Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase

Abstract

The lipid distribution of plasma membranes of eukaryotic cells is asymmetric and phospholipid scramblases disrupt this asymmetry by mediating the rapid, nonselective transport of lipids down their concentration gradients. As a result, phosphatidylserine is exposed to the outer leaflet of membrane, an important step in extracellular signaling networks controlling processes such as apoptosis, blood coagulation, membrane fusion and repair. Several TMEM16 family members have been identified as Ca2+-activated scramblases but the mechanisms underlying their Ca2+-dependent gating and their effects on the surrounding lipid bilayer remain poorly understood. Here we describe three high-resolution cryo-electron microscopy structures of a fungal scramblase from Aspergillus fumigatus, afTMEM16, reconstituted in lipid nanodiscs. These structures reveal that Ca2+-dependent activation of the scramblase entails global rearrangement of the transmembrane and cytosolic domains. These structures, together with functional experiments, suggest that activation of the protein thins the membrane near the transport pathway to facilitate rapid transbilayer lipid movement.

Data availability

CryoEM data have been deposited in the EMPDB database under accession codes: 6E0H, 6DZ7, 6E1O, EMD-8931, EMD-8948, EMD-8959. Raw EM micrographs and un-masked maps are in the process of being deposited.Key parameters of the fluorescence time courses are detailed in the tables and figures and representative traces used in the figures have been provided as source data files. The raw fluorescence time courses are available upon request to the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Maria E Falzone

    Department of Biochemistry, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6738-7017
  2. Jan Rheinberger

    Department of Anesthesiology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9901-2065
  3. Byoung-Cheol Lee

    Department of Anesthesiology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Thasin Peyear

    Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Linda Sasset

    Department of Pathology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashleigh M Raczkowski

    Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Edward T Eng

    Simons Electron Microscopy Center, New York Structural Biology Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8014-7269
  8. Annarita Di Lorenzo

    Department of Pathology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Olaf S Andersen

    Department of Physiology and Biophysics, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Crina M Nimigean

    Department of Anesthesiology, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6254-4447
  11. Alessio Accardi

    Department of Biochemistry, Weill Cornell Medical College, New York, United States
    For correspondence
    ala2022@med.cornell.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6584-0102

Funding

National Institute of General Medical Sciences (R01GM106717)

  • Alessio Accardi

National Institute of Neurological Disorders and Stroke (R21NS10451)

  • Annarita Di Lorenzo

Irma T. Hirschl Trust

  • Alessio Accardi

Margaret and Herman Sokol Fellowship

  • Maria E Falzone

National Research Foundation of Korea (2013R1A6A3A03064407)

  • Byoung-Cheol Lee

Agouron Institute (F00316)

  • Edward T Eng

Simons Foundation (349247)

  • Edward T Eng

National Institute of General Medical Sciences (GM103310)

  • Edward T Eng

National Institute of General Medical Sciences (1R01GM124451-02)

  • Crina M Nimigean

Korean Ministry of Science (18-BR-01-02)

  • Byoung-Cheol Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. László Csanády, Semmelweis University, Hungary

Version history

  1. Received: October 30, 2018
  2. Accepted: January 2, 2019
  3. Accepted Manuscript published: January 16, 2019 (version 1)
  4. Version of Record published: January 31, 2019 (version 2)
  5. Version of Record updated: February 1, 2019 (version 3)

Copyright

© 2019, Falzone et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,087
    views
  • 1,005
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria E Falzone
  2. Jan Rheinberger
  3. Byoung-Cheol Lee
  4. Thasin Peyear
  5. Linda Sasset
  6. Ashleigh M Raczkowski
  7. Edward T Eng
  8. Annarita Di Lorenzo
  9. Olaf S Andersen
  10. Crina M Nimigean
  11. Alessio Accardi
(2019)
Structural basis of Ca2+-dependent activation and lipid transport by a TMEM16 scramblase
eLife 8:e43229.
https://doi.org/10.7554/eLife.43229

Share this article

https://doi.org/10.7554/eLife.43229

Further reading

    1. Structural Biology and Molecular Biophysics
    Sebastian Jojoa-Cruz, Adrienne E Dubin ... Andrew B Ward
    Research Advance

    The dimeric two-pore OSCA/TMEM63 family has recently been identified as mechanically activated ion channels. Previously, based on the unique features of the structure of OSCA1.2, we postulated the potential involvement of several structural elements in sensing membrane tension (Jojoa-Cruz et al., 2018). Interestingly, while OSCA1, 2, and 3 clades are activated by membrane stretch in cell-attached patches (i.e. they are stretch-activated channels), they differ in their ability to transduce membrane deformation induced by a blunt probe (poking). Here, in an effort to understand the domains contributing to mechanical signal transduction, we used cryo-electron microscopy to solve the structure of Arabidopsis thaliana (At) OSCA3.1, which, unlike AtOSCA1.2, only produced stretch- but not poke-activated currents in our initial characterization (Murthy et al., 2018). Mutagenesis and electrophysiological assessment of conserved and divergent putative mechanosensitive features of OSCA1.2 reveal a selective disruption of the macroscopic currents elicited by poking without considerable effects on stretch-activated currents (SAC). Our results support the involvement of the amphipathic helix and lipid-interacting residues in the membrane fenestration in the response to poking. Our findings position these two structural elements as potential sources of functional diversity within the family.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Tien M Phan, Young C Kim ... Jeetain Mittal
    Research Article

    The heterochromatin protein 1 (HP1) family is a crucial component of heterochromatin with diverse functions in gene regulation, cell cycle control, and cell differentiation. In humans, there are three paralogs, HP1α, HP1β, and HP1γ, which exhibit remarkable similarities in their domain architecture and sequence properties. Nevertheless, these paralogs display distinct behaviors in liquid-liquid phase separation (LLPS), a process linked to heterochromatin formation. Here, we employ a coarse-grained simulation framework to uncover the sequence features responsible for the observed differences in LLPS. We highlight the significance of the net charge and charge patterning along the sequence in governing paralog LLPS propensities. We also show that both highly conserved folded and less-conserved disordered domains contribute to the observed differences. Furthermore, we explore the potential co-localization of different HP1 paralogs in multicomponent assemblies and the impact of DNA on this process. Importantly, our study reveals that DNA can significantly reshape the stability of a minimal condensate formed by HP1 paralogs due to competitive interactions of HP1α with HP1β and HP1γ versus DNA. In conclusion, our work highlights the physicochemical nature of interactions that govern the distinct phase-separation behaviors of HP1 paralogs and provides a molecular framework for understanding their role in chromatin organization.