multiple objective
optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in
Neuroscience 1:7–18. DOI: https://doi.org/10.3389/neuro.01.1.1.001.2007, PMID: 18982116

Ermentrout GB. 1984. Period doublings and possible chaos in neural models. SIAM Journal on Applied
Mathematics 44:80–95. DOI: https://doi.org/10.1137/0144007

Feigenbaum MJ. 1978. Quantitative universality for a class of nonlinear transformations. Journal of Statistical
Physics 19:25–52. DOI: https://doi.org/10.1007/BF01020332

Fox DM, Tseng HA, Smolinski TG, Rotstein HG, Nadim F. 2017. Mechanisms of generation of membrane
potential resonance in a neuron with multiple resonant ionic currents. PLOS Computational Biology 13:
e1005565. DOI: https://doi.org/10.1371/journal.pcbi.1005565, PMID: 28582395

Goldberg DE, Holland JH. 1988. Machine Learning and Its Applications. In: Genetic Algorithms and Machine
Learning. 3 Springer. p. 95–99.

Goldman MS, Golowasch J, Marder E, Abbott LF. 2001. Global structure, robustness, and modulation of
neuronal models. The Journal of Neuroscience 21:5229–5238. DOI: https://doi.org/10.1523/JNEUROSCI.21-14-
05229.2001, PMID: 11438598

Golowasch J, Goldman MS, Abbott LF, Marder E. 2002. Failure of averaging in the construction of a
conductance-based neuron model. Journal of Neurophysiology 87:1129–1131. DOI: https://doi.org/10.1152/jn.
00412.2001, PMID: 11826077

Gong JQX, Sobie EA. 2018. Population-based mechanistic modeling allows for quantitative predictions of drug
responses across cell types. Npj Systems Biology and Applications 4:11. DOI: https://doi.org/10.1038/s41540-
018-0047-2, PMID: 29507757

Gutierrez GJ, O’Leary T, Marder E. 2013. Multiple mechanisms switch an electrically coupled, synaptically
inhibited neuron between competing rhythmic oscillators. Neuron 77:845–858. DOI: https://doi.org/10.1016/j.
neuron.2013.01.016, PMID: 23473315

Hayashi H, Nakao M, Hirakawa K. 1982. Chaos in the self-sustained oscillation of an excitable biological
membrane under sinusoidal stimulation. Physics Letters A 88:265–266. DOI: https://doi.org/10.1016/0375-9601
(82)90245-6

Hayashi H, Ishizuka S. 1992. Chaotic nature of bursting discharges in the onchidium pacemaker neuron. Journal
of Theoretical Biology 156:269–291. DOI: https://doi.org/10.1016/S0022-5193(05)80676-9

Herz AV, Gollisch T, Machens CK, Jaeger D. 2006. Modeling single-neuron dynamics and computations: a
balance of detail and abstraction. Science 314:80–85. DOI: https://doi.org/10.1126/science.1127240,
PMID: 17023649

Holland JH. 1992. Genetic algorithms. Scientific American 267:66–72. DOI: https://doi.org/10.1038/
scientificamerican0792-66

Lee YS, Hwang M, Song JS, Li C, Joung B, Sobie EA, Pak HN. 2016. The contribution of ionic currents to Rate-
Dependent action potential duration and pattern of reentry in a mathematical model of human atrial fibrillation.
PLOS ONE 11:e0150779. DOI: https://doi.org/10.1371/journal.pone.0150779, PMID: 26964092

Liu Z, Golowasch J, Marder E, Abbott LF. 1998. A model neuron with activity-dependent conductances regulated
by multiple calcium sensors. The Journal of Neuroscience 18:2309–2320. DOI: https://doi.org/10.1523/
JNEUROSCI.18-07-02309.1998, PMID: 9502792

McDougal RA, Morse TM, Carnevale T, Marenco L, Wang R, Migliore M, Miller PL, Shepherd GM, Hines ML.
2017. Twenty years of ModelDB and beyond: building essential modeling tools for the future of neuroscience.
Journal of Computational Neuroscience 42:1–10. DOI: https://doi.org/10.1007/s10827-016-0623-7, PMID: 2762
9590

Migliore R, Lupascu CA, Bologna LL, Romani A, Courcol JD, Antonel S, Van Geit WAH, Thomson AM, Mercer A,
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