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Abstract Much of the vertebrate skeleton develops from cartilage templates that are

progressively remodeled into bone. Lineage tracing studies in mouse suggest that chondrocytes

within these templates persist and become osteoblasts, yet the underlying mechanisms of this

process and whether chondrocytes can generate other derivatives remain unclear. We find that

zebrafish cartilages undergo extensive remodeling and vascularization during juvenile stages to

generate fat-filled bones. Growth plate chondrocytes marked by sox10 and col2a1a contribute to

osteoblasts, marrow adipocytes, and mesenchymal cells within adult bones. At the edge of the

hypertrophic zone, chondrocytes re-enter the cell cycle and express leptin receptor (lepr),

suggesting conversion into progenitors. Further, mutation of matrix metalloproteinase 9 (mmp9)

results in delayed growth plate remodeling and fewer marrow adipocytes. Our data support

Mmp9-dependent growth plate remodeling and conversion of chondrocytes into osteoblasts and

marrow adipocytes as conserved features of bony vertebrates.

DOI: https://doi.org/10.7554/eLife.42736.001

Introduction
Vertebrate bones develop via two largely distinct processes. Intramembranous (i.e. dermal) bone,

which makes up a large portion of the skull, arises through the direct differentiation of mesenchymal

precursors into osteoblasts and then osteocytes. In contrast, endochondral bone, which comprises

the majority of the axial and limb skeletons, arises through the progressive remodeling of an embry-

onic cartilage template. On the outside of developing endochondral bone, perichondral cells mature

into periosteal progenitors that contribute to the bone collar. The cartilage templates of endochon-

dral bone are organized into distinct zones of chondrocytes: resting, proliferative, pre-hypertrophic,

and hypertrophic. In mammals, chondrocytes at the edge of the developing hypertrophic zone

largely disappear as the cartilage matrix is degraded, a process concurrent with the invasion of

blood vessels, hematopoietic cells, and progenitors for osteoblasts and marrow adipocytes

(Maes et al., 2010). This growth plate remodeling contributes to the establishment of trabecular

bone, complementing the cortical bone largely derived from the periosteum, and the marrow cavity

supports continued hematopoiesis. As with mammals, zebrafish also have intramembranous and

endochondral bones. Their endochondral bones are hollow and filled predominantly with fat yet do

not support hematopoiesis as in mammals (Witten and Huysseune, 2009; Weigele and Franz-

Odendaal, 2016). It has remained unclear, however, whether zebrafish bone arises solely through

osteoblast differentiation in the periosteum, or also through invasion of the vasculature and
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conversion of growth plate cartilage to bone as in mammals. The source of marrow adipocytes also

remains unclear in either fish or mammals.

It has long been appreciated that many hypertrophic chondrocytes undergo cell death during

endochondral ossification, with osteoblasts forming from periosteal cells brought into the bone

along with the vasculature (Maes et al., 2010). At the same time, there are numerous studies show-

ing that cultured chondrocytes can dedifferentiate into mesenchymal progenitors and/or transdiffer-

entiate into osteoblasts (Shimomura et al., 1975; Mayne et al., 1976; von der Mark and von der

Mark, 1977). Recent lineage tracing studies of hypertrophic chondrocytes, using constitutive and

inducible Col10a1-Cre- and Aggrecan-Cre-based transgenes in mice, has revealed that such transdif-

ferentiation may also occur in vivo, with chondrocytes making a major contribution to osteoblasts

within trabecular bone and potentially also the bone collar (Yang et al., 2014; Kobayashi et al.,

2014; Jing et al., 2015; Park et al., 2015). A limitation of these studies is the use of population-

based labeling by Cre recombination, which cannot exclude low-level and/or leaky labeling of other

cell types. It is also unclear whether hypertrophic chondrocytes can give rise to other cell types, such

as marrow adipocytes, and whether hypertrophic chondrocytes directly transform into osteoblasts or

do so through a stem cell intermediate. Finally, it is unknown whether the ability of chondrocytes to

generate osteoblasts and other cell types is specific to mammals or a more broadly shared feature

of vertebrates.

In this study, we address the long-term fate of growth plate chondrocytes in zebrafish, as well as

potential mechanisms of their fate plasticity. We use the ceratohyal (Ch) bone of the lower face as a

model. This long bone, which is derived from cranial neural crest cells, exhibits properties in com-

mon with the long bones of mammalian limbs, including two prominent growth plates at either end

and a marrow cavity (Paul et al., 2016). Here, we describe remodeling of the Ch from a cartilage

template to a fat-filled bone in juvenile stages, which coincides with extensive vascularization. Using

inducible Cre and long-lived histone-mCherry fusion proteins, driven by regulatory regions of the

chondrocyte genes sox10 and col2a1a, we reveal contribution of chondrocytes to osteoblasts, adi-

pocytes, and mesenchymal cells within the adult Ch. In mouse, LepR expression marks bone marrow

cells that contribute to osteoblasts and adipocytes primarily after birth (Zhou et al., 2014b). In

zebrafish, we find that growth plate chondrocytes express lepr and re-enter the cell cycle during the

late hypertrophic phase, raising the possibility that Lepr +skeletal stem cells may derive from growth

plate chondrocytes. Further, we find that delayed remodeling of the hypertrophic cartilage zone in

zebrafish mmp9 mutants correlates with a paucity of marrow adipocytes. Unlike in mouse where

eLife digest Our adult bones are made of a fatty tissue, called marrow, wrapped inside a hard

outer layer produced by bone cells. They may appear stiff and unyielding, but our bones are actually

dynamic structures. Early in life, most bones start as small ‘templates’ made of another, flexible

tissue called cartilage. As the templates grow into adult bones, the cartilage is gradually replaced by

bone and fat, but this process is still poorly understood. For example, it is not clear whether

cartilage cells simply die and make way for new cells, or instead if they turn into bone and fat cells.

To investigate this question, Giovannone, Paul et al. set out to follow the fate of early cartilage cells

in zebrafish, and to compare this with what happens in mammals. Zebrafish were chosen because

their skeleton and ours develop in similar ways; yet, these animals are much easier to study, in

particular because their embryos are transparent.

Young cartilage cells were ‘tagged’ with a long-lasting fluorescent protein in genetically

engineered zebrafish embryos, and then followed over time. As the embryos started to form bones,

the cartilage cells gave rise to bone cells, fat cells, and also potentially adult stem cells within the

marrow, which can become other types of cells. This process required a protein called Mmp9, which

also helps shape bone development in other organisms, including humans.

Defects in how early cartilage templates morph into bone and fat may contribute to dwarfism

and other severe conditions. Fully grasping the molecular mechanisms that preside over this

complex transition may one day help design drugs to treat skeletal disorders.

DOI: https://doi.org/10.7554/eLife.42736.002
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Mmp9 functions in hematopoietic cells for timely growth plate remodeling (Vu et al., 1998), we find

that Mmp9 is sufficient in neural crest-derived chondrocytes of zebrafish for growth plate remodel-

ing. Our studies reveal that growth plate chondrocytes generate osteocytes and adipocytes in zebra-

fish bones, potentially by transitioning through a proliferative intermediate.

Results

Remodeling of the Ch bone in juvenile zebrafish
In order to characterize the progressive remodeling of an endochondral bone in zebrafish, we per-

formed pentachrome staining on sections of the Ch bone from juvenile through adult stages (Fig-

ure 1). The Ch bone is shaped like a flattened barbell, and here we sectioned it to reveal the thin

plane of the bone (see Figure 1—figure supplement 1A) for a view along the thicker perpendicular

plane). Unlike the unidirectional growth plates in the mouse limb, the two growth plates of Ch are

bidirectional with a central zone of compact, proliferative chondrocytes flanked by hypertrophic

chondrocytes on either side (Paul et al., 2016). Unlike in many other fish species, the Ch bone, as

with other bones in zebrafish, also contains embedded osteocytes (Witten and Huysseune, 2009).

At 11 mm standard length (SL) (approx. 4.5 weeks post-fertilization (wpf)), the Ch contains chondro-

cytes throughout its length with the exception of a small marrow space at the anterior tip. The Ch is

surrounded by a thin layer of cortical bone that has been shown to derive from osteoblasts located

on the outside of the cartilage template (i.e. periosteum) (Paul et al., 2016). By 12 mm SL (approx.

five wpf), both tips of the Ch contain marrow spaces, and on the central sides of the growth plates

we begin to observe small fissures in the cortical bone and disruption of the hypertrophic zone. By

13 mm SL (approx. 5.5 wpf), breaks in the cortical bone become more prominent and are accompa-

nied by further degradation of the cartilage matrix. At later stages (16 and 19 mm SL) (approx. 7

and 9 wpf), cortical bone regains integrity and increases in thickness, and marrow adipocytes con-

taining LipidTOX +lipid vesicles are seen throughout Ch (Figure 1—figure supplement 1B). By

adulthood (one year of age), the marrow cavity is filled with large fat cells and the growth plates

appear largely mineralized. While we focus on the Ch for this study, a number of other cartilage-

derived bones in the face and fins have been reported to have a similar structure in zebrafish, includ-

ing growth plates and prominent marrow fat (Weigele and Franz-Odendaal, 2016).

Vascularization of the Ch bone in juvenile zebrafish
Given the transient breakdown of cortical bone, we examined whether this coincides with vasculari-

zation of Ch. To do so, we performed confocal imaging of the dissected Ch from fish carrying both a

chondrocyte-specific col2a1a:mCherry-NTR transgene and fli1a:GFP (Figure 2A). We used fli1a:GFP

to label endothelial cells of the vasculature, but we also noticed that presumptive resting chondro-

cytes in the middle of the growth plate express this transgene. At 10 and 11 mm SL, vessels express-

ing fli1a:GFP are found largely on the outside of the Ch bone. By 13, 16, and 20 mm SL, we observe

increasing numbers of capillaries within the Ch, coinciding with the replacement of col2a1a:mCherry-

NTR +chondrocytes with adipocytes. High-magnification confocal sections at 18 mm SL clearly show

fli1a:GFP+ vessels in intimate association with adipocytes and within the Calcein Blue+ bone collar

(Figure 1—figure supplement 1C). Given the more complicated expression pattern of fli1a:GFP, we

also independently confirmed blood vessel identity with kdrl:GFP. At 28 mm SL (approx. 26 wpf),

the Ch is heavily supplied with both kdrl:GFP+blood vessels and lyve1:DsRed+lymphatic vessels,

which abut each side of the growth plate (Figure 2B). Hence, as in mammalian bones, remodeling of

the Ch bone is accompanied by extensive vascular invasion of the cartilage template.

Contribution of sox10-lineage cells to osteoblasts, adipocytes, and
mesenchymal cells
Given the extensive remodeling and vascularization of Ch, we next investigated the long-term fate

of growth plate chondrocytes by multiple, independent methods. First, we constructed an inducible

sox10:CreERT2 line and crossed it to a ubiquitous bactin2:loxP-tagBFP-stop-loxP-DsRed reporter

(Blue to Red conversion: B > R). The zebrafish sox10 promoter drives expression in early cranial neu-

ral crest cells from 10 to 16 hpf, followed by a second wave of expression in all chondrocytes from

two dpf onwards (Dutton et al., 2008). Here, we took advantage of this second wave of expression
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to label developmental chondrocytes. Upon addition of 4-hydroxytamoxifen (4-OHT) at 15 dpf, we

observed extensive labeling of chondrocytes within 5 days, as well as some cells in the perichon-

drium surrounding Ch and other cartilages (Figure 3A). We did not observe leaky conversion in the

absence of 4-OHT at either embryonic or adult stages (Figure 3—figure supplement 1A). We then

converted sox10/B > R fish by 4-OHT treatment at 14 dpf and raised these to adulthood (27 mm SL)

Figure 1. Time-course of Ch remodeling in juvenile zebrafish. (A) Pentachrome staining of a longitudinal section

through the head of a 19 mm fish. The jaw is toward the left (anterior) and the gills toward the right (posterior).

The green stain highlights the collagen matrix of cartilage, and the reddish-brown stain the mineralized matrix of

bone. The bilateral set of Ch bones is indicated. n = 3. (B) High magnification views of the Ch at successive stages

show the gradual replacement of chondrocytes in the central shaft and at each end with adipocytes (which appear

white due to loss of lipid during processing). n = 3 for each stage. (C) Higher magnification views of the boxed

regions in (B). Cortical bone appears reddish-brown. Note the breaks in cortical bone toward the lower part of the

images at 12 and 13 mm, which are largely resolved by 16 and 19 mm. Scale bars = 50 mM.

DOI: https://doi.org/10.7554/eLife.42736.003

The following figure supplement is available for figure 1:

Figure supplement 1. Ch bone and marrow fat structure.

DOI: https://doi.org/10.7554/eLife.42736.004
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for analysis, with inclusion of an ocn:GFP transgene allowing us to label osteoblasts (Figure 3B).

Confocal maximum intensity projections through Ch revealed extensive labeling of growth plate

chondrocytes. We also observed numerous cells throughout the Ch, including in and around the

marrow cavity. In sections through the middle of Ch, we observed labeling of a number of large

diameter cells of adipocyte morphology (Figure 3C). In superficial sections through the cortical

bone, we also observed labeled cells that were positive for the osteoblast marker ocn:GFP, as well

as some labeled cells negative for ocn:GFP that may represent bone progenitors or other cell types

(Figure 3D). As a comparison, we used a constitutive Cre driven by a human SOX10 enhancer that

drives expression throughout the neural crest lineage (note that this human enhancer lacks the sec-

ond wave of chondrocyte expression seen with the zebrafish regulatory region used for the sox10:

CreERT2 line) (Kague et al., 2012). When crossed to the B > R line, this neural crest-specific SOX10:

Cre line drives broader conversion in the five dpf head than the later conversion of sox10:CreERT2

(Figure 3—figure supplement 2A). Analysis of the adult Ch in SOX10:Cre fish shows labeling of all

growth plate cartilage, as well as most if not all adipocytes and numerous smaller cells throughout

the marrow and cortical bone surface (Figure 3—figure supplement 2B,C). This is consistent with

previous studies showing that the Ch bone is neural crest-derived (Schilling and Kimmel, 1994).

However, we also detect unconverted cells in the marrow, consistent with contribution of non-neural

crest-derived cells such as the mesoderm-derived vasculature (Figure 2).

As sox10:CreERT2-mediated conversion at 14 dpf also labels cells outside the cartilage, which

could also contribute to osteoblasts and adipocytes, we next examined animals with lower conver-

sion efficiency to follow discrete growth plate clones. When analyzed at 30 mm SL, growth plate

clones could be quite large, consistent with clonal selection as described in the zebrafish heart and

Figure 2. Vascularization of the Ch. (A) Confocal projections of dissected Ch bones at five successive stages. Merged fluorescent and brightfield

channels show the gradual replacement of the cartilage with a fat-filled core. col2a1a:mCherry-NTR highlights chondrocytes that become increasingly

restricted to two growth plates (GP) at either end of the bone. fli1a:GFP labels endothelial cells and chondrocytes located in the central portions of the

growth plates. Vascularization of the Ch increases over time. n = 2 at each stage. (B) Confocal projection shows networks of kdrl:GFP+ vascular

endothelial and lyve1:DsRed+ lymphatic endothelial cells within an adult Ch bone. The inset shows a single confocal section through the boxed portion

of the growth plate, with both blood and lymphatic vessels abutting the edges but not penetrating into the growth plate. n = 2. Scale bars = 100 mm

(A) and 200 mm (B).

DOI: https://doi.org/10.7554/eLife.42736.005
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Figure 3. Contribution of sox10+ chondrocytes to osteoblasts and marrow adipocytes. (A) Confocal projection of a sox10:CreERT2; bactin2:

tagBFP>DsRed animal treated at 15 dpf with 4-OHT and imaged at 20 dpf. A ventral view of the lower face shows conversion in growth plate (GP) Ch

chondrocytes, as well as additional mesenchymal cells throughout the face. n = 3. (B) Confocal projection of a dissected Ch bone from a sox10:

CreERT2; bactin2:tagBFP>DsRed; ocn:GFP animal converted at 14 dpf and imaged as an adult (27 mm SL). In addition to labeling of the growth plates,

extensive DsRed+ cells are seen throughout the Ch in 3/3 strongly converted animals. (C) Higher magnification confocal section through the boxed

region in (B) shows a subset of adipocytes labeled by DsRed (red, arrowheads). (D) Higher magnification confocal section through the boxed region in

(B) shows a mixture of converted (yellow, arrowheads) and unconverted (green) ocn:GFP + osteoblasts, as well as converted ocn:GFP- mesenchymal

cells (red, arrows). (E) Confocal projection of a dissected Ch bone from a sox10:CreERT2; bactin2:tagBFP >DsRed animal converted at 14 dpf and

imaged as an adult (30 mm SL). Three prominent clones in the growth plate are numbered. In the boxed regions to the right, a discrete clone of growth

plate chondrocytes transitions into a stream of mesenchymal cells and then a number of adipocytes (arrowheads). The brightfield image from the same

sample (below) shows the lipid vesicles characteristic of adipocytes. Similar clonal contributions were seen in four independently converted animals. (F)

Confocal projection of a portion of a dissected Ch growth plate from a sox10:CreERT2; Zebrabow animal converted at 14 dpf and imaged as an adult

(23 mm SL). Images are shown with and without the Nomarski channel. Unconverted cells are red, and distinctly colored growth plate clones are visible.

Magnified images corresponding to the boxed regions are shown without the red channel to highlight distinct green and teal clones (brackets). The

teal clone of growth plate chondrocytes is contiguous with two similarly colored adipocytes (Ad1, Ad2), and the green clone is contiguous with faintly

Figure 3 continued on next page
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skeletal muscle (Gupta and Poss, 2012; Nguyen et al., 2017). In one example with three discrete

clones, we observed a clone that contributed to a narrow column of growth plate chondrocytes in

the middle of Ch that was contiguous with mesenchymal cells and then adipocytes toward the cen-

tral marrow cavity (Figure 3E). To more definitively follow growth plate clones, we also examined

sox10:CreERT2; ubb:Zebrabow fish in which 4OH-T treatment at 14 dpf resulted in conversion of

RFP (red) to various color combinations of CFP, YFP, and RFP at 23 mm SL. Analysis of uniquely col-

ored clones in the growth plate revealed those that contained both chondrocytes and adjacent adi-

pocytes in the marrow (Figure 3F). We also observed clones that appeared to contain chondrocytes

and weakly labeled cells embedded in cortical bone, though the clonal contribution to these and

other mesenchymal lineages will require further analysis. Together, our data are consistent with

chondrocytes giving rise to adipocytes and mesenchymal cells, and potentially osteoblasts, after

growth plate remodeling in zebrafish.

Contribution of col2a1a+ chondrocytes to osteoblasts, adipocytes, and
mesenchymal cells
As sox10-CreERT2-mediated conversion was broader than just the cartilage, we also generated an

inducible col2a1a-CreERT2 line to more precisely trace chondrocytes and their derivatives. In mice,

Col2a1:CreERT2-mediated conversion at embryonic and early postnatal stages broadly labels not

only chondrocytes but also osteochondroprogenitors, such as those in the perichondrium and peri-

osteum (Ono et al., 2014). In zebrafish, col2a1a is similarly expressed at high levels in chondrocytes

and in weaker levels in osteoblasts and perichondrium, although direct evidence for col2a1a marking

osteochondroprogenitors in zebrafish is lacking (Eames et al., 2012). In order to restrict expression

to chondrocytes, thus avoiding potential complications of labeling osteoblasts and putative peri-

chondral progenitors, we utilized a chondrocyte-specific ‘R2’ enhancer of the zebrafish col2a1a gene

that we had previously characterized (Dale and Topczewski, 2011; Askary et al., 2015). Treatment

of col2a1a/B > R fish with a single dose of 4-OHT at five dpf resulted in extensive labeling of

col2a1a-BAC:GFP+ chondrocytes at 12 dpf, but no labeling of the perichondrium, periosteum, and

osteoblasts as marked by the sp7:GFP transgene (Figure 4A,B; Figure 3—figure supplement 1B).

We also observed labeling of the notochord in larval fish, but no labeling of the vasculature, blood,

or other tissues examined. After conversion of col2a1a/B > R chondrocytes at five dpf and examina-

tion at adulthood (30 mm SL), maximal intensity projections through Ch revealed extensive labeling

of growth plate chondrocytes, as well as cells throughout the bone and marrow cavity (Figure 4C).

Thus, the majority of adult growth plate chondrocytes in Ch appear to derive from embryonic chon-

drocytes. Moreover, optical sections revealed cytoplasmic DsRed staining in lipid-filled adipocytes,

presumptive osteoblasts lining the inner surface of bone, and mesenchymal cells within the marrow

cavity. In some animals displaying lower conversion efficiency, we observed apparent clones of cells

containing growth plate chondrocytes, large adipocytes, and osteoblasts embedded in

Calcein +mineralized matrix (Figure 4D). Analysis of individual sections at higher magnification

revealed contribution of col2a1a-lineage cells to a subset of osteoblasts within both the endosteal

and periosteal surfaces of bone, as well as embedded osteocytes with characteristic cellular pro-

cesses (Figure 4E–G).

Figure 3 continued

green cells (arrowheads) in cortical bone. In the adipocyte clone, the arrow indicates a green marrow cell distinct from the teal-colored adipocytes.

Comparable clonal contributions were seen in three independently converted animals. Scale bars = 100 mm (A), 200 mm (B,E,F), 50 mm (C).

DOI: https://doi.org/10.7554/eLife.42736.006

The following figure supplements are available for figure 3:

Figure supplement 1. Characterization of the sox10:CreERT2 and col2a1a:CreERT2 transgenic lines.

DOI: https://doi.org/10.7554/eLife.42736.007

Figure supplement 2. Neural crest contributions to the Ch bone and marrow adipocytes.

DOI: https://doi.org/10.7554/eLife.42736.008
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Figure 4. Contribution of col2a1a+ chondrocytes to osteoblasts and marrow adipocytes. (A, B) Ventral views of

col2a1a:CreERT2; bactin2:tagBFP >DsRed animals treated at 5 dpf with 4-OHT and imaged at 12 dpf. Confocal

sections and projections as indicated demonstrate specific conversion (red) throughout cartilage, as shown by co-

localization with the chondrocyte-specific marker col2a1a-BAC:GFP (A) and lack of co-localization with the

osteoblast and periosteum marker sp7:GFP (B). Boxed areas are magnified in the top right insets. n = 6 for each.

(C) After conversion of col2a1a:CreERT2; bactin2:tagBFP>DsRed animals at five dpf, a confocal projection through

the dissected Ch of an adult (30 mm SL) shows extensive DsRed+ cells in the growth plates (GP) and throughout

the bone. A higher magnification view of the boxed region, along with brightfield, shows DsRed fluorescence in

the thin cytoplasm surrounding the prominent lipid vesicles indicative of marrow adipocytes, as well as in

osteoblasts (osteo) of cortical bone and mesenchymal cells (mes) within the marrow cavity. The dashed line in the

x-y slice shows the position of the x-z slice above. n = 10. (D) In this example of a col2a1a:CreERT2; bactin2:

tagBFP>DsRed animal converted at five dpf and imaged as an adult, a prominent clone of DsRed+ cells are

evident at the bottom of the growth plate, consisting of GP chondrocytes, adipocytes (Ac), and osteoblasts (Ob)

associated with Calcein Green+ cortical bone. Similar clonal contributions were seen in four independently

converted animals. (E) Pentachrome staining of a portion of the Ch growth plate at 19 mm SL shows the

endosteum and periosteum. Note that zebrafish have osteocytes embedded in their cortical bone (the dark nuclei

in the reddish-brown matrix). (F, G) High-magnification images of a section of Ch cortical bone from an animal

converted at five dpf and imaged at 28 mm SL. DsRed+ osteoblasts/osteocytes are seen in the endosteal surface

(arrows), periosteal surface (arrowheads), and embedded in bone (double arrowhead). The merged brightfield and

fluorescence image from a different example (G) shows a DsRed+ cell with cellular processes characteristic of

osteocytes. Scale bars = 100 mm (A,B), 200 mm (C,D), 50 mm (F), 20 mm (G).

DOI: https://doi.org/10.7554/eLife.42736.009
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Figure 5. Tracing of col2a1a-lineage cells by a long-lived Histone2A-mCherry fusion protein. (A) At a stage preceding growth plate remodeling (8 mm

SL), col2a1a:H2A-mCherry-2A-GFPCAAX labels chondrocytes, but not osteoblasts associated with Calcein Blue+ mineralized bone.rowth plate (GP)

chondrocytes co-express the nuclear Histone2A-mCherry protein (red) and the membrane-localized GFPCAAX protein (green). In the middle and poles

of Ch, hypertrophic chondrocytes retain the long-lived H2A-mCherry protein but not the short-lived GFPCAAX protein, reflective of the down-

regulation of col2a1a expression during hypertrophic maturation. n = 3. (B) In a confocal section through the dissected Ch of a juvenile fish (18 mm SL),

numerous H2A-mCherry+; ocn:GFP+ cells are seen in regions where the cartilage template is being converted to fat. Magnification of the boxed region

shows the brightfield image (white), a merged image of H2A-mCherry+ cells (red) and ocn:GFP+ cells (green), and individual channels below. We

observed a number of H2A-mCherry+; ocn:GFP+ cells (arrowheads) in 4/4 animals. (C) Confocal projection of a dissected Ch at 18 mm SL reveals cells

expressing nuclear Histone2A-mCherry (red) on both the endosteal surface (arrows) and periosteal surface (arrowheads) of Calcein Blue+ cortical bone.

Some H2A-mCherry+ cells associated with bone also co-express the osteoprogenitor marker RUNX2:GFP (yellow arrow). Note that the membrane

GFPCAAX signal from the col2a1a:H2A-mCherry-2A-GFPCAAX transgene is much weaker and barely detectable in the proliferative zone at the gain

settings used to image cytoplasmic RUNX2:GFP. n = 3. (D) Confocal section through the Ch at higher magnification shows several H2A-mCherry+;

RUNX2:GFP+ cells (yellow arrows) in the marrow cavity and close to the endosteal surface of the Calcein Blue+ bone. (E) In adult fish (26 mm SL),

several H2A-mCherry+ cells are found to co-express the osteoblast marker sp7:GFP on the endosteal surface. H2A-mCherry tends to be stronger closer

to the growth plate; arrowheads denote stronger and arrows denote weaker H2A-mCherry signal. The white dotted line in the x-y section shows the

location of the x-z section above. n = 5. Scale bars = 50 mm (A,D,E), 100 mm (B,C).

DOI: https://doi.org/10.7554/eLife.42736.010

The following figure supplement is available for figure 5:

Figure 5 continued on next page
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Long-lived Histone2A-mCherry protein reveals contribution of col2a1a
+ chondrocytes to osteoblasts
A limitation of CreER-mediated lineage tracing is that it can be difficult to rule out contributions

from rare converted cells outside the population of interest, for example in the perichondrium and

periosteum. We therefore employed a Cre-independent approach to independently assess the fate

of growth plate chondrocytes. To do so, we expressed a Histone2A-mCherry fusion protein in

col2a1a+ cells. An advantage of this type of lineage approach is that the levels of Histone2A-

mCherry protein, which is stably incorporated into chromatin, reflect those of endogenous col2a1a

in chondrocytes provided continued cell division does not dilute out the fusion protein. This is in

contrast to Cre-mediated approaches in which a strong ubiquitous promoter determines the level of

a reporter protein; hence, even low levels of Cre recombinase activity outside of chondrocytes (e.g.

in osteochondroprogenitors) can result in strong reporter expression. In zebrafish, col2a1a is

expressed at high levels in the proliferative zone of the Ch growth plate and then downregulated in

the hypertrophic zone (Paul et al., 2016). In a newly generated col2a1a:Histone2A-mCherry-T2A-

GFP-CAAX transgenic line, membrane-localized GFP-CAAX, which is rapidly turned over, is seen pri-

marily in the proliferative zone, whereas Histone2A-mCherry is seen uniformly throughout the Ch

cartilage, confirming the long-lived nature of this fusion protein (Figure 5A and Figure 5—figure

supplement 1A,B). At 7–8 mm SL (approx. three wpf), which is well before the start of growth plate

remodeling at 11–12 mm SL, all Ch chondrocytes are Histone2A-mCherry+ and we do not detect

Histone2A-mCherry+ cells associated with Calcein Blue+ bone or co-expressing the osteoblast trans-

gene ocn:GFP (Figure 5A and Figure 5—figure supplement 1C,D). In contrast, at post-remodeling

stages (12 and 18 mm SL), we observe extensive overlap of Histone2A-mCherry with ocn:GFP

+ osteoblasts associated with cortical bone (Figure 5B and Figure 5—figure supplement 1E). We

also observe numerous Histone2A-mCherry+ cells embedded in the endosteal and periosteal surfa-

ces of the Ch bone (labeled by Calcein Blue), with several of these cells co-expressing the pre-osteo-

blast transgene RUNX2:GFP or the early osteoblast transgene sp7:GFP (Figure 5C–E). Note that

ocn:GFP, RUNX2:GFP, and sp7:GFP can all be readily distinguished from membrane GFP-CAAX by

their much stronger and cytoplasmic expression. In addition, we observed that sp7:GFP+ osteoblasts

further from the growth plate tended to have weaker Histone2A-mCherry signal than those more

closely associated with the edge of the hypertrophic zone, suggesting that hypertrophic chondro-

cytes and/or their osteoblast derivatives undergo cell division to dilute out the Histone2A-mCherry

signal. These findings independently confirm the conclusions of our CreER lineage tracing studies

that col2a1a+ chondrocytes generate osteoblasts in zebrafish.

Hypertrophic chondrocytes re-enter the cell cycle and express lepr
The conversion of hypertrophic chondrocytes to osteoblasts and adipocytes could occur in the

absence of cell division (i.e. ‘transdifferentiation’) and/or through partial dedifferentiation into a pro-

liferative progenitor. To test these possibilities, we first used incorporation of bromodeoxyuridine

(BrdU) to detect proliferative cells in the Ch during remodeling stages (Figure 6A,B). At the begin-

ning of remodeling (11 mm SL), we detected BrdU+ cells in the central zone of chondroblasts in the

growth plate, as well as in the perichondrium and periosteum. In addition, we observed BrdU+ cells

at the edge of the hypertrophic zone where the cartilage matrix is being actively degraded, similar

to what has been reported in mouse (Park et al., 2015). We observed BrdU incorporation in similarly

positioned hypertrophic chondrocytes at 15 and 19 mm SL, with BrdU+ cells becoming fewer in the

perichondrium and periosteum by 19 mm.

We next tested whether hypertrophic chondrocytes that re-enter the cell cycle also express

known skeletal stem cell markers. In mice, LepR expression marks a heterogeneous population of

cells in endochondral bone, including a putative postnatal skeletal stem cell population (Zhou et al.,

Figure 5 continued

Figure supplement 1. Characterization of the col2a1a:Histone2A-mCherry-2A-GFPCAAX line.

DOI: https://doi.org/10.7554/eLife.42736.011
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Figure 6. Late-stage hypertrophic chondrocytes re-enter the cell cycle and express lepr. (A) Pentachrome staining of a section through a Ch growth

plate at 14 mm SL. Arrowheads denote two examples of hypertrophic chondrocytes at the edges of the growth plates that lack collagen-rich matrix

(green) and appear to be exiting their lacunae. (B) BrdU incorporation (pink) relative to all nuclei (Hoechst, blue) shows recently divided cells.

Fluorescent images with or without brightfield are shown for 11 and 15 mm SL stages, and fluorescent channel only for 19 mm SL. In addition to

BrdU +cells in the proliferative zones of the growth plates (brackets) and perichondrium (arrows), a subset of hypertrophic chondrocytes at the edges of

the growth plates (arrowheads) are BrdU+ at each stage. Proliferative hypertrophic chondrocytes were seen in sections from three independent animals

at each stage. (C–D) Fluorescent RNAscope in situ hybridization for lepr (green) and the hypertrophic chondrocyte and osteoblast precursor marker

runx2b (white). Red signal indicates cells derived from col2a1a/B > R chondrocytes that were converted by addition of 4-OHT at five dpf (detected by

anti-DsRed antibody), and all nuclei are shown in blue (Hoechst). In a section of a Ch growth plate at 15 mm SL, the merged channel above and red/

green and red/white channels below show expression of lepr and runx2b in chondrocytes and their derivatives. In the higher magnification view of the

boxed region (D), lepr is expressed in proliferative chondrocytes, runx2b is expressed at high levels and lepr at lower levels in early hypertrophic

chondrocytes, and lepr and runx2b are co-expressed in late hypertrophic chondrocytes and adjacent mesenchymal cells that have been released from

the growth plate. Similar expression of lepr and runx2b was seen in sections from 4/4 independent animals. Scale bars = 50 mm (B,C), 20 mm (D).

DOI: https://doi.org/10.7554/eLife.42736.012

The following figure supplement is available for figure 6:

Figure supplement 1. Expression of Lepr/lepr mRNA in zebrafish and mouse endochondral bone.

DOI: https://doi.org/10.7554/eLife.42736.013
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2014b). First, we examined expression of lepr and found dynamic expression in the zebrafish Ch

endochondral bone from juvenile through adult stages. A comparison with the hypertrophic chon-

drocyte and early osteoblast marker runx2b shows higher lepr expression in proliferative versus

hypertrophic chondrocytes at 8, 12, and 20 mm SL stages, with chondrocyte expression decreasing

by 27 mm SL (Figure 6—figure supplement 1A). During remodeling of zebrafish Ch (15 mm SL), we

also observe lepr+ cells in the marrow cavity that are derived from chondrocytes, based on labeling

by col2a1a/B > R (Figure 6C), and we continue to observe lepr+ cells in the Ch marrow at later

stages (20 and 27 mm SL) (Figure 6—figure supplement 1A). These results are consistent with lepr

+ cells in the bone marrow deriving from growth plate chondrocytes in zebrafish, although direct evi-

dence will be needed to determine if any of these chondrocyte-derived lepr+ marrow cells behave

as skeletal stem cells in zebrafish.

Requirement of mmp9 for growth plate remodeling and marrow
adipocyte formation
In mice, Mmp9 has been reported to function in hematopoietic lineage cells for growth plate remod-

eling, as bone marrow transplants can rescue the delay in growth plate remodeling seen in Mmp9

mutants (Vu et al., 1998). Here, we tested whether mmp9 might have a conserved requirement for

growth plate remodeling in zebrafish, including the generation of marrow adipocytes. At the begin-

ning of remodeling (11 mm SL), we observe expression of mmp9 at the edge of the hypertrophic

zone, with this restricted expression in late-stage hypertrophic chondrocytes continuing through 17

mm SL stages (Figure 7A). Higher magnification views show that mmp9 expression is prominent in

hypertrophic chondrocytes that appear to be exiting their lacunae. Next, we used CRISPR/Cas9

mutagenesis to create an early frame-shift mutation in the mmp9 gene that is predicted to abolish

most if not all protein function (Figure 7B). mmp9 homozygous mutants are adult viable and do not

display obvious larval craniofacial defects. Whereas trichrome staining revealed no significant differ-

ences in the mutant Ch growth plates at 17 mm SL, by 21 mm we observed that the hypertrophic

zone was significantly larger, compared to the proliferative zone, in mmp9 mutants versus controls,

indicating a delay in growth plate remodeling (Figure 7C,D). The defect in growth plate remodeling

was still evident at 27 mm SL, with mutants displaying a wider Ch growth plate (Figure 7E,G). Strik-

ingly, mmp9 mutants also had fewer adipocytes in the central marrow cavity compared to stage-

matched controls (Figure 7E,G), consistent with adipocytes deriving from hypertrophic chondrocytes

that are released from the cartilage matrix by Mmp9 activity.

Given mmp9 expression in late-stage hypertrophic chondrocytes, we next tested whether Mmp9

might function in chondrocytes as opposed to hematopoietic lineage cells for growth plate remodel-

ing and marrow adipocyte generation in zebrafish. As the Ch bone is generated from neural crest-

derived cells, we used transplantation of ubiquitously labeled wild-type ectodermal cells into the

neural crest precursor domain of unlabeled mmp9-/- shield-stage hosts to generate wild-type Ch

bones in otherwise mutant hosts. At adult stages, we were able to recover eight mutant recipients

with contribution of wild-type cells to chondrocytes of the Ch growth plate. In these animals, we

observed a rescue of growth plate width, with a trend toward better rescue in wild-type versus

mutant regions of the growth plate (p = 0.06), as well as a trend toward rescue of adipocyte number

(p = 0.06) (Figure 7E–G). As a control, transplantation of wild-type neural crest cells into wild-type

animals had no effect on Ch growth plate width and adipocyte number. These results indicate that

mmp9 is required in the neural crest lineage, and potentially chondrocytes themselves, for efficient

remodeling of the growth plate and the generation of marrow adipocytes from chondrocytes.

Discussion
Despite anatomical differences between zebrafish and mammalian bones, we find that growth plate

remodeling is remarkably well conserved and thus likely ancestral to bony vertebrates. The zebrafish

Ch undergoes a transient breakdown of cortical bone near the growth plates, which coincides with

extensive vascularization and an Mmp9-dependent replacement of hypertrophic chondrocytes with

fat and bone. Using multiple methods of lineage tracing, including a Cre-independent technique, we

show that late-stage hypertrophic chondrocytes generate not only osteoblasts but also marrow adi-

pocytes in zebrafish. Further support for the ability of chondrocytes to generate adipocytes is that

delayed growth plate remodeling in mmp9 mutants results in a paucity of marrow adipocytes in
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Figure 7. Tissue-autonomous requirement for mmp9 in cartilage remodeling. (A) Colorimetric mRNA in situ hybridization shows expression of mmp9

(blue) in sections of the Ch at 11 and 17 mm SL. Inset shows specific expression of mmp9 in hypertrophic chondrocytes (arrows) at the edge of the

growth plate. Nuclear fast red was used as a counterstain. n = 2 at each stage. (B) Schematic of the mmp9 gene locus in zebrafish. Rectangles denote

exons. The site of the 8 bp deletion in the el734 allele is indicated by an arrow, with specific sequence changes shown below. This frame-shift mutation

is predicted to result in an early stop codon and loss of the catalytic metalloproteinase domain. (C) Trichrome staining at 21 mm SL shows enlarged

growth plates in the Ch bones of mmp9 mutants. The approximate regions of the proliferative zones used for quantification in (D) are shown by the

yellow ovals. (D) Quantification of the ratio of the hypertrophic to the proliferative zones shows a delay in remodeling the hypertrophic zone in mmp9

mutants at 21 but not 17 mm SL. We performed a students t-test and show standard error of the mean. (E,F) Dissected Ch bones at adult stages (27–31

mm SL) from wild-type, mmp9 mutant, and wild-type and mutant hosts receiving wild-type donor neural crest transplants (blue). Ectoderm cells from

bactin2:tagBFP >DsRed donors were transplanted unilaterally into the neural crest precursor domain of unlabeled hosts at six hpf. Red two-sided

arrows indicate the width of the posterior growth plates. (+) denotes sides receiving transplants, and (-) denotes contralateral control sides. The rescued

growth plate from the mmp9 mutant receiving a wild-type neural crest transplant is shown at higher magnification in (F), with blue arrows showing a

narrower wild-type growth plate clone and magenta arrows a wider mutant clone. (G) Quantification shows that mmp9 mutants have wider growth

plates and fewer adipocytes in the marrow than wild-type siblings. Wild-type neural crest transplants rescue growth plate width in mmp9 mutants, with

a trend toward better rescue in areas of the growth plate with wild-type (blue) versus mutant (magenta) clones. There was also a strong trend toward

rescue of adipocyte number with wild-type neural crest transplants that contributed to growth plate chondrocytes. We performed a Tukey-Kramer HSD

test and show standard error of the mean. Unless indicated, all other comparisons were not significant (p > 0.05). Scale bars = 50 mm (A,C), 200 mm (E,

F). See also Figure 7—source data 1.

DOI: https://doi.org/10.7554/eLife.42736.014

The following source data is available for figure 7:

Source data 1. Quantification of growth plate width and adipocyte numbers in mmp9 mutants and rescued experiments.

DOI: https://doi.org/10.7554/eLife.42736.015
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adults. Lastly, we show that hypertrophic chondrocytes re-enter the cell cycle and contribute to lepr

+ mesenchymal cells, raising the possibility that partial dedifferentiation into proliferative progeni-

tors underlies chondrocyte fate transitions inside endochondral bones.

As zebrafish have hollow bones that lack hematopoiesis, one possibility was that most if not all of

the cortical bone of adult zebrafish would be simply derived from the periosteum. However, we find

significant contribution of chondrocyte-derived cells to both the endosteal and periosteal surfaces of

the Ch bone, similar to what has been described in the mouse (Yang et al., 2014; Zhou et al.,

2014a; Jing et al., 2015). We also reveal chondrocytes to be a significant source of marrow adipo-

cytes in zebrafish. Although the incomplete conversion efficiency of the CreER lines, as well as the

expression of sox10:CreER outside of chondrocytes, made it difficult to precisely quantify what pro-

portion of osteoblasts and marrow adipocytes derive from chondrocytes, there are likely other sour-

ces for these cells, in particular the periosteum which houses several types of skeletal stem cells

(Debnath et al., 2018). Our findings raise the question of whether marrow adipocytes also derive in

part from chondrocytes in mammals. Indeed, older studies have demonstrated the ability of murine

chondrocytes to differentiate into adipocytes in vitro (Heermeier et al., 1994; Hegert et al., 2002).

Further, Col2a1:CreER cells converted at postnatal day three in mouse were found to give rise to

adipocytes in the metaphyseal bone marrow, although a caveat is that Col2a1:CreER marks both

chondrocytes and progenitors at early postnatal stages (Ono et al., 2014).

The finding that late-stage hypertrophic chondrocytes can re-enter the cell cycle and express lepr

suggests that at least some of these cells may dedifferentiate into stem-like cells, which subse-

quently expand in number and differentiate into osteoblasts and adipocytes. Future molecular profil-

ing of these chondrocyte-derived marrow mesenchymal cells will be needed to better characterize

their relationship to previously identified skeletal stem cells. We also cannot rule out that some

hypertrophic chondrocytes directly change into adipocytes and/or osteoblasts in the absence of cell

division (i.e. ‘transdifferentiation’). Indeed, the detection of osteoblasts with strong col2a1a:Histo-

ne2A-mCherry signal suggests that in some cases chondrocytes can form osteoblasts with little to

no cell division, as otherwise the Histone2A-mCherry signal would have been diluted out with suc-

cessive cell divisions. On the other hand, osteoblasts farther from the growth plate tended to have

weaker Histone2A-mCherry signal, suggesting proliferation of a progenitor intermediate, and we

directly observed late-stage hypertrophic chondrocytes undergoing cell division. Whereas it has

been suggested in mouse that only chondrocytes near the periosteal surface, that is ‘borderline

chondrocytes’, may be capable of lineage plasticity (Bianco et al., 1998; Maes et al., 2010), we

detected lineage clones containing growth plate chondrocytes, mesenchymal cells, and adipocytes

in the central part of the growth plate (Figure 3E,F), arguing against such a model.

A notable feature of LepR-lineage cells in mice is that they contribute to osteoblasts and adipo-

cytes primarily in postnatal phases, that is when growth plate remodeling is already underway

(Yang et al., 2014). It would therefore be interesting to test whether LepR-expressing skeletal stem

cells have a similar origin from hypertrophic chondrocytes in mammals. One caveat is that we detect

endogenous lepr expression in both marrow cells and growth plate chondrocytes in zebrafish. How-

ever, the more specific labeling of marrow cells by the LepR-Cre in mouse likely reflects the Cre

insertion being in the long LepR isoform (containing exon 18b) that displays more restricted expres-

sion than the short isoform (Zhou et al., 2014b). Indeed, LepR mRNA and protein has also been

reported in chondrocytes of mouse (Hoggard et al., 1997), rat, and human (Morroni et al., 2004), a

finding we confirmed in the postnatal mouse femur, including the same higher expression in imma-

ture versus hypertrophic chondrocytes that we observe in zebrafish (Figure 6—figure supplement

1B). Without a comparable long-isoform lepr-Cre line in zebrafish, we cannot therefore conclude

whether zebrafish lepr+ marrow cells are comparable to those described in mouse. The future gen-

eration of Cre lines to specifically mark lepr+ marrow cells in zebrafish will be needed to determine

whether these chondrocyte-derived marrow cells also act as stem cells for osteoblasts and adipo-

cytes in post-embryonic fish.

A similar delay in the remodeling of the hypertrophic zone in mouse Mmp9 and zebrafish mmp9

mutants reveals genetic conservation of growth plate remodeling from fish to mammals. In contrast

to mice, we find that Mmp9 in zebrafish appears to function primarily in chondrocytes for growth

plate remodeling. We also observed rescue of marrow adipocyte number by wild-type chondrocytes,

though this had moderate statistical significance (p = 0.06), potentially owing to low sample size

(n = 8), the mosaic contribution of wild-type cells to the growth plate, and/or roles of cells outside

Giovannone et al. eLife 2019;8:e42736. DOI: https://doi.org/10.7554/eLife.42736 14 of 22

Research article Developmental Biology Stem Cells and Regenerative Medicine

https://doi.org/10.7554/eLife.42736


the growth plate to marrow adipocyte generation. In mice, loss of Mmp13 in chondrocytes does

result in a growth plate remodeling delay, with global Mmp13 deletion enhancing the remodeling

defects of Mmp9 mutants (Inada et al., 2004; Stickens et al., 2004). It may be that MMPs are

derived from both chondrocytes and invading hematopoietic cells (e.g. osteoclasts), with the relative

importance of each cell source varying between zebrafish and mammals. Compensation by mmp13

might also explain why we detected growth remodeling defects in mmp9 zebrafish mutants at 21

and 27–31 mm SL stages, but not at 17 mm SL. Mmp9 and Mmp13 have known roles in degrading

components of the cartilage extracellular matrix (Page-McCaw et al., 2007), consistent with our

observed loss of collagen-rich matrix in hypertrophic chondrocytes at the edges of the zebrafish

growth plate. Secreted Mmp9 may therefore function simply to degrade cartilage matrix and facili-

tate release of dedifferentiating chondrocytes into the marrow. Intriguingly, Mmp9 has recently

been shown to have an additional, non-canonical function in the nucleus for histone H3 tail cleavage.

Whereas this has only been demonstrated so far for osteoclasts (Kim et al., 2016), it remains possi-

ble that Mmp9 could have a similar non-canonical function in altering the chromatin structure of

hypertrophic chondrocytes to allow them to acquire new potential. In conclusion, our data support

conservation of mammalian-like growth plate remodeling in zebrafish, which provides new opportu-

nities for better understanding the molecular and cellular mechanisms by which hypertrophic chon-

drocytes transform into osteoblasts, marrow adipocytes, and potentially adult skeletal stem cells

within endochondral bones.

Materials and methods

Key resources table

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
(D. rerio)

sp7:EGFP PMID:
20506187

RRID: ZFIN ID:
ZDB-GENO-
100402–2

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

Hsa.RUN
X2:EGFP

PMID:
23155370

RRID: ZFIN ID:
ZDB-ALT-
120209–60

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

Mmu.Sox10-
Mmu.Fos:Cre

PMID:
23155370

RRID: ZFIN ID:
ZDB-ALT-
130614–2

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

Ola.Osteocalcin.
1:EGFP

PMID:
21571227

RRID: ZFIN
ID: ZDB-ALT-
110713–1

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

col2a1a
BAC:GFP

PMID:
26555055

RRID: ZFIN
ID: ZDB-ALT-
160204–6

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

col2a1aBAC:
mCherry-NTR

PMID:
26555055

RRID: ZFIN
ID: ZDB-ALT-
160204–7

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

bactin2:loxP-
BFP-loxP-
DsRed

PMID:
25119047

RRID: ZFIN
ID: ZDB-ALT-
141111–8

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

fli1a:eGFP PMID:
12167406

RRID: ZFIN
ID: ZDB-ALT-
060810–2

Zebrafish
International
Resource
Center

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
(D. rerio)

kdrl:eGFP PMID:
16251212

RRID: ZFIN
ID: ZDB-ALT-
061120–6

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

(�5.2)lyve
1b:DsRed

PMID:
22627281

RRID: ZFIN
ID: ZDB-ALT-
120723–3

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

ubb:LOX2272-
LOXP-RFP-
LOX2272-
CFP-LOXP-YFP

PMID:
23757414

RRID: ZFIN
ID: ZDB-ALT-
130816–2

Zebrafish
International
Resource
Center

Genetic
reagent
(D. rerio)

sox10:CreERT2:
bactin2:loxP-
BFP-loxP-DsRed

this paper allele el777

Genetic
reagent
(D. rerio)

col2a1a-R2-E1b:
CreERT2::bactin
2:loxP-BFP-
loxP-DsRed

this paper allele el691

Genetic
reagent
(D. rerio)

col2a1a-R2-
E1b:CreERT2::
bactin2:loxP-
BFP-loxP-DsRed

this paper allele el713

Genetic
reagent
(D. rerio)

col2a1a-R2-E1b:
CreERT2::bactin2:
loxP-BFP-loxP-DsRed

this paper allele el712

Genetic
reagent
(D. rerio)

col2a1a-R2-E1b:
H2A.F/Z-mCherry-
P2A-GFPCAAX

this paper allele el690

Genetic
reagent
(D. rerio)

col2a1a-R2-E1b:
H2A.F/Z-mCherry-
P2A-GFPCAAX

this paper allele el695

Genetic
reagent
(D. rerio)

mmp9-/- this paper allele el734;
gRNA target
5’-TTGATGCCATGA
AGCAGCCC-3’

Recombinant
DNA reagent

p5E-sox10 PMID:
22589745

RRID: ZFIN
ID: ZDB-ALT-
120523–6

Zebrafish
International
Resource
Center

Recombinant
DNA reagent

pDestTol2-
col2a1aR2-E1B-
eGFPpA

PMID:
21723274

RRID: ZFIN
ID: ZDB-ALT-
111205–4

Zebrafish
International
Resource
Center

Antibody rat anti-BrdU Bio-Rad
Laboratories

cat.#: MCA2060
GA; RRID:
AB_10545551

(1:100–150)

Antibody rabbit anti-
mCherry

Novus
Biologicals

cat.#:
NBP2-25157

(1:250)

Antibody goat anti-
rabbit Alexa
Fluor 568

Thermo
Fisher
Scientific

cat.#:
A-11011;
RRID:
AB_143157

(1:200–500)

Antibody goat anti-
rat Alexa
Fluor 633

Thermo
Fisher
Scientific

cat.#:
A21094;
RRID: AB_
2535749

(1:500)

Continued on next page
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Continued

Reagent
type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based
reagent

RNAscope
Probe - Mm-Lepr

Advanced
Cell
Diagnostics

cat.#: 402731

Sequence-
based
reagent

RNAscope
Probe - Dr-lepr

Advanced
Cell
Diagnostics

cat.#: 535311

Sequence-
based
reagent

RNAscope
Probe - Dr-
runx2b-C2

Advanced
Cell
Diagnostics

cat.#:
409531-C2

Commercial
assay or kit

Gomori One-
Step, Aniline
Blue, trichrome
stain kit

Newcomer
Supply

cat.#: 9176A

Commercial
assay or kit

Movat-Russell
modified penta-
chrome stain kit

Newcomer
Supply

cat. #: 9150A

Commercial
assay or kit

RNAscope
Multiplex
Fluorescent Kit v2

Advanced
Cell
Diagnostics

cat.#: 323110

Chemical
compound,
drug

Alizarin Red S Amresco cat.#:
9436–25G

live staining:
1 mg / 30 mL

Chemical
compound,
drug

Calcein Green Thermo
Fisher
Scientific

cat.#: C481 live staining:
1 mg / 10 mL

Chemical
compound,
drug

Calcein Blue, AM Thermo
Fisher
Scientific

cat.#: C1429 live staining:
5 mg / 10 mL

Chemical
compound,
drug

(Z)�4-Hydroxy-
tamoxifen
(4-OHT)

Sigma-
Aldrich

cat.#: H7904 Cre-lox
Recombination:
5 uM

Chemical
compound,
drug

HCS LipidTOX
Deep Red

Life
Technologies

cat.#:
H34477

(1:200)

Chemical
compound,
drug

BrdU �5-
Bromo-
20-deoxyuridine

Sigma-
Aldrich

cat.#:
B5002

live staining:
4.5 mg / mL

Software Prism GraphPad

Software FIJI Image J

Zebrafish transgenic lines and mmp9 mutants
All procedures were approved by the University of Southern California Institutional Animal Care and

Use Committee. Published Danio rerio lines include Tg(Has.RUNX2:EGFP)zf259 and Tg(Mmu.Sox10-

Mmu.Fos:Cre)zf384 (Kague et al., 2012), Tg(sp7:EGFP)b1212 (DeLaurier et al., 2010), Tg(Ola.Osteo-

calcin.1:EGFP)hu4008 (Knopf et al., 2011), Tg(col2a1aBAC:GFP)el483 and Tg(col2a1aBAC:mCherry-

NTR)el559 (Askary et al., 2015), Tg(bactin2:loxP-BFP-loxP-DsRed)sd27 (Kobayashi et al., 2014), Tg

(fli1a:eGFP)y1 (Lawson and Weinstein, 2002), Tg(kdrl:eGFP)s843 (Jin et al., 2005), Tg(�5.2lyve1b:

DsRed)nz101 (Okuda et al., 2012), and Zebrabow - Tg(ubb:LOX2272-LOXP-RFP-LOX2272-CFP-

LOXP-YFP)a131 (Pan et al., 2013). The sox10:CreERT2 transgene was generated with Gateway Clon-

ing (Invitrogen) and the Tol2 kit (Kwan et al., 2007) by combining p5E-sox10 (Das and Crump,

2012), pME-CreERT2, p3E-pA, and pDestTol2pA2. The col2a1a-R2-E1b:CreERT2 and col2a1a-R2-

E1b:H2A.F/Z-mCherry-P2A-GFPCAAX transgenes utilize a zebrafish col2a1a R2 enhancer element

with a minimal E1B promoter sequence (Dale and Topczewski, 2011). For col2a1a-R2-E1b:CreERT2,

CreERT2 was amplified using pENTR/D-CreERT2 as template and primers 5’- TTCTTGTACAAAG

TGGCCACCGGCCACCATGTCCAATTTACTGACCGTACAC-3’ and 5’-TAGAGGCTCGAGAGGCC
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TTGTCAAGCTGTGGCAGGGAAACCCTC-3’. The amplified PCR product was combined with an

NcoI/EcoRI fragment of pDestTol2-col2a1aR2-E1B-eGFPpA (Askary et al., 2015) using Gibson

Assembly (New England Biolabs). For col2a1a-R2-E1b:H2A.F/Z-mCherry-P2A-GFPCAAX, H2A.F/Z-

mCherry was amplified using template pME-H2A.F/Z-mCherry and primers 5’-TTTCTTGTACAAAG

TGGCCAAAGCTTGGATCCCGGCCACCATGGCAGGTGGAAAAGCAGG-3’ and 5’-AAGTTGGTTGC

TCCCGACCCCTTGTACAGCTCGTCCATGCCGCCGGTG-3’. P2A-GFPCAAX was synthesized as a

gBlock (IDT). H2A.F/Z-mCherry and P2A-GFPCAAX were combined with an NcoI/EcoRI fragment of

pDestTol2-col2a1aR2-E1B-eGFPpA using Gibson Assembly. All transgenes were injected at 30 ng/m

L along with 50 ng/mL Tol2 mRNA into one-cell-stage embryos, with these animals raised and out-

crossed to identify stable germline founders. CreERT2 transgenes were injected into Tg(bactin2:

loxP-BFP-loxP-DsRed)sd27 embryos, followed by overnight treatment with 10 mM (Z)�4-Hydroxyta-

moxifen (4-OHT) (Sigma-Aldrich H7904) at two dpf and screening for DsRed+ chondrocytes at six

dpf using a Leica fluorescent stereomicroscope. Embryos with fluorescent cartilages were raised to

adulthood and outcrossed to identify founders. We used Tg(sox10:CreERT2)el777, Tg(col2a1a-R2-

E1b:CreERT2)el712, and Tg(col2a1a-R2-E1b:H2A.F/Z-mCherry-P2A-GFPCAAX)el695 lines for our

experiments. Two additional alleles of Tg(col2a1a-R2-E1b:CreERT2) and one additional allele of Tg

(col2a1a-R2-E1b:H2A.F/Z-mCherry-P2A-GFPCAAX) gave similar cartilage-specific expression. To

generate mmp9el734 we used CRISPR/Cas9 mutagenesis to target the second exon. gRNA targeting

the sequence 5’-TTGATGCCATGAAGCAGCCC-3’ was injected at 25 ng/ml with 50 ng/ml Cas9 RNA

into one-cell-stage embryos as described (Hwang et al., 2013). The mmp9el734 allele is an 8 bp dele-

tion that results in the incorporation of 13 additional amino acids after amino acid 98 (P), followed

by a premature stop codon that is predicted to completely abolish the catalytic metalloproteinase

domain.

Histology and LipidTOX staining
Live bone staining of dissected ceratohyal bones was performed by treating with 50 mg/ml Alizarin

Red (Sigma Aldrich, cat. no. A5533), Calcein Green (Thermofisher Scientific, cat. no. C481), or Cal-

cein Blue, AM (Thermofisher Scientific, cat. no. C1429) for 5 min and repeatedly rinsing in embryo

medium as described (Paul et al., 2016). We performed adipocyte labeling of dissected ceratohyal

bones by incubating in a 1:200 solution of HCS LipidTOX Deep Red (Life Technologies, cat. no.

H34477) for 15 min and rinsing in embryo medium as described (Minchin and Rawls, 2017). Paraffin

embedding and histology were performed as described (Paul et al., 2016). We cut blocks into 5 mm

sections on a Shandon Finesse Me+ microtome (cat. no. 77500102) and collected sections on Apex

Superior Adhesive slides (Leica Microsystems, cat. no. 3800080). Pentachrome and Trichrome stain-

ing were performed according to manufacturer’s instructions (Movat-Russell modified pentachrome

stain kit, Newcomer Supply cat. no. 9150A; Gomori One-Step, Aniline Blue, trichrome stain kit, New-

comer Supply cat. no. 9176A).

Immunohistochemistry and in situ hybridization
For cell proliferations assays, fish were immersed in system water containing 4.5 mg/ml BrdU (Sigma

Aldrich, cat. no. B5002) for 1 hr, followed by two washes in system water, fixation in 4% paraformal-

dehyde, and paraffin embedding. Immunohistochemistry was performed as described except that

we blocked with 2% normal goat serum (Jackson ImmunoResearch, cat. no. 005-000-121). After cut-

ting thin sections, we performed antigen retrieval by treating slides with citrate buffer (pH 6.0) in a

steamer set (IHC World, cat. no. IW-1102) for 35 min. Primary antibodies include rat anti-BrdU

(1:100, Bio-Rad, cat. no. MCA2060GA) and rabbit anti-mCherry (1:250, Novus Biologicals, cat. no.

NBP2-25157). We used AlexaFluor secondary antibodies and Hoechst to visualize nuclei. Colorimet-

ric in situ hybridization was performed as described (Paul et al., 2016). The mmp9 riboprobe was

generated by PCR amplification of zebrafish genomic DNA with primers 5’-GTCTCCAATAC

TAAAGCTCTGAAGAAG-3’ and 5-‘TAGGATGTCGAAGGTCTATAGAGAATG-3’ and cloning into

pCR-BluntII-TOPO (Life Technologies). RNA probe was synthesized with T7 polymerase (Roche) after

linearizing the plasmid with BamHI restriction. RNAscope probes for leptin receptor (lepr) and

runx2b were synthesized by Advanced Cell Diagnostics in Channel 1 and Channel 2, respectively,

and for mouse Lepr in channel 1. Paraformaldehyde-fixed paraffin-embedded sections were
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deparaffinized, and the RNAscope fluorescent multiplex v2 assay combined with immunofluores-

cence was performed according to manufacturer’s protocols and with the ACD HybEZ Hybridization

oven.

Neural crest transplantations
At six hpf, donor ectoderm from the animal cap of bactin2:loxP-tagBFP-loxP-DsRed embryos was

transplanted into the neural crest precursor domain of mmp9-/- hosts as described (Crump et al.,

2004). Embryos displaying unilateral tagBFP fluorescence in the face at three dpf were raised in the

nursery and then genotyped at 14 dpf for the mmp9 mutant allele. Homozygous mutant and wild-

type siblings were raised at similar density until they reached the indicated sizes for analysis.

Imaging
Brightfield images of pentachrome and trichrome stains, and colorimetric in situ hybridizations, were

acquired with a Zeiss AxioImager.A1 microscope and a Zeiss slide scanner AxioScan.Z1. Focus stack-

ing of multiple images was done in Adobe Photoshop CS5. Fluorescence images were captured on

a Zeiss LSM800 confocal microscope, with representative sections or maximum intensity projections

shown as specified. Tiling was performed using ZEN software or manually stitched together using

Fiji. Brightness and contrast were adjusted in Adobe Photoshop CS5 with similar settings for experi-

mental and control samples.

Quantification and statistical analyses
We stage-matched control and experimental zebrafish by measuring standard body length (SL) from

the tip of the snout to the edge of the hypuralia. Adipocyte counts and area/width measurements of

growth plates were calculated using Fiji. The proliferative zone of the growth plate was defined as

the central region of compact chondrocytes. All measurements were performed blinded to geno-

type. Statistical significance was determined by a student’s t-test for pair-wise comparisons or

Tukey-Kramer HSD tests for multiple comparisons, using GraphPad’s Prism software.
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