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Cold-inducible RNA-binding protein
(CIRBP) adjusts clock-gene expression and
REM-sleep recovery following sleep
deprivation
Marieke MB Hoekstra, Yann Emmenegger, Jeffrey Hubbard, Paul Franken*

Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland

Abstract Sleep depriving mice affects clock-gene expression, suggesting that these genes

contribute to sleep homeostasis. The mechanisms linking extended wakefulness to clock-gene

expression are, however, not well understood. We propose CIRBP to play a role because its

rhythmic expression is i) sleep-wake driven and ii) necessary for high-amplitude clock-gene

expression in vitro. We therefore expect Cirbp knock-out (KO) mice to exhibit attenuated sleep-

deprivation-induced changes in clock-gene expression, and consequently to differ in their sleep

homeostatic regulation. Lack of CIRBP indeed blunted the sleep-deprivation incurred changes in

cortical expression of Nr1d1, whereas it amplified the changes in Per2 and Clock. Concerning sleep

homeostasis, KO mice accrued only half the extra REM sleep wild-type (WT) littermates obtained

during recovery. Unexpectedly, KO mice were more active during lights-off which was

accompanied with faster theta oscillations compared to WT mice. Thus, CIRBP adjusts cortical

clock-gene expression after sleep deprivation and expedites REM-sleep recovery.

DOI: https://doi.org/10.7554/eLife.43400.001

Introduction
The sleep-wake distribution is coordinated by the interaction of a circadian and a sleep homeostatic

process (Daan et al., 1984). The molecular basis of the circadian process consists of clock genes

that interact through transcriptional/translational feedback loops. CLOCK/NPAS2:BMAL1 (ARNTL)

heterodimers drive the transcription of many target genes, among them the Period (Per1-2), Crypto-

chome (Cry1, �2) and Rev-Erb (Nr1d1, �2) genes. Subsequently, PER:CRY complexes inhibit

CLOCK/NPAS2:ARNTL-transcriptional activity thereby preventing their own transcription. In addi-

tion, clock components such as the transcriptional repressor NR1D1 regulate the transcription of

Arntl, ensuring together with other transcriptional feedback loops a period of ca. 24 hr (Lowrey and

Takahashi, 2011). While this clock-gene circuitry is functionally expressed in almost each cell of the

body, peripherally generated circadian rhythms are coordinated by a central pacemaker in the supra-

chiasmatic nuclei (SCN) of the hypothalamus, assuring proper circadian time-keeping at the organis-

mal level (Hastings et al., 2018).

The sleep homeostatic process keeps track of time spent awake and asleep, during which sleep

pressure is increasing and decreasing. The mechanisms and specific brain structure(s) underlying this

process are to date unknown. Accumulating evidence has implicated clock genes in sleep homeosta-

sis (reviewed in Franken, 2013). This is supported by studies in several species (i.e. mice, fruit flies

and humans), showing that mutations in circadian clock genes are associated with an altered sleep

homeostatic response to sleep deprivation (e.g. Mang et al., 2016; Shaw et al., 2002; Viola et al.,

2007; Wisor et al., 2002; He et al., 2009). Sleep homeostasis has distinct local, use-dependent

aspects (Krueger and Tononi, 2011), a notion which seems incompatible with the existence of a

Hoekstra et al. eLife 2019;8:e43400. DOI: https://doi.org/10.7554/eLife.43400 1 of 31

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.43400.001
https://doi.org/10.7554/eLife.43400
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


central sleep homeostat, functionally analogous to the SCN as a master clock in circadian timekeep-

ing. Disrupting circadian rhythms in the tuberomammillary nucleus, however, through removal of the

core clock gene Arntl, affects the regulation of time spent in NREM sleep after sleep deprivation,

implying that specific nuclei can impact aspects of the sleep homeostatic process (Yu et al., 2014).

An additional argument for a role for clock genes in sleep homeostasis comes from studies showing

that enforced wakefulness affects the expression of clock genes, such as Nr1d1, Per1-3 and Dbp, in

the brain (Mongrain et al., 2010). These sleep-deprivation induced changes in clock-gene expres-

sion were most pronounced in the cerebral cortex, while expression in the SCN remained unper-

turbed (Curie et al., 2015). The mechanisms through which these changes occur are, however,

unclear.

In this study, we examined one possible mechanism and hypothesized that some of the sleep

deprivation-induced changes in clock-gene expression occur through Cold-Inducible RNA Binding

Protein (CIRBP). Decreasing temperature in vitro increase CIRBP levels (Nishiyama et al., 1997) and

daily changes in mice core body temperature are sufficient to drive robust cyclic levels of Cirbp and

CIRBP (Morf et al., 2012) in anti-phase with temperature. Although daily changes in cortical temper-

ature appear circadian, in the rat more than 80% of its variance is explained by the sleep-wake distri-

bution (Franken et al., 1992). Hence, when controlling for the daily sleep-wake driven changes in

cortical temperature by sleep deprivations, the daily rhythms of cortical Cirbp become strongly
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Figure 1. The sleep-wake distribution drives daily changes of Cirbp expression in the mouse brain. Dark-grey

symbols and line (baseline): from ZT0 to ZT12, mice spend most of their time asleep and Cirbp increases, whereas

between ZT12-18, when mice spent most of their time awake, Cirbp decreases. When controlling for the daily

occurrence in sleep by performing four 6 hr sleep deprivation starting at either ZT0, �6,–12, or �18 (each sleep

deprivation is annotated with its own color), the diurnal amplitude of Cirbp is greatly reduced (colored circles

represent level of Cirbp expression reached at the end of each sleep deprivation). Nine biological replicates per

time point and condition were used (one data point missing at ZT18), and RNA was extracted from whole brain

tissue (see Maret et al., 2007 for details). Data were taken from GEO GSE9442. Light-grey areas represent the

dark periods.

DOI: https://doi.org/10.7554/eLife.43400.002

The following source data is available for figure 1:

Source data 1. Expression of Cirbp in the brain under undisturbed conditions and after controlling for the circa-

dian distribution of sleeping and waking.

DOI: https://doi.org/10.7554/eLife.43400.003
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attenuated (see Figure 1, based on Gene Expression Omnibus number GSE9442 from Maret et al.,

2007). Furthermore, the expression of the gene Cirbp shows the highest down-regulation of all

genes after sleep deprivation (Mongrain et al., 2010; Wang et al., 2010), underscoring its sleep-

wake-dependent expression. But how does CIRBP relate to clock gene expression?

Two independent studies have shown that the temperature-driven changes in CIRBP are required

for high amplitude clock-gene expression in temperature-synchronized cells (Morf et al., 2012;

Liu et al., 2013). Therefore, we and others (Archer et al., 2014) proposed that changes in clock-

gene expression during sleep deprivation are a consequence of the sleep-wake-driven changes in

CIRBP. To test this hypothesis, we first quantified in mice the contribution of sleep-wake state and

locomotor activity to changes in cortical temperature. Next, we measured sleep-deprivation-induced

changes in clock-gene expression in both (wild-type) WT and mice lacking CIRBP (Cirbp KO)

(Masuda et al., 2012), anticipating that clock-gene expression in response to sleep deprivation dif-

fered in KO mice. Finally, as clock genes play a role in sleep homeostasis (Franken, 2013), we also

compared the homeostatic regulation of sleep between WT and KO mice.

Our results demonstrate that like in the rat, the sleep-wake distribution in the mouse is the major

determinant of cortical temperature changes, with a significant, albeit small, contribution of locomo-

tor activity. In line with our predictions, we found that a lack of CIRBP attenuated the sleep-depriva-

tion-induced changes in the cortical expression of Nr1d1 and the homeostatic response in REM-

sleep time. However, in contrast to our hypothesis, we observed that differences in Per2 and Clock

expression after sleep deprivation were augmented in Cirbp KO mice. Unexpectedly, these mice

were also substantially more active during the dark phase of the 24 hr period when compared to

their WT littermates, without increasing their time spent awake. This increase in locomotor activity

was accompanied by an acceleration of electroencephalogram (EEG) theta oscillations during active

waking. Altogether, our data show that Cirbp contributes to some of the sleep-deprivation-induced

changes in clock-gene expression, but also points to the existence of other sleep-wake-driven path-

ways transferring sleep-wake state information to clock-gene expression.

Results

The relation between cortical temperature, sleep-wake distribution,
and locomotor activity
The dependence of brain and cortical temperature on sleep-wake state has been demonstrated in a

number of mammals (Alföldi et al., 1990; Baker and Hayward, 1968; Deboer et al., 1994;

Franken et al., 1992; Hayward and Baker, 1968) but has not been specifically addressed in the

mouse. Moreover, none of these studies controlled for locomotor activity when quantifying the con-

tribution of sleep-wake state to brain temperature. We therefore measured cortical temperature,

locomotor activity and sleep-wake state in WT and Cirbp KO mice during two baseline days, a 6 hr

sleep deprivation and the following 2 recovery days. Because the relationship between cortical tem-

perature, locomotor activity and waking in WT and KO mice was very similar, most of the results are

illustrated for WT mice only.

Fast changes in cortical temperature occur at sleep-wake state
transitions
A representative example of a 96 hr recording of locomotor activity, sleep-wake state and cortical

temperature is depicted in Figure 2. Consistent with mice being nocturnal animals, increased wak-

ing, locomotor activity and overall higher cortical temperature were observed during the dark phase.

Sleep deprivation [between Zeitgeber Time (ZT)0–6] led to an almost uninterrupted period of 6 hr

waking, during which locomotor activity and cortical temperature reached values comparable to

those reached during bouts of spontaneous wakefulness under undisturbed baseline conditions (i.e.

ZT12-18). Closer inspection of cortical temperature changes revealed rapid fluctuations associated

with sleep-wake state transitions. We quantified these changes in cortical temperature by selecting

and aligning transitions between consolidated bouts of NREM and REM sleep and wakefulness dur-

ing the 2 baseline days (Figure 2-B). When entering NREM sleep, cortical temperature consistently

decreased, whereas at transitions into wake and REM sleep, it increased. This latter transition was

characterized by a fast and consistent change in cortical temperature, where within 1.5 min an
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Figure 2. Cortical temperature changes with sleep-wake state. Tcx: cortical temperature; LMA: locomotor activity. (A) A representative 4-day recording

of one mouse in LD 12:12 (in white:grey) during 2 baseline days (top two panels), followed by a 6 hr SD (in red; third panel) and 2 recovery days (bottom

two panels), with within each panel Tcx (top; line graph), LMA (middle; area plot) and sleep-wake states (bottom; hypnogram). Sleep-wake states are

averaged per minute to aid visualization. LMA was collected and plotted per minute (see Methods). (B) Changes in Tcx, depicted as mean ± SEM (WT:

black lines, grey areas; KO: green lines and areas) relative to Tcx at the sleep-wake transition (average of the last value before and first value after

transition). Tcx increased when transitioning from NREM sleep to wake and to REM sleep (two-way RM ANOVA, factors genotype (GT) and Time, factor

Figure 2 continued on next page
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increase of 0.4˚C was observed. Transitions from REM sleep into wake led to an initial decrease in

cortical temperature, contrasting with the increase observed in the wakefulness when following

NREM sleep. Altogether, these results provide evidence that sleep-wake state importantly contrib-

utes to changes in cortical temperature.

Daily cycles in cortical temperature are driven by sleep-wake state
After having established that rapid changes in cortical temperature were indeed evoked by changes

in sleep-wake state, we next sought to determine whether the significant changes in cortical temper-

ature across the day were also due to overall rhythms in sleep-wake state, and potentially locomotor

activity. Examining cortical temperature, waking and locomotor activity per hour showed an oscilla-

tion over the course of the 24 hr baseline period (Figure 3-A; two-way RM ANOVA on averaged 24

1 hr intervals during baseline; Factor Time: F(23,207), cortical temperature, F = 70.5, waking:

F = 27.2, locomotor activity: F = 22.5; p<0.0001). The time course of cortical temperature did not

differ between genotypes (Figure 3—figure supplement 1), neither did the amplitude of the base-

line change (WT: 2.34 ± 0.1, KO: 2.33 ± 0.1; t-test: t(9)=-0.02, p=0.98; average of the difference

between the highest and lowest hourly value in baseline days 1 and 2). Importantly, the time course

of cortical temperature was strongly correlated to both waking (Figure 3-B left: WT: R2 = 0.76; KO:

R2 = 0.81, p<0.0001) and locomotor activity (Figure 3-B right: WT: R2 = 0.60; KO: R2 = 0.72,

p<0.0001).

To assess the influence of waking on cortical temperature further, mice were sleep deprived

between ZT0 and ZT6. During the 6 hr sleep deprivation, animals spent 98% awake of the 6 hr, sig-

nificantly more when compared to the same circadian time under baseline conditions (paired t-test:

waking [hours] baseline: 2.2 ± 0.1, sleep deprivation: 5.9 ± 0.04; t(10)=-38.1, p<0.0001; log2[move-

ments], baseline: 13.1 ± 2.4, sleep deprivation: 39.4 ± 2.1; t(10)=-15.2, p<0.0001). This increase in

waking and activity led to sustained elevated cortical temperatures (average ZT0-ZT6 [˚C]: baseline:
34.7 ± 0.07, sleep deprivation: 36.6 ± 0.06, t(10)=-44.3, p<0.0001), suggesting a causal relationship.

Notably, the genotype of the mice did not contribute to or interact with these changes (two-way

ANOVA, Genotype*sleep deprivation/baseline: p>0.39)

However, factors other than extended waking consequent to sleep deprivation, such as stress,

could have contributed to these changes in cortical temperature. To address this issue, we selected

in each mouse the longest uninterrupted spontaneous waking bout occurring during baseline (aver-

age length: 100 ± 19 min). We then compared cortical temperature of this bout with values reached

of an equivalent time spent awake from the start of the sleep deprivation. The average of the last 10

min of these bouts was taken to reduce the influence of temperature differences at bout-onset. Cor-

tical temperature reached in these bouts did not differ during sleep deprivation and spontaneous

wakefulness in WT mice (Figure 3-C), nor in KO mice (t(5)=0.84, p=0.44), indicating that factors

other than extended wakefulness (e.g. light exposure, circadian time, sleep deprivation-associated

stress) do not expressly contribute to these changes.

Considering the strong correlation between locomotor activity and cortical temperature (WT:

R2 = 0.76; KO: R2 = 0.81; p<0.0001), it could be hypothesized that locomotor activity contributes to

the sleep-wake associated changes in cortical temperature. To investigate this further, the respective

contribution of waking and locomotor activity to changes in cortical temperature was quantified by

partial correlation analysis. Although locomotor activity did significantly contribute, substantially

Figure 2 continued

Time, F(38,418)=126, F(45,540)=535.5; p<0.0001, respectively) and decreased when transitioning from wake to NREM sleep (F(22, 242)=1661, p<0.0001).

Also the transition from REM sleep to wake affected the time course of Tcx (F(23,276)=131.8, p<0.0001). GT interacted with time during the wake to

NREM sleep transition (F(22,242)=1.8, p=0.01), but not for other sleep-wake state transitions (p>0.12). No significant GT effect was detected (p>0.12)

Transition data were obtained from both baseline days (see Materials and methods for details).

DOI: https://doi.org/10.7554/eLife.43400.004

The following source data is available for figure 2:

Source data 1. Example of a 4-day recording; the transitions in sleep-wake state and associated changes in cortical temperature in Cirbp WT and KO

mice.

DOI: https://doi.org/10.7554/eLife.43400.005
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Figure 3. Waking is the major determinant of cortical temperature. For panels A, F and G, the dark-grey line represents the mean, grey areas span ± 1

SEM. BL: baseline, SD: sleep deprivation, REC: recovery, Tcx: cortical temperature, LMA: locomotor activity. Light-grey areas mark the dark periods. (A)

Time course of hourly values of Tcx, waking and LMA across the entire experiment. (B) Both waking (left) and LMA (right panel) strongly correlated with

Tcx (n = 6; 96 values per mouse; p<0.0001). R2: correlation coefficients. (C) Tcx during SD did not differ from levels reached after long waking bouts

Figure 3 continued on next page
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more of the variance in cortical temperature was explained by waking in both genotypes. This was

quantified with a paired t-test on Fisher Z-transformed R2-values from each individual mouse’s partial

correlation on hourly waking and cortical temperature, and on hourly locomotor activity and cortical

temperature (WT: t(5)=5.1, p=0.004; KO: t(5)=10.7, p=0.0001; see also Figure 3-D for R2-partial cor-

relation coefficients which are based on hourly data from all WT mice combined). We then deter-

mined the residual variance by calculating the difference between the observed cortical temperature

and the temperature predicted based on the time-spent-awake in a given hour. During the light and

dark phases, linear regression over- and underestimated cortical temperature, respectively (Figure 3-

E,F; baseline 1 and 2), leading to negative residuals during the light and positive residuals during

the dark phases. Fitting a sinewave through these residuals across 2 baseline days revealed a ‘circa-

dian’ distribution, with a mean amplitude of 0.29˚C, almost twice what was previously reported in

the rat [0.15˚C] (Franken et al., 1992). Interestingly, when considering the time course of the resid-

uals throughout the experiment including the sleep deprivation and recovery, a consistent parallel

became evident in the distribution of locomotor activity expressed per unit of waking (Figure 3-G).

Therefore, to determine if including locomotor activity could predict a larger portion of the vari-

ance in cortical temperature, we applied three Mixed Linear Models, with locomotor activity

expressed per unit of waking (LMA/Waking). Model1 explained the variance in cortical temperature

based on waking alone, Model2 also incorporated LMA/Waking, and Model3 considered addition-

ally the interaction between Waking and LMA/Waking. Indeed, Model3 provided the best prediction

of cortical temperature variance, although the improvement was marginal over the two other models

(Model1: R2
c=0.84; Model2: R2

c=0.85; Model3: R2
c=0.86; chi-squared test: Model1 vs Model2: X2(5)

=16.2; p<0.0001; Model2 vs Model3: X2(6)=25.0; p<0.0001). Thus, the sleep-wake distribution is the

most important determinant of cortical temperature while locomotor activity is modestly contribut-

ing as well. Nevertheless, the residuals of this model, depicted in Figure 3—figure supplement 1,

still showed a similar pattern as those in Figure 3-F, illustrating the contribution of other (circadian)

variables and/or a non-linearity of the association between locomotor activity and sleep-wake states

to changes in cortical temperature.

The influence of sleep deprivation and CIRBP on transcripts in cortex
and liver
After establishing that the sleep-wake distribution was the major determinant of cortical tempera-

ture changes in mice, we assessed whether the sleep-deprivation incurred decrease in Cirbp expres-

sion is responsible for the changes in clock-gene expression. To achieve this, we quantified 11

transcripts from liver and 15 from cortex before and after sleep deprivation using RT-qPCR. Genes

of interest included transcripts affected by sleep deprivation (Maret et al., 2007; Mongrain et al.,

Figure 3 continued

during BL (t(5)=0.41, p=0.70). (D) Waking after correcting for LMA is the major determinant of Tcx, as revealed by partial correlation analysis; here

performed on the combined hourly values of all WT mice. pR2: partial correlation coefficients. (E) A representative example [mouse TC03], with

measured Tcx (closed circles), and predicted Tcx (stippled line) based on the correlation between Tcx and waking. (F) During the dark phase and SD, the

predicted Tcx is lower than the measured Tcx, resulting in positive residuals [residuals: observed Tcx – predicted Tcx], whereas during the light phase, the

predicted Tcx is higher than the measured Tcx, resulting in negative residuals (t-test: data <> 0, p<0.05, red lines underneath the curves). (G) LMA per

unit of waking follows a similar pattern as the residuals in Panel F.

DOI: https://doi.org/10.7554/eLife.43400.006

The following source data and figure supplements are available for figure 3:

Source data 1. Waking, LMA and cortical temperature.

DOI: https://doi.org/10.7554/eLife.43400.011

Figure supplement 1. Cortical temperature (Tcx) shows similar daily variation in KO and WT mice.

DOI: https://doi.org/10.7554/eLife.43400.007

Figure supplement 1—source data 1. Cortical temperature during baseline in Cirbp WT and KO mice.

DOI: https://doi.org/10.7554/eLife.43400.008

Figure supplement 2. The residuals of the optimized mixed linear model.

DOI: https://doi.org/10.7554/eLife.43400.009

Figure supplement 2—source data 1. The residuals of the full model (LMA, Waking and LMA*Waking) explaining cortical temperature.

DOI: https://doi.org/10.7554/eLife.43400.010
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2010) and/or the presence of CIRBP (Liu et al., 2013; Morf et al., 2012), with an emphasis on clock

genes. Mice were sacrificed either before (ZT0) or after sleep deprivation (ZT6), together with non-

sleep-deprived control mice that could sleep ad lib (ZT6-NSD). Statistics on ZT0 (t-test) and ZT6

(two-way ANOVA) can be found in Table 1.

From ZT0 to ZT6, cortical temperature decreased, because mice spend more time asleep com-

pared to preceding hours spent in the dark phase (see also Figure 3-A). In WT mice, this decrease

was accompanied by an expected increase in the expression of the cold-induced transcript Cirbp

(cortex: t(8)=3.2, p=0.01; liver: t(8)=2.7, p=0.03; Figure 4-A and Figure 4—figure supplement 1,

compare also with the time course of Cirbp expression in Figure 1). In contrast, a 6 hr sleep depriva-

tion caused a decrease in cortical and hepatic Cirbp expression relative to levels in non-sleep

deprived controls (cortex: Figure 4-A; liver: Figure 4—figure supplement 1). This was consistent

Table 1. Statistics on RT-qPCR results.

Cortex Liver

ZT6 ZT6

Transcript ZT0 SD/NSD GT Interaction ZT0 SD/NSD GT Interaction

Cirbp X t(8)=4.9;
p=0.001

X X X t(8)=4.0,
p=0.004

X X

Clock t = 0.86;
p=0.21

F = 2.38;
p=0.14

F = 0.85;
p=0.37

F = 8.02;
p=0.01

t = 0.03;
p=0.98

F = 0.09;
p=0.77

F = 0.81;
p=0.38

F = 0.03;
p=0.87

Dbp t = 0.13;
p=0.90

F = 82.0;
p<0.0001

F = 0.39;
p=0.54

F = 3.06;
p=0.10

t = 1.99;
p=0.08

F = 4.37;
p=0.05

F = 0.23;
p=0.64

F = 0.0002;
p=0.99

Dusp4 t = 1.29;
p=0.23

F = 97.55;
p<0.0001

F = 0.50;
p=0.49

F = 3.24;
p=0.09

X X X X

Homer1a t = 0.96;
p=0.36

F = 228.8;
p<0.0001

F = 0.005;
p=0.94

F = 1.08;
p=0.31

X X X X

Hsf1 t = 0.67;
p=0.52

F = 18.22;
p=0.0006

F = 1.79;
p=0.20

F = 1.9;
p=0.18

t = 0.14;
p=0.89

F = 3.43;
p=0.08

F = 4.63;
p=0.05

F = 0.48;
p=0.50

Hsp90b1 t = 1.29;
p=0.23

F = 7.18;
p=0.0164

F = 1.40;
p=0.25

F = 6.86;
p=0.02

t = 1.71;
p=0.12

F = 0.93;
p=0.35

F = 0.80;
p=0.38

F = 0.07;
p=0.80

Hspa5 t = 0.89;
p=0.40

F = 72.03;
p<0.0001

F = 0.03;
p=0.86

F = 5.32;
p=0.03

t = 2.02;
p=0.08

F = 0.62;
p=0.44

F = 0.84;
p=0.37

F = 0.04;
p=0.86

Npas2 t = 0.86;
p=0.41

F = 1.56;
p=0.2298

F = 0.0008;
p=0.98

F = 3.99;
p=0.06

X X X X

Per2 t = 2.78;
p=0.02

F = 75.22;
p<0.0001

F = 4.78;
p=0.04

F = 0.06;
p=0.80

t = 0.90;
p=0.40

F = 0.95;
p=0.34

F = 0.01;
p=0.92

F = 0.02;
p=0.90

Rbm3-short t = 0.05 ;
p=0.96

F = 32.04 ;
p<0.001

F = 0.31;
p=0.59

F = 0.13;
p=0.73

t = 2.23;
p=0.06

F = 47.6;
p<0.0001

F = 2.7;
p=0.12

F = 1.6;
p=0.22

Rbm3-long t = 0.10 ;
p=0.92

F = 9.49 ;
p=0.007

F = 0.03;
p=0.86

F = 0.32;
p=0.58

X X X X

Nr1d1 t = 0.91;
p=0.39

F = 8.95;
p=0.009

F = 1.09;
p=0.31

F = 6.80;
p=0.02

t = 1.59;
p=0.15

F = 31.13;
p<0.0001

F = 2.41;
p=0.14

F = 1.37;
p=0.26

Sfpq t = 1.51;
p=0.17

F = 11.61;
p=0.004

F = 0.017;
p=0.90

F = 4.44;
p=0.05

t = 0.93;
p=0.38

F = 1.26;
p=0.28

F = 2.78;
p=0.11

F < 0.001;
p=0.98

Sirt1 t = 2.56;
p=0.04

F = 1.61;
p=0.22

F = 0.14;
p=0.72

F = 2.07;
p=0.17

t = 1.75;
p=0.12

F = 0.94;
p=0.35

F = 0.03;
p=0.87

F = 0.12;
p=0.73

GT: genotype, SD/NSD: Sleep deprived / non-sleep deprived (control).

ZT0: t-test, degrees of freedom (df): 8.

ZT6: two-way ANOVA (factors SD and GT), df = 1 for both factors SD, GT and its interaction; error df = 16.

X: Ct >30 or undetected; Ct = Cycle threshold of the qPCR assay.

Blue: significant decrease (at ZT0: KO relative to WT; at ZT6, SD/NSD: SD relative to NSD; GT: KO relative to WT).

Red: significant increase (at ZT0: KO relative to WT; at ZT6, SD/NSD: SD relative to NSD; GT: KO relative to WT).

Purple: significant interaction. Significance level: a = 0.05.

DOI: https://doi.org/10.7554/eLife.43400.012
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Figure 4. Cortical expression of several genes is affected by SD and by the lack of CIRBP. NRQ: Normalized Relative Quantity, SD: sleep deprivation

(salmon and blue areas for cortex and liver, respectively), NSD: non-sleep deprived (controls), GT: Genotype, ZT: Zeitgeber Time. n = 5 for each group,

each symbol represents an observation in one mouse. Mice were sacrificed at ZT0, at ZT6 after sleep deprivation (ZT6-SD) or after sleeping ad lib (ZT6-

NSD). Statistics are performed separately for ZT0 (factor GT, t-test), and ZT6 (factor GT and SD; two-way ANOVA). Significant (p<0.05) GT differences

are indicated by a black line and *, the effect of SD in WT mice with a grey line and *, and in KO mice with a green line and *. GT-SD interactions at

ZT6 are indicated by a red *. See Table 1 for statistics.

DOI: https://doi.org/10.7554/eLife.43400.013

The following source data and figure supplements are available for figure 4:

Source data 1. Cortical expression of transcripts in Cirbp WT and KO mice.

DOI: https://doi.org/10.7554/eLife.43400.018

Figure supplement 1. Changes in transcripts incurred by the absence of CIRBP and/or sleep deprivation in the liver.

DOI: https://doi.org/10.7554/eLife.43400.014

Figure supplement 1—source data 1. Hepatic expression of transcripts in Cirbp WT and KO mice.

DOI: https://doi.org/10.7554/eLife.43400.015

Figure supplement 2. Changes in transcripts incurred by the absence of CIRBP and/or sleep deprivation in the cortex.

DOI: https://doi.org/10.7554/eLife.43400.016

Figure supplement 2—source data 1. Cortical expression of transcripts in Cirbp WT and KO mice.

DOI: https://doi.org/10.7554/eLife.43400.017
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with the wake-induced increase in cortical temperature during sleep deprivation. No Cirbp mRNA

was detected in KO mice.

RBM3 (RNA binding motif protein 3) is another cold-inducible RNA Binding Protein that, like

CIRBP, transfers circadian cycles of temperature into high-amplitude clock gene expression in vitro

(Liu et al., 2013). A long and a short isoform of Rbm3 (Rbm3-long and –short, resp.), that differ in

their 3’UTR length, were discovered in the mouse cortex. Although both isoforms are referred to as

‘cold-induced’, they exhibit opposite responses to sleep deprivation (Wang et al., 2010), with a

decrease in the short and an increase in the long isoform. We found that overall, the short isoform

was more common than the long isoform in the cortex (PCR cycle detection number for all samples

pooled: cortex: Rbm3-short: 25.6 ± 0.2, Rbm3-long: 29.7 ± 0.1, amplification efficiency Rbm3-short:

2.11 and Rbm3-long: 2.07). In the liver, only the short isoform was detected (liver: Rbm3-short:

28.2 ± 0.2, Rbm3-long:>32; that is beyond reliable detection limit). In addition, we confirmed that

after sleep deprivation Rbm3-short expression decreased in the cortex (Figure 4-A) and liver (Fig-

ure 4—figure supplement 1), whereas Rbm3-long increased in cortex. The latter observation

reached significance only in the KO mice (Figure 4-A).

As anticipated, cortical expression of the waking-induced transcripts Homer1a, Dusp4, Hspa5,

Hsp90b1 and Hsf1 was increased by sleep deprivation (Figure 4—figure supplement 2). Post-hoc

tests revealed that the latter two were significantly increased only in Cirbp KO mice. Furthermore,

the effect of sleep deprivation on the transcripts Hsp90b1 and Hspa5 was significantly amplified in

Cirbp KO mice compared to WT mice. Unexpectedly, no changes in the expression of heat shock

transcripts incurred by sleep deprivation or genotype were detected in the liver (Figure 4—figure

supplement 1).

In vitro studies have shown that the presence of CIRBP is associated with longer 3’UTRs of its tar-

get genes, such as the transcript splice-factor proline Q (Sfpq), resulting in a higher prevalence of

long isoforms (extended or ext) over all isoforms (common or com), and thus an increased ext/com

ratio (see FigS4-S5 in Liu et al., 2013). We therefore expected a lower ext/com ratio in mice lacking

CIRBP. However, under baseline conditions [ZT0 and ZT6-NSD], Cirbp KO mice did not differ in their

ext/com ratio from WT littermates (ZT0: liver: (t(8)=1.55, p=0.16; cortex: t(7)=2.0, p=0.09; ZT6-NSD:

liver: t(8)=0.19, p=0.85, cortex: t(8)=1.4, p=0.20). Because RBM3 also determines the ext/com ratio

(Liu et al., 2013), the lack of an effect of CIRBP on the ext/com ratio could be due to compensation

by RBM3. We tested this by assessing the effect of sleep deprivation on the ext/com ratio as it

acutely suppresses both RBM3 and CIRBP. Indeed, sleep deprivation significantly decreased the ext/

com ratio in the liver in both genotypes (Figure 4-B; two-way ANOVA, factor sleep deprivation: F

(1,16)=20.4, p=0.003). In the cortex of WT mice, however, we observed an unexpected non-signifi-

cant increase in the ext/com ratio, leading to a significant genotype x sleep deprivation interaction

(cortex: F(1,16)=5.25, p=0.036). Therefore, these data are inconclusive in confirming a role for

CIRBP, and possibly RBM3, in the in vivo determination of Sfpq’s ext/com ratio.

Our main question concerned the contribution of CIRBP to sleep-wake-induced changes in clock-

gene expression. Previous studies evaluating the effects of sleep deprivation on cortical clock tran-

scripts showed a consistent increase in Per2 and a decrease in Dbp and Nr1d1¸whereas the response

of Clock and Npas2 varied among studies, but if any, tended to increase after sleep deprivation

(reviewed in Mang and Franken, 2015). Indeed, in the cortex of WT mice, sleep deprivation

increased cortical Per2, decreased Dbp and Nr1d1 and did not significantly affect Clock and Npas2

(Figure 4-C). Conform our hypothesis, CIRBP attenuated the sleep-deprivation-induced changes of

cortical Nr1d1, a transcriptional repressor recently implicated in the sleep homeostat (Mang et al.,

2016). This observation contrasts with the genotype-dependent changes in Per2, because when con-

sidering the lower levels of cortical Per2 in Cirbp KO mice at ZT0, the effect of sleep deprivation was

amplified in KO mice (Figure 4-C, two-way ANOVA, ZT0-ZT6[SD], interaction effect genotype x

sleep deprivation: F(1,16)=12.4, p=0.003). Additionally, the expression of Clock in the cortex was

significantly increased by sleep deprivation in Cirbp KO mice and not in WT littermates.

Compared to the cortex, the clock-gene expression in the liver appeared more resilient to the

effects of sleep deprivation, as only Dbp and Nr1d1 were significantly affected and not Per2 (Fig-

ure 4—figure supplement 1). The lack of CIRBP did not interfere with this response or contribute to

genotype-dependent changes of other (clock) gene transcripts in the liver.

Taken together, the absence of CIRBP modulated the sleep-deprivation-induced changes in the

cortical expression of the clock genes Nr1d1, Clock and Per2. Furthermore, the expression of
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transcripts in the heat shock pathway were also affected in a genotype-dependent manner by sleep

deprivation.

CIRBP contributes to sleep homeostasis
In three out of the five quantified cortical clock-gene transcripts, Cirbp KO mice showed a modu-

lated response to sleep deprivation, suggesting that they could differ in their sleep homeostatic

response (Franken, 2013). Thus, we hypothesized that Cirbp KO mice have differences in their sleep

homeostatic process (Process S) and quantified EEG delta power [0.75–4.0 Hz] as a proxy of NREM-

sleep pressure (Daan et al., 1984). In addition, we calculated the amount of NREM and REM sleep

recovered after sleep deprivation relative to baseline sleep.

Baseline characteristics of sleep-wake behavior do not differ between Cirbp
KO and WT mice
During the 2 baseline days, no significant differences were observed in waking, NREM or REM sleep,

both in terms of time spent during light and dark phases (Table 2), and in their distribution across

the day (see Figure 5-A and Figure 6-A). Of note, under constant darkness we did not detect any

change in circadian period length (period [hours]: WT (n = 5): 23.8 ± 0.03 and KO (n = 7):

23.8 ± 0.01).

Sleep homeostatic processes under baseline and recovery
The overall time course of delta power was similar in both genotypes. In the dark phase, when mice

spent most of their time awake and sleep pressure accumulates, NREM sleep delta power was high-

est. This contrasted with the end of the light phase [ZT8-12], where NREM sleep delta power

reached its lowest levels of the day due to the high and sustained prevalence of NREM sleep in the

preceding hours. However, delta power levels in Cirbp KO mice were higher when compared to

their WT controls during both the baseline and recovery dark phases, reaching significance in the lat-

ter (Figure 5-A, second graph from top).

Differences in delta power can be attributed to changes in the dynamics of the underlying

homeostatic process, Process S, and/or to changes in sleep-wake distribution. Our results support

the latter possibility because Cirbp KO mice tended to spend less time in NREM sleep (and more

time awake) during the early dark phase when compared to WT mice, reaching significance during

the recovery (Figure 5-A; third graph from top). To test if the changes in the sleep-wake distribution

could indeed explain the genotype differences in NREM sleep delta power, we estimated the

increase (ti) and decrease (td) rates using a simulation of Process S based on sleep-wake distribution.

We assumed Process S to increase exponentially during waking and REM sleep with a time constant

ti and to decrease during NREM sleep with a time constant td (see Materials and methods, and

Franken et al., 2001 for more details). This simulation was not only able to reliably capture the over-

all dynamics (mean square of the measured-predicted differences, mean ±SEM: WT: 10.1 ± 0.3, KO:

10.4 ± 0.4), but also the genotype-specific delta power differences (Figure 5-A; top graph), while

Table 2. Baseline time spent in sleep-wake states, including theta-dominated waking (TDW; min), and locomotor activity (LMA;

movements) per 12 hr per genotype (mean ±1 SEM), averages of BL1-2.

Two-way ANOVA (Factor GT and Light/Dark) on those same 12 hr values. Degrees of freedom for both GT and Light/Dark: df = 1;

error term: df = 35.

WT KO
Statistics
(Two-way ANOVA)

Light Dark Light Dark Factor GT x Light/Dark, df : 1,35

NREM sleep 389 ± 4 189 ± 10 376 ± 4 170 ± 13 F = 0.02, p=0.89

REM sleep 70 ± 2 19 ± 2 66 ± 2 20 ± 2 F = 0.83, p=0.37

Total waking 260 ± 4 512 ± 11 277 ± 5 530 ± 14 F = 0.02, p=0.90

TDW 45 ± 3 179 ± 12 55 ± 5 192 ± 15 F = 0.13, p=0.72

LMA 119 ± 16 817 ± 70 181 ± 26 1370 ± 142 F = 7.1, p=0.01

DOI: https://doi.org/10.7554/eLife.43400.019
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Figure 5. CIRBP modulates the sleep-wake distribution and REM sleep recovery after sleep deprivation. Cirbp KO (green lines and areas) and WT

(black line, grey areas) mice during the two baseline days (BL1 and �2), sleep deprivation (SD), and the 2 recovery days (REC1 and �2; areas span ± 1

SEM range). (A) From top to bottom: Simulated delta power (Process S), measured NREM sleep delta power, NREM and REM sleep. Only during REC,

both Process S and delta power are increased in Cirbp KO mice compared to WT (F(1,34)=5.56, p=0.024; F(1,34)=4.65, p=0.038, respectively), based on

differences in NREM-sleep distribution (Genotype (GT): F(1,34)=6.02, p=0.0194). GT effects in REM sleep were also detected during recovery (factor GT:

F(1,34)=5.45, p=0.026). Exact timing of GT differences is indicated by red lines above each graph (post-hoc t-test, p<0.05). (B) Top: KO mice recover as

much NREM sleep as WT mice do in the first 18 hr after SD (REC1 at 72 hr: WT: 41.9 ± 6.1 KO: 38.6 ± 9.7 min; t-test: t(34)=0.30, p=0.76). Bottom: KO

mice accumulated less REM sleep during the first recovery day over the baseline day in comparison to WT mice relative to baseline (REC1 at 72 hr, WT:

20.9 ± 2.3 KO: 9.9 ± 2.0, t-test: t(34)=3.7, p=0.0007). Recovery-to-baseline differences are indicated by blue (KO) and purple (WT) lines below each

graph (post-hoc t-test, p<0.05). Light-grey areas mark the dark periods.

DOI: https://doi.org/10.7554/eLife.43400.020

The following source data is available for figure 5:

Source data 1. Simulated Process S, delta power, NREM and REM sleep in Cirbp WT and KO mice during two baseline days, a 6hr sleep deprivation

and two recovery days.

DOI: https://doi.org/10.7554/eLife.43400.021

Table 3. Time constants, asymptotes and So for Process S do not differ between Cirbp WT and KO

mice.

Mean time constants (±SEM) obtained by the simulation (Process S) with the best fit to the NREM

sleep delta power values, where the increase of Process S is simulated with the time constant ti, the

decrease with td and the upper- and lower asymptotes by UA and LA, respectively. S0 is the level of

Process S at time = 0. No significant genotype differences were observed. See Material and methods

for detailed description of the simulation. Degrees of freedom: df.

WT KO t-test, df = 34

S0 [%] 128.2 ± 2.4 132.1 ± 2.6 t = 1.10, p=0.29

ti [h] 13.2 ± 1.2 12.9 ± 1.0 t = �0.16, p=0.87

td [h] 3.0 ± 0.2 2.8 ± 0.2 t = �0.74, p=0.46

LA [%] 45.1 ± 1.4 45.1 ± 1.1 t = �0.02, p=0.98

UA [%] 288.8 ± 3.0 296.6 ± 3.2 t = 1.80, p=0.09

DOI: https://doi.org/10.7554/eLife.43400.028
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Figure 6. CIRBP suppresses locomotor activity and affects spectral composition during theta-dominated waking. LMA: locomotor activity, TDW: theta-

dominated waking, TPF: theta-peak frequency, GT: genotype. (A) Cirbp KO (green lines and areas) and WT (black line, dark-grey areas) mice during the

two baseline days (BL1 and �2), sleep deprivation (SD), and the two recovery days (REC1 and �2; areas span ± 1 SEM range). Cirbp KO mice are more

active in the dark periods (light-grey areas) only (BL: GTxTime: F (47,1457)=3.5, p<0.0001; REC: GTxTime: F (41,1271)=5.2, p<0.001), and spent more

time awake and inTDW during REC compared to WT mice (total waking: BL: GTxTime: F(47,1457) = 1.1, p=0.33 REC: GTxTime: F (41 1271)=1.9,

p=0.0005; TDW: BL: GTxTime: F (47,1457)=1.1, p=0.35; REC: GTxTime: F (41,1271)=1.8, p=0.0025). Significant genotype differences are marked by red

lines above each graph (post-hoc t-tests; p<0.05). D and r indicate a significant increase and decrease in REC compared to same time in BL,

respectively. (B) CIRBP contributes to the spectral composition of TDW in the dark phase (two-way RM ANOVA; GTxFreq: F(278,9730) = 2.0; p<0.0001,

red symbols in lower panel: post-hoc t-tests, p<0.05), and KO mice tend to have faster TPF during TDW in the dark phase (t(35)=2.0; p=0.0506). (C) TPF

in the dark phase correlates only in the KO mice significantly with LMA (WT: R2 = 0.12, p=0.17, KO: R2 = 0.71, p<0.0001).

DOI: https://doi.org/10.7554/eLife.43400.022

The following source data and figure supplements are available for figure 6:

Figure 6 continued on next page
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yielding similar Process S time constants (see Table 3). Thus, the reduction in NREM sleep in Cirbp

KO mice in the beginning of the dark period caused the higher delta power values in subsequent

hours, underscoring the notion that small differences in NREM sleep time can have large repercus-

sions on delta power during periods when waking dominates and sleep pressure is high as a result

(Franken et al., 2001).

In addition to delta power, the time spent in NREM sleep is considered another aspect of the

homeostatic process, which can be quantified as the accumulated relative differences between base-

line and recovery. At the end of the first recovery day, both KO and WT mice had gained ca. 40 min

of NREM sleep relative to baseline (Figure 5-B, upper panel).

Like NREM sleep, the amount of REM sleep is also homeostatically defended (Franken, 2002). At

the end of recovery day 1, both WT and KO mice spent more time in REM sleep compared to corre-

sponding baseline hours. However, this increase was significantly attenuated by 46% in Cirbp KO

mice (Figure 5-B, lower panel). No significant differences were detected during baseline in time

spent in REM sleep (see also Table 1), suggesting that this attenuated rebound resulted from less

REM sleep during recovery, specifically in the first hours of the dark phase when the genotypic dif-

ferences were most prominent (Figure 5-A, lowest graph).

Thus, although CIRBP did not affect the processes underlying NREM sleep intensity and NREM

sleep time, it did contribute to REM sleep homeostasis by increasing the amount of REM sleep after

sleep deprivation.

An unanticipated waking phenotype in Cirbp KO mice
We observed that Cirbp KO mice were more active than their WT littermates during the dark phase

(t(31)=-2.56, p=0.015, see also Table 2). Specifically, Cirbp KO mice were almost twice as active in

the 6 hr after dark onset (ZT12-18; movements: WT: 463.8 ± 60.7, KO: 801.8 ± 118.4, t(35)=-2.7,

p=0.012; Figure 6-A). Interestingly, this increase was not associated with a significant increase in

time spent awake during baseline (per 12 hr: t(35)=1.2, p=0.24, and see Table 2), and indeed Cirbp

KO mice were more active per unit of waking (average in the dark phase, locomotor activity [move-

ments/waking(min)], WT: 1.3 ± 0.13, KO: 2.1 ± 0.28; t(35)=-2.7, p=0.01). Note that cortical tempera-

ture was also not significantly increased in Cirbp KO mice during the dark phase (cortical

temperature: WT: 35.9 ± 0.1, KO: 36.1 ± 0.1, t-test, t(10)=1.3, p=0.24) despite increased locomotor

activity at this time of the day, again underscoring its minimal contribution to cortical temperature.

Because Cirbp KO mice were not more awake (Table 2 and Figure 6), we wondered if their

increased locomotor activity was associated with differences in the prevalence of waking sub-states.

Theta-dominated waking is correlated with activity, most prevalent during the dark phase and sleep

deprivation, and characterized by the presence of EEG theta-activity (Buzsáki, 2006; Vassalli and

Franken, 2017). Despite their increased locomotor activity, Cirbp KO mice did not spend more time

in theta-dominated waking during the dark phase of baseline (see Table 2, t(31)=-1.22, p=0.23). Did

the increased locomotor activity in Cirbp KO mice relate to changes in brain activity during dark

phase theta-dominated waking?

Although theta-dominated waking EEG in both genotypes showed its characteristic theta activity

[6.5–12.0 Hz], subtle differences between genotypes were detected in the spectral composition of

the EEG signal. In Cirbp KO mice, slow [32–45 Hz] and fast [55–80 Hz] gamma power were both

Figure 6 continued

Source data 1. Time course of LMA, waking and theta-dominated waking in Cirbp WT and KO mice; spectral composition of theta-dominated waking,

and relation between theta-peak frequency in theta-dominated waking and LMA.

DOI: https://doi.org/10.7554/eLife.43400.027

Figure supplement 1. Changes in the EEG spectra are observed in theta-dominated waking (TDW), but not in quiet waking.

DOI: https://doi.org/10.7554/eLife.43400.023

Figure supplement 1—source data 1. Spectral composition of the waking EEG in Cirbp WT and KO mice.

DOI: https://doi.org/10.7554/eLife.43400.024

Figure supplement 2. Slow and fast gamma power over the course of the experiment in theta-dominated waking.

DOI: https://doi.org/10.7554/eLife.43400.025

Figure supplement 2—source data 1. Time course of fast and slow gamma power during theta-dominated waking in Cirbp WT and KO mice.

DOI: https://doi.org/10.7554/eLife.43400.026

Hoekstra et al. eLife 2019;8:e43400. DOI: https://doi.org/10.7554/eLife.43400 14 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.43400.027
https://doi.org/10.7554/eLife.43400.023
https://doi.org/10.7554/eLife.43400.024
https://doi.org/10.7554/eLife.43400.025
https://doi.org/10.7554/eLife.43400.026
https://doi.org/10.7554/eLife.43400


reduced during theta-dominated waking (Figure 6-B), and this reduction was observed throughout

the experiment (Figure 6—figure supplement 1; and see time course in Figure 6—figure supple-

ment 2), indicating that these spectral differences are robust across different lighting conditions, cir-

cadian time and throughout the sleep deprivation. In contrast, EEG spectral composition during

‘quiet’ waking (i.e. not theta-dominated waking), was remarkably similar between the two genotypes

(Figure 6—figure supplement 1). This similarity demonstrated that changes in theta-dominated

waking EEG spectra were not the result of a general CIRBP effect on the waking EEG, but specifi-

cally affected this waking sub-state.

We also observed a significant decrease in slow and a non-significant increase in fast theta activity

in the theta-dominated waking EEG of Cirbp KO mice, which hinted at an acceleration of the theta

oscillation (lower panel in Figure 6-B). Indeed, theta-peak frequency in this sub-state in baseline was

increased in KO mice (+0.15 Hz), although the significance threshold was not met (t(35)=2.0,

p=0.0506). During REM sleep, the other sleep-wake state characterized by distinct theta oscillations,

theta-peak frequency was not affected (WT: 7.43 ± 0.06; KO: 7.56 ± 0.05, t(35)=1.7, p=0.10).

Increased locomotor activity correlates with increased theta-peak frequency (Jeewajee et al., 2008).

In accordance with this observation, mean log2-transformed locomotor activity in each mouse during

the dark phase predicted the mean theta-peak frequency during theta-dominated waking at the

same time of day (WT and KO combined; R2 = 0.52, p<0.0001), although this relationship remained

significant only in KO mice when assessing the two genotypes separately (Figure 6-C). However, this

genotype-dependent association between theta-peak frequency and locomotor activity was not con-

firmed by a significant difference in slope between the genotypes (ANCOVA, F(1,29)=3.8, p=0.059).

Because the group correlation did not account for inter-individual differences in locomotor activ-

ity levels, we also assessed the correlations between this variable and theta-peak frequency within

individual mice. To test if this association depended on lighting condition, we analyzed the dark and

light phases separately (i.e. 24 values per mouse per lighting condition; see also Table 4). In the

dark phase, this correlation was significant in all but one mouse (a KO), and both the slope and the

predictive power of this correlation did not significantly differ between genotypes (slope: WT:

0.15 ± 0.01, KO: 0.14 ± 0.01, t(31)=0.37, p=0.72; R2: WT: 0.81 ± 0.03; KO: 0.79 ± 0.04, t-test on the

Fisher Z-transformed R2-values: t(31)=-0.49, p=0.62). In the light phase, this association was weaker

(dark vs. light: paired t-test: slope: t(32)=7.8, p<0.0001; Fisher Z-transformed R2-values: t(32)=5.9,

p<0.0001), but again did not differ between genotypes (WT: 0.07 ± 0.01, KO: 0.09 ± 0.01, t(31)=1.2,

p=0.23; R2: WT: 0.59 ± 0.04; KO: 0.67 ± 0.05, t-test on the Fisher Z-transformed R2-values: t(31)=1.2,

p=0.23). However, during the light phases, when locomotor activity and theta-dominated waking

were substantially reduced and estimates of theta-peak frequency less precise, we found more non-

significant associations in both genotypes (KO: 3/16; WT: 3/17 mice). Taken together, these results

provide further evidence that CIRBP, through its effects on locomotor activity, reduces theta-peak

frequency during wakefulness.

After establishing these genotype differences under baseline conditions, we assessed the effect

of genotype on the same wake-related variables during recovery from sleep deprivation. Sleep dep-

rivation altered the waking distribution during recovery relative to baseline (three-way RM ANOVA,

factors time, genotype and baseline/recovery, factor baseline/recovery: recovery 1: F(1,558)=42.7,

p<0.0001; recovery 2: F(1,1514) = 441.8, p<0.0001; see triangles in recovery 1 and 2, Figure 6-A).

Surprisingly, while time spent awake was decreased compared to baseline, we observed several

intervals during the recovery in which theta-dominated waking was increased for both genotypes

(three-way RM ANOVA, factors time, genotype and baseline/recovery, factor baseline/recovery:

recovery 1: F(1,558)=13.9, p=0.0002; recovery 2: F(1,1514) = 233.8, p<0.0001; Figure 6-A, upwards

pointing triangles). Moreover, genotype differences in total waking and theta-dominated waking,

Table 4. Theta-peak frequency (TPF; mean ±SEM in [Hz]) during theta-dominated waking (TDW) in

the baseline light and dark periods.

TPF during BL WT KO

Light 7.77 ± 0.03 7.64 ± 0.04

Dark 8.13 ± 0.04 8.28 ± 0.07

DOI: https://doi.org/10.7554/eLife.43400.029
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became significant during the dark phases of both recovery days, with Cirbp KO mice spending

more time in both than WT mice (Figure 6-A; see post-hoc tests indicated by red line), as if sleep

deprivation amplified these non-significant genotype differences during baseline (three-way RM

ANOVA on hourly values: factor genotype x time x sleep deprivation: total waking: F(41,1271) = 1.4,

p=0.04; theta-dominated waking: F(41,1271) = 1.4, p=0.056; but not for locomotor activity F

(41,1271) = 1.0, p=0.48).

The EEG spectra during theta-dominated waking in recovery days 1 and 2 showed profiles similar

to baseline (see Figure 6—figure supplement 1), although suggestive changes under baseline con-

ditions reached significance during recovery, such as the increase in delta power. Similarly, the non-

significant increase in theta-peak frequency in Cirbp KO mice during the baseline dark phases

became significant during recovery (recovery 1: WT: 8.1 ± 0.05, KO: 8.4 ± 0.07, t(35)=2.7, p=0.01;

recovery 2: WT: 8.2 ± 0.05, KO: 8.5 ± 0.08, t(35)=2.6, p=0.01). Furthermore, the non-significant

genotype difference in slope between theta-peak frequency and locomotor activity during baseline

(Figure 6-C), became significant after sleep deprivation (ANCOVA, F(1,29)=5.8, p=0.02), providing

further evidence that baseline genotype differences became more pronounced after challenging the

sleep homeostat.

Taken together, Cirbp KO mice were more active than WT mice during the dark phase, which

contributed to the faster theta-peak frequency. Moreover, EEG gamma power during theta-domi-

nated waking was reduced in KO mice and the 6 hr sleep deprivation strengthened genotype differ-

ences in the sleep-wake distribution and EEG activity.

Discussion
In this study, we showed that, like in other rodents, the sleep-wake distribution drives cortical tem-

perature changes in the mouse. Because of the well-established link between temperature and

CIRBP levels, it is likely that also the sleep-wake driven changes in brain temperature drive Cirbp

expression. As predicted, the sleep-deprivation incurred changes in the expression of clock genes

was modulated by the presence of CIRBP. However, we only observed the expected sleep-depriva-

tion attenuated response for Nr1d1, whereas changes in the expression of Per2 and Clock were

amplified compared to WT mice. Moreover, we found evidence of altered REM sleep homeostasis in

Cirbp KO mice. Unexpectedly, Cirbp KO mice were more active during the dark phase, and EEG

during theta-dominated waking was characterized by a reduction of gamma activity and faster theta

oscillations.

Changes in cortical temperature are sleep-wake driven
When sleep and waking occur at their appropriate circadian times, the changes in both brain and

body temperature have a clear 24-hr rhythm and therefore appear as though they are being con-

trolled directly by the circadian clock. However, sleep-wake cycles contribute significantly to those

daily changes in temperature. In humans, this involvement is powerfully illustrated by spontaneous

desynchrony, where body temperature follows both a circadian and an activity-rest (and presumably,

sleep-wake) dependent rhythm (Wever, 1979). The contribution of sleep-wake state to the daily

dynamics in body temperature is further supported by forced desynchrony studies, such as (Dijk and

Czeisler, 1995), estimating that ‘masking’ effects of rest-activity and sleep-wake cycles contributed

between 30% and 50% to the amplitude of the circadian body temperature rhythm (Hiddinga et al.,

1997; Dijk et al., 2000). Not only in humans but also in smaller mammals like rats, a circadian and

rest-activity component contribute to the circadian fluctuations in body temperature

(Cambras et al., 2007). Thus, the apparent circadian amplitude of body temperature is amplified

when wake and sleep occur at the appropriate phase of the circadian rhythm.

In contrast to body temperature, brain temperature in rodents is much more determined by

sleep-wake state: 80% of its variance can be explained by the sleep-wake distribution

(Franken et al., 1992 and this study). Likewise, the sleep-wake-driven changes in brain temperature

are still present in arrhythmic animals (Edgar et al., 1993; Baker et al., 2005), pointing to a more

important sleep-wake dependency of brain temperature compared to body temperature. Our study

assessed the contribution of locomotor activity and found that waking with higher locomotor activity

was associated with higher cortical temperature. Although significant, the contribution of locomotor

activity to the daily changes in cortical temperature was modest and explained only 2% more of the
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variance compared to waking alone. Can we optimize the prediction of cortical temperature? A non-

linear relationship between sleep-wake state and cortical temperature was assumed previously

(Franken et al., 1992) and could have improved the prediction of our model further. This is sup-

ported by the residuals from the complete model (see Figure 3—figure supplement 2), which

exhibit under baseline conditions, a circadian distribution, whereas during sleep deprivation they

remain increased as during the dark phase. Thus, the model overestimates cortical temperature dur-

ing periods with little waking (light phase) and underestimates it when waking is dominant (dark

phase and sleep deprivation), suggesting a non-linear relationship between these two variables.

It is important to consider that the influence of locomotor activity on cortical temperature is likely

affected by the type of activity; for example, rats using a running wheel can increase their brain tem-

perature by 2˚C within 30 min (Fuller et al., 1998). In addition, exercise in humans leads to an

increase in (proxies of) brain temperature (Nybo et al., 2002). Thus, although in our study the effect

of locomotor activity on cortical temperature was modest compared to the effect of waking, these

contributions likely differ depending on the type of physical activity.

Locomotor activity-dependent and -independent changes in waking
characteristics
Little is known about the role of CIRBP in neuronal and behavioral functioning. It was therefore unex-

pected that Cirbp KO mice were not only more active during the dark phase but also showed

changes in neuronal oscillations during theta-dominated waking: a reduction in low- and high

gamma power and an increase in theta-peak frequency. Because running speed correlates positively

with hippocampal theta-peak frequency (Jeewajee et al., 2008), and our measured theta activity is

mainly of hippocampal origin (Buzsáki, 2006), we indeed can relate this increase in speed of theta

oscillations to increased locomotor activity in KO mice. In contrast to theta-peak frequency, the liter-

ature has not consistently reported on a relation between a general decrease in gamma power dur-

ing active waking and its relation to locomotor activity. Some studies have found that increased

speed of movement and gamma power are related (Furth et al., 2017; Niell and Stryker, 2010;

Vinck et al., 2015), whereas others found that this association is only present in higher gamma fre-

quencies [>60 Hz] (Zheng et al., 2015). Thus, it is unclear if locomotor activity relates to changes in

gamma power. However, there is a clear increase in high gamma power specifically during the sleep

deprivation (see Figure 6—figure supplement 2), as noted previously (Vassalli and Franken, 2017).

This increase was present in both genotypes suggesting that while KO mice have a reduced capacity

to produce fast gamma activity, sleep deprivation is still able to activate their fast-gamma circuitry.

These results, together with the observation that during the light phase decreased gamma power

was still present at a time of day when locomotor activity did not significantly differ, argues against

an association between the decreased gamma activity and increased locomotor activity in Cirbp KO

mice.

Interestingly, gamma oscillations are associated with a variety of cognitive processes (reviewed in

Bosman et al., 2014). This is further supported by associations between behavioral impairments and

changes in gamma power. For example, mice with abnormal interneurons are impaired at the behav-

ioral level (e.g. lack of cognitive flexibility) and have a reduction in task-evoked gamma power in

their EEG. Pharmacological stimulation of inhibitory GABA-neurons augmented power in the gamma

band and rescued the behavioral phenotype of the mutants (Cho et al., 2015).

In the hippocampus, gamma-theta coupling, that is the occurrence of gamma oscillations at a

specific phase of the theta oscillation, has been suggested to aid processes underlying memory (for

review see Colgin, 2015). Because CIRBP reduces theta-peak frequency and increases EEG power in

the gamma bands, further experiments could address if Cirbp KO mice have altered phase coher-

ence between these two frequency bands. Together with the postulated function of gamma power

in cognitive flexibility, it would be also be of interest to assess if the EEG phenotypes

we observed in Cirbp KO mice are associated with cognitive abnormalities.

Several aspects of waking that appeared to differ between Cirbp KO and WT mice under baseline

dark conditions but were non-significant, reached significance during the recovery dark phase. For

example, during the baseline, Cirbp KO mice were 4% more awake and spent 13% more time in

theta-dominated waking compared to their WT littermates. These genotype differences increased to

8% and 20%, respectively, during recovery. Similarly, theta-peak frequency and its genotype-depen-

dent association with locomotor activity reached significance during the recovery. This suggests that
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sleep deprivation amplified genotypic differences. Other sleep deprivation studies found evidence

for similar phenomena, where sleep disturbance can amplify molecular and behavioral phenotypes

of Alzheimer’s mouse models (for review, see Musiek and Holtzman, 2016) and sensitivity to pain

(Sutton and Opp, 2014). Our data indicates that sleep deprivation has a comparable effect on a

number of wake-related phenotypes in Cirbp KO mice. It would be interesting to determine the

dynamics of this change; that is if they are reversible, and if a second sleep deprivation could aug-

ment genotypic differences further.

CIRBP adjusts clock-gene expression and REM-sleep recovery following
sleep deprivation
CIRBP modulated the cortical response to sleep deprivation in the expression of three out of the

five quantified clock genes. As anticipated, the sleep-deprivation incurred decrease in cortical Nr1d1

was attenuated in Cirbp KO mice. NR1D1 acts as a transcriptional repressor of positive clock ele-

ments such as ARNTL (Preitner et al., 2002). Mice lacking both Nr1d1 and its homolog Rev-Erbb

(Nr1d2) have a shorter and unstable period under constant conditions and deregulated lipid metab-

olism (Cho et al., 2012). We recently established that Nr1d1 also contributes to several aspects of

sleep homeostasis: Nr1d1 KO mice accumulate NREM sleep need at a slower rate and have reduced

efficiency of REM-sleep recovery in the first hours after sleep deprivation (Mang et al., 2016).

The cortical expression of the clock genes Per2 and Clock was also modulated in the absence of

CIRBP, suggesting that parts of the core clock are sensitive to its presence in response to sleep dep-

rivation. Importantly, the effect of sleep deprivation on clock-gene expression can be modulated by

CIRBP directly, or indirectly through the effects of CIRBP on transcriptional clock-gene regulators

that subsequently affect the expression of downstream clock genes. For example, Npas2 KO mice

showed a reduced increase in Per2 expression in the forebrain after sleep deprivation

(Franken et al., 2006), while Cry1,2 double-KO mice display a larger increase in Per2 expression

after sleep deprivation (Wisor et al., 2008). Thus, differences in clock-gene circuitry, as suggested

by in vitro data (Liu et al., 2013; Morf et al., 2012), could also have contributed to the observed

changes in clock-gene expression after sleep deprivation in Cirbp KO.

Given the role of clock genes in sleep homeostasis (Franken, 2013), the modulation of clock-

gene expression in KO mice could have contributed to the observed REM sleep homeostatic sleep

phenotype. This is supported by studies showing that mutations in clock genes incurred a loss in

REM-sleep recovery (i.e. Clock [Naylor et al., 2000]), or impacted the initial efficiency of REM-sleep

recovery (i.e. Dbp [Franken et al., 2000], Per3 [Hasan et al., 2011], and Nr1d1 [Mang et al., 2016]).

Follow-up studies should address if indeed the changes in clock-gene expression in Cirbp KO mice

are functionally implicated in this REM-sleep phenotype.

Other aspects of the homeostatic regulation of sleep, such as NREM sleep EEG delta power and

time spent in NREM sleep after sleep deprivation, were unaffected in Cirbp KO mice. Thus, CIRBP

participates specifically in REM-sleep homeostasis, whereas we do not find evidence for its contribu-

tion to NREM-sleep homeostatic mechanisms.

Other mechanisms linking sleep-wake state to clock-gene expression
Our results show that other pathways besides CIRBP must contribute to the sleep-wake-driven

changes in clock-gene expression. Some suggestions for such pathways, apart from the clock-gene

circuitry itself discussed above, are shortly discussed below, as well as considerations that could

potentially account for the absence of a more widespread CIRBP-dependent change in clock-gene

expression that we expected based on the previously published in vitro studies.

Rbm3, another cold-inducible transcript which is closely related to CIRBP, translates temperature

information into high amplitude clock-gene expression in vitro (Liu et al., 2013). Like Cirbp, its corti-

cal expression is sleep-wake driven (Wang et al., 2010). Thus, RBM3 is another possible mechanism

through which changes in sleep-wake state are linked to changes in clock-gene expression. RBM3

might have compensated for the lack of CIRBP thereby limiting the extent by which sleep-depriva-

tion affected clock genes in Cirbp KO mice. A follow-up study could address this possibility by quan-

tifying sleep deprivation-evoked changes in clock-gene expression in Cirbp-Rbm3 double KO mice.

Heat shock factor 1 (Hsf1) is a member of the heat shock pathway and in vitro studies have shown

that it transfers temperature information to the circadian clock by initiating Per2 transcription
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through binding to Per2’s upstream heat shock elements (Tamaru et al., 2011). Under undisturbed

conditions, both Hsf1 mRNA and protein levels are constitutively expressed, but the protein exhibits

daily re-localization during the dark phase to the nucleus where it acts as a transcription factor

(Reinke et al., 2008). Interestingly, CIRBP binds to the 3’UTR of Hsf1 transcript (Morf et al., 2012,

see supplementary data therein), although it is unclear if this affects the transcriptional activity of

HSF1. We found that sleep deprivation induced a significant increase in Hsf1 in KO mice only, which

is congruent with the observation that the expression of two other transcripts of the heat shock

pathway, Hsp90b1 and Hspa5, were significantly amplified in KO mice after sleep deprivation. Alto-

gether, this suggests that the increased expression of Per2 in KO mice might be linked to increased

Hsf1 expression and underscores the presence of other temperature (and thus sleep-wake) driven

pathways that can ultimately affect clock-gene expression.

Beyond temperature, many other physiological changes occur during wakefulness that can subse-

quently affect clock-gene expression. This has been well documented for Per2 which can act as a

sensor of stress, light, and temperature (Franken, 2013; Schibler et al., 2015), which is especially

relevant in sleep deprivation studies. Another example is oxygen consumption which varies with

sleep-wake state (Jung et al., 2011). Changes in oxygen levels can modulate the expression of clock

genes through HIF1a (Adamovich et al., 2017). Moreover, during sleep deprivation, corticosterone

levels increase, which subsequently amplifies the expression of some, but not all, clock genes

(Mongrain et al., 2010).

We could not corroborate the hepatic increase in heat shock transcripts (Hsf1, Hsp90b1 and

Hspa5) and in Per2 after sleep deprivation as reported in other studies (Diessler et al., 2018;

Maret et al., 2007), whereas we did confirm the sleep-deprivation-induced changes in Cirbp, Rbm3-

short, Dbp and Nr1d1. We cannot readily explain this discrepancy between our current and our pre-

vious studies.

Finally, we would like to briefly address an obvious shortcoming. The hypothesis of this study is

based on results obtained in a relatively simple in vitro model (i.e. immortalized fibroblasts) and

applied to a far more complex in vivo model (i.e. cortices and livers of freely behaving mice). Unpub-

lished observations on the circadian dynamics of the expression of CLOCK:ARNTL target genes in

the liver, such as Nr1d1 and Dbp, indicate an increased circadian amplitude in Cirbp KO mice;

that is the opposite phenotype from that observed in vitro (mentioned in Schibler et al., 2015). This

observation might be relevant in explaining the unanticipated increase in Per2 and Clock expression

after sleep deprivation observed in the cortex of Cirbp KO mice. Furthermore, we could not consis-

tently reproduce the importance of CIRBP in determining the ext/com ratio of Sfpq (see also Fig-

ure 4-B). Thus, in vitro findings will not always predict in vivo results, which could explain the lack of

a widespread CIRBP-dependent change in clock-gene expression after sleep deprivation.

Conclusion
This hypothesis-driven study explored whether the sleep-deprivation-induced changes in clock-gene

expression could be mediated through the cold-induced transcript CIRBP. After sleep deprivation,

the cortical expression of Nr1d1, which we recently discovered to be of importance for the sleep

homeostat (Mang et al., 2016), was attenuated in Cirbp KO mice, whereas the expression of two

other clock genes, Per2 and Clock, was amplified. Thus, the sleep-deprivation-induced changes in

clock-gene expression are modulated by CIRBP, but not always in the anticipated direction.

A large body of evidence has shown that clock genes are crucial for metabolism (reviewed in

Panda, 2016). This is supported by the observation that disturbance of clock-gene expression,

through for example genetic manipulations in mice or shift work in humans, can lead to the develop-

ment of metabolic disorders (Rudic et al., 2004) (Karlsson et al., 2001). Not only sleeping at the

wrong time, but also sleeping too little or of poor quality can induce disturbed metabolic state both

in rats (Barf et al., 2010) and humans (Copinschi et al., 2014). Because sleep loss affects clock-gene

expression (Franken, 2013), we propose that this could represent a common pathway through

which both sleep and circadian disturbances lead to metabolic pathologies. It is thus of importance

to determine the pathways through which a disturbed sleep-wake distribution affects clock-gene

expression. We show that temperature and CIRBP contribute to this process, and we identified the

expression of Nr1d1 as one of the genes affected by CIRBP. Genetic (Delezie et al., 2012) and phar-

macological (Solt et al., 2012) studies have shown that this transcriptional repressor is important for
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healthy metabolic functioning. Further experiments could address the metabolic consequences of

the attenuated response in Nr1d1 to sleep loss.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(M. Musculus (male))

Cirbp KO; Cirbp WT PMID: 22711815 RRID:MGI:5432528 Professor Jun
Fujita
(Kyoto University)

Sequence-based
reagent

RT-qCPR primers This paper. See Table 5

Commercial
assay or kit

RNeasy Lipid
Tissue Mini Kit 50

Qiagen Catalog no. 74804

Commercial
assay or kit

RNeasy Plus Mini Kit 50 Qiagen Catalog no. 74134

Commercial
assay or kit

Invitrogen Superscript
II reverse transcriptase

Thermo Fisher Catalog no. 18064022

Commercial
assay or kit

TaqMan mastermix Thermo Fisher Catalog no. 4369510

Table 5. Sequences of the forward and reverse primer and probe used for the RT-qPCR.

GeneName FwdPrimer RevPrimer Probe

Cirbp AGGGTTCTCCAGAGGAGGAG CCGGCTGGCATAGTAGTCTC CGCTTTGAGTCCCGGAGTGGG

Clock CGAGAAAGATGGACAAGTCTACTG TCCAGTCCTGTCGAATCTCA TGCGCAAACATAAAGAGACCACTGCA

Dbp CGTGGAGGTGCTTAATGACCTTT CATGGCCTGGAATGCTTGA AACCTGATCCCGCTGATCTCGC

Dusp4 GTTCATGGAAGCCATCGAGT CCGCTTCTTCATCATCAGGT TCCCGATCAGCCACCATCTGC

Eef1a2 CCTGGCAAGCCCATGTGT TCATGTCACGAACAGCAAAGC TGAGAGCTTCTCTGACTACCCTCCACTTGGT

Gadph TCCATGACAACTTTGGCATTG CAGTCTTCTGGGTGGCAGTGA AAGGGCTCATGACCACAGTCCATGC

Homer1a GCATTGCCATTTCCACATAGG ATGAACTTCCATATTTATCCACCTTACTT ACA5ATT5AATT5AG5AATCATGA (*)

Hsf1 CAACAACATGGCTAGCTTCG CTCGGTGTCATCTCTCTCAGG TGAGCAGGGTGGCCTGGTCA

Hsp90b1 TGTACCCACATCTGCACCTC TTGGGCATCATATCATGGAA CGCCGCGTATTCATCACAGATGA

Hspa5 CACTTGGAATGACCCTTCG GTTTGCCCACCTCCAATATC TGGCAAGAACTTGATGTCCTGCTGC

Npas2 AGGAAAGGACGTCTGCTTCA CCAAGCTATGCCTCGAAGTG CCTGGCAACCCCGCAGTTCTTA

Per2 ATGCTCGCCATCCACAAGA GCGGAATCGAATGGGAGAAT ATCCTACAGGCCGGTGGACAGCC

Rbm3-long TGATGCTGTCTTCAGGATGC GGCCCAACACAAGTAAAGGA TCAAGGATGAGGTAAGTATGCTATCCTTGAGC

Rbm3-short GGCTATGACCGCTACTCAGG CAGCAATTTGCAAGGACGAT TGAGATGGGGCATGCACACA

Nr1d1 AGGGCACAAGCAACATTACC CAGGCGTGCACTCCATAGT AGGCCACGTCCCCACACACC

Sfpq GCATTTGAAAGATGCAGTGAA CAGGAAGACCATCTTCGTCA TCGCCCAGTCATTGTGGAACCA

Sfpq_Comm TGGATGTTAGCAGTTTATTGACC GCACAAGGTACACTGCCATT TGTAAATGGCCTGTTTGGGCAGG

Sfpq_Ext TGCTTTCCTCCCACCATAAG TTGCTCTAACGAAAGGAAATTCA TGGGGATGTTTTGATGATGTCAGTTCA

Sirt1 TTGTGAAGCTGTTCGTGGAG CTCATCAGCTGGGCACCTA TTTTAATCAGGTAGTTCCTCGGTGCCC

Tbp TTGACCTAAAGACCATTGCACTTC TTCTCATGATGACTGCAGCAAA TGCAAGAAATGCTGAATATAATCCCAAGCG

(*) 5 = propynyl dC; increases the melting temperature of the probe.

DOI: https://doi.org/10.7554/eLife.43400.030
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Mice and housing conditions
Cirbp KO mice, kindly provided by Prof Jun Fujita (Kyoto University, Japan), were maintained on a

C57BL6/J background. In these mice, Cirbp exons were replaced by a TK-neo gene through homolo-

gous recombination in D3 embryonic stem cells, resulting in the absence of the Cirbp transcript and

protein (Masuda et al., 2012). Breeding couples or trios consisted of heterozygous male and female

mice. WT littermates were used as controls. Throughout all the experiments, mice were individually

housed in polycarbonate cages (31 � 18 � 18 cm) with food and water ad libitum and exposed to a

12 hr light/12 hr dark cycle (LD12:12). Light was delivered by overhead fluorescent tubes resulting in

70–90 lux at cage level. All experiments were approved by the Ethical Committee of the State of

Vaud Veterinary Office Switzerland under license VD2743 and 3201.

EEG/EMG and thermistor surgery
At the age of 9 to 13 weeks, 17 KO and 20 WT male mice were implanted with electroencephalo-

gram (EEG) and electromyogram (EMG) electrodes (eight experimental cohorts). The surgery took

place under deep xylazine/ketamine anesthesia supplemented with isoflurane (1%) when necessary

(for details see Mang and Franken, 2012). Briefly, six gold-plated screws (diameter 1.1 mm) were

screwed bilaterally into the skull over the frontal and parietal cortices. Two screws served as EEG

electrodes and the remaining four anchored the electrode-connector assembly to the skull. As EMG

electrodes, two gold wires were inserted into the neck musculature. Of all EEG/EMG implanted

mice, 8 KO and 9 WT mice were implanted with a thermistor (serie P20AAA102M, General Electrics

(currently Thermometrics), Northridge, CA) which was placed on top of the right cortex (2.5 mm lat-

eral to the midline, 2.5 mm posterior to bregma). The EEG and EMG electrodes (and thermistor)

were soldered to a connector and cemented to the skull. Mice recovered from surgery during 5–7

days before they were connected to the recording cables in their home cage for habituation, which

was at least 6 days prior to the experiment. In total no less than 11 days were scheduled between

surgery and start of experiment.

Experimental protocol and data acquisition
EEG and EMG signals, cortical temperature and locomotor activity were recorded continuously for

96 hr under LD with the same lighting conditions as the housing conditions (see above). The record-

ing started at light onset; that is Zeitgeber Time (ZT)0. During the first 48 hr (baseline days 1 and 2),

mice were left undisturbed to establish a baseline. Starting at ZT0 of day 3, mice were sleep

deprived by gentle handling for 6 hr (ZT0–6), as described in Mang and Franken (2012). The

remaining 18 hr of day 3 and the entire day 4 were considered as recovery (days REC1 and REC2,

respectively). The analog EEG and EMG signals were amplified (2,000�), digitized at 2 kHz and sub-

sequently down sampled to 200 Hz and stored. The EEG was subjected to a discrete Fourier trans-

formation yielding power spectra (range: 0–100 Hz; frequency resolution: 0.25 Hz; time resolution:

consecutive 4 s epochs; window function: Hamming). Thermistors were supplied with a constant

measuring current (Iconst = 100 microA), and voltage (V) was measured at 10 Hz to calculate the

median resistance (Rt) per 4 s epoch as in equation. (1).

Rt ¼
V

Iconst
(1)

Each thermistor has an individual material constant, b. The resistance was measured at 25˚C
(R25˚C) and 37˚C (R37˚C) by the manufacturer, and used to determine b as in equation.(2), with

temperature values T in ˚Kelvin (˚C + 273.15).

b¼
T25�T37
T25 �T37

�ln
R37�C

R25�C

(2)

Following on equation. (2), the temperature (t) in ˚C can be calculated as described in

equation. (3).

t
�Cð Þ ¼

1

b
� log

Rt

R25�C

� �

þ
1

T25�C

� ��1

�273:15 (3)
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The EEG, EMG, and voltage across the thermistor were recorded with Hardware (EMBLA) and

software (Somnologica-3) purchased from Medcare Flaga (EMBLA, ResMed, USA). Locomotor activ-

ity was detected with passive infrared sensors (Visonic Ltd, Tel Aviv, Israel) and quantified with

ClockLab software (ClockLab, ActiMetrics, Wilmette, IL).

Analysis of locomotor activity
To inspect the time course of locomotor activity corrected for time-spent-awake, raw locomotor

activity was expressed per unit of time awake (minutes) in percentiles to which an equal amount of

time-spent-awake contributed (as in Figure 3-G). The number of percentiles per recording period

were chosen according to the prevalence of wakefulness, where six percentiles were used during the

light phase and 12 during the dark phase, with the exception for six sections during the sleep depri-

vation and three sections during the remaining 6 hr of the light phase of recovery day 1. To assess

genotype differences in locomotor activity (Figure 6), the absolute number of movements were

inspected. The locomotor activity recordings of four mice (3 WT, 1 KO) were interrupted due to

technical problems during the experiment, leaving data from 17 WT and 16 KO mice for analyses

involving locomotor activity.

After the EEG-based sleep phenotyping, we determined circadian rhythms in locomotor activity

under constant dark (DD) conditions lasting at least 2 weeks in 5 WT and 7 KO mice. Period length

was determined by Chi-squared test with ClockLab software (ClockLab, ActiMetrics, Wilmette, IL).

Determination of behavioral states
Offline, the mouse’s behavior was visually classified as ‘Wakefulness’, ‘REM sleep’, or ‘NREM sleep’

for consecutive 4 s epochs based on the EEG and EMG signals, as previously described (Mang and

Franken, 2012). Wakefulness was characterized by EEG activity of mixed frequency and low ampli-

tude and variable muscle tone. NREM sleep was defined by synchronous activity in the delta fre-

quency range (1–4 Hz), and low and stable muscle tone. REM sleep was characterized by regular

theta oscillations (6–9 Hz) with low EMG activity. Waking was further differentiated into ‘quiet wak-

ing’ and ‘theta-dominated waking’ (TDW). Theta-dominated waking was determined based on the

relative importance of power in the 6.5 to 12.0 Hz range to the overall power in the EEG of an arte-

fact-free epoch scored as wakefulness, as described in Vassalli and Franken (2017). We refer to

waking that is not classified as theta-dominated waking as ‘quiet’ waking. Epochs containing EEG

artefacts were marked according to the state in which they occurred and excluded from EEG spec-

tral analysis but included in the sleep-wake state analyses. During the 4-day recording, 7.0 ± 0.9%,

2.1 ± 0.3% and 2.5 ± 0.2% of the epochs were scored as an artefact in waking, NREM, and REM

sleep, respectively, and this did not differ between genotypes (t-tests, t(35)=1.77, p=0.09; t(35)

=0.64, p=0.53; t(35)= 0.99, p=0.33, respectively).

Analysis of cortical temperature
The raw cortical temperature data showed unexpected variation. Therefore, we inspected the inter-

individual variation in daily amplitude and absolute cortical temperature levels. The latter was deter-

mined in two ways: i) by averaging cortical temperature during the last five hours of sleep depriva-

tion, thus minimizing the sleep-wake state incurred differences in cortical temperature and ii) by

averaging cortical temperature during the 12 hr baseline light phase. These measures were highly

correlated (R2 = 0.99; p<0.0001). Variation in the daily amplitude was quantified by averaging the

difference between the highest and lowest hourly mean of cortical temperature of each of the 2

baseline days. No effect of genotype on absolute average cortical temperature or amplitude was

detected (t-test, t(12)=0.61, p=0.55; t(12)=-0.63, p=0.54, respectively). Two mice (one of each geno-

type) exhibited a ca. 2-fold reduction in amplitude together with 2˚C higher values during the sleep

deprivation relative to the other mice (Figure 7, pink symbols). Therefore, we excluded these two

mice from subsequent cortical temperature analysis. Three other mice (2 WT and 1 KO) showed nor-

mal amplitude but overall lower absolute values (Figure 7, blue symbols). We corrected for this dif-

ference by raising their cortical temperature values by the difference between the cortical

temperature reached in each of these three mice during the sleep deprivation to the average cortical

temperature reached over the same recording period in the remaining nine mice. Of note, most of

our cortical temperature analyses focus on its relative sleep-wake-dependent changes, which are not
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affected by differences in absolute cortical temperature values. During the recording, one KO mouse

and one WT mouse had random fluctuations of cortical temperature beyond physiological reach and

were therefore excluded from analysis involving the daily dynamics of cortical temperature (Figure 3).

In the recovery, a KO mouse was excluded due to aberrant high cortical temperature that could not

be accounted for by the sleep-wake distribution, leaving 6 WT and 5 KO mice for analyses involving

REC1 and REC2.

Because visualization of all 4 s epochs occurring in 24-hr day is not compatible with the resolution

of Figure 2-A, sleep-wake states were averaged per minute and assigned to either wake, NREM or

REM sleep. Because REM sleep occurs less and in shorter bouts than waking and NREM sleep, this

state is slightly underrepresented in the hypnogram of Figure 2-A. Cortical temperature values were

averaged per minute.

We analyzed cortical temperature 1.5 min before and after sleep-wake state transitions (i.e. tran-

sitioning from wake to NREM sleep, NREM to REM sleep, REM sleep to wake and NREM sleep to

wake). A sleep-wake state transition was selected when the state immediately before and after the

transition lasted at least eight epochs (i.e. >32 s). With this criterion, an average of 38 wake to

NREM sleep, 101 NREM sleep to REM sleep, 28 REM sleep to wake and 32 NREM sleep to wake

transitions per mouse during the two baseline days were detected. The profile of cortical tempera-

ture changes before and after the transition was constructed by calculating temperature relative to

the mean temperature at a given sleep-wake state transition (i.e. the average of temperature in the

epoch before and after the sleep-wake state transition). We subsequently constructed an individuals’

average cortical temperature profile for each sleep-wake state transition. For this average, at least

10 traces were contributing at a given time point to prevent that average individual temperature

profiles were based on a few transitions only. Thus, the further from the sleep-wake state transition,

the less epochs contributed to the average individual cortical temperature profile. One WT mouse

exhibited an extreme drop in cortical temperature (�0.2˚C in a 4 s epoch) after the transition from

NREM sleep to wake in its average cortical temperature trace, but not in other sleep-wake state

transitions. We attributed this observation to a technical artefact and therefore this mouse was
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Figure 7. Assessment of amplitude and absolute values of cortical temperatures. Two outliers were detected

(pink), whereas three others were corrected for their low values (blue).

DOI: https://doi.org/10.7554/eLife.43400.031

The following source data is available for figure 7:

Source data 1. The daily amplitude of cortical temperature and cortical temperature reached during sleep

deprivation.

DOI: https://doi.org/10.7554/eLife.43400.032
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excluded from the NREM sleep to wake and wake to NREM sleep transitions. No transitions from

waking to REM sleep, nor from REM to NREM sleep are depicted because these events are relatively

rare and short and were therefore not detected with our strict criteria.

The residuals of the correlation between waking and cortical temperature exhibited a circadian

pattern under baseline conditions. We visualized the properties of this pattern further by fitting a sin-

ewave through the data (Prism, non-linear regression; sine-wave with non-zero baseline; least

squares fit).

Analysis of EEG based on sleep-wake state
Unless otherwise stated, all mice (20 WT and 17 KO) were included in the analyses based on the

EEG data. Spectral content of the EEG within sleep-wake states was calculated as follows. To

account for inter-individual differences in overall EEG power, EEG spectra were expressed as a per-

centage of an individual reference value calculated as the total EEG power across 0.75–45 Hz and all

sleep-wake states in the 48 hr baseline. This reference value was weighted so that for all mice the

relative contribution of the three sleep-wake states (wake, NREM and REM sleep) to this reference

value was equal.

Theta-peak frequency was calculated by determining the frequency at which power density peaks

per 4 s epoch and subsequently averaged per individual. Power density peaks were quantified

in the 6.5 to 12.0 Hz range and the 5.5 to 12.0 Hz range for theta-dominated waking and REM sleep,

respectively.

Time course analysis of EEG delta power (i.e. the mean EEG power density in the 0.75–4.0 Hz

range in NREM sleep) during baseline and after sleep deprivation was performed as described previ-

ously (Franken et al., 1999), and similar to the analysis of locomotor activity per unit of waking. The

light periods of baseline days 1 and 2, and recovery day 2 were divided into 12 percentiles, the

recovery day 1 light period (ZT6–12) into eight sections, and all dark periods into six sections. The

timing of these percentiles was based on the prevalence of NREM sleep. EEG delta power values in

NREM sleep were averaged within each percentile and then expressed relative to the mean value

reached in the last 4 hr of the two main rest periods in baseline between ZT8–12. This reference was

selected because delta power reaches lowest values at this time of the day and is least influenced by

differences in prior history of sleep and wakefulness (see also Franken et al., 1999). In the time

course of NREM delta power, one mouse (KO) demonstrated a strong decrease over the course of

the experiment which could not be attributed to changes in the sleep-wake distribution. 9 out of the

12 delta power values during the light phase of recovery day 2 in this mouse were outliers (MAD

outlier test, for details see Leys et al., 2013). This mouse was excluded from the analyses involving

sleep homeostasis (Figure 5).

The effect of 6 hr sleep deprivation on subsequent time spent in NREM and REM sleep was

assessed by calculating the recovery-baseline difference in sleep time per 1 hr intervals.

Simulating NREM sleep EEG delta power [Process S]
We applied a computational method to predict the change in delta power during NREM sleep

based on the sleep-wake distribution as described before (Franken et al., 2001). Process S is

assumed to increase according to an exponential saturating function with time constant ti during

waking and REM sleep, and exponentially decreasing with a time constant td during NREM sleep

(equations. (4) and (5), respectively).

Stþ1 ¼UA� UA� Stð Þ�e
�dt

ti (4)

Stþ1 ¼ LAþ St �LAð Þ�e
�dt

td (5)

UA represents the upper asymptote, LA the lower asymptote and dt the time step of the iteration

(4 s). Both asymptotes were estimated for each individual mouse. The upper asymptote was based

on the 99% level of the relative frequency distribution of delta power reached in all 4 s epochs

scored as NREM sleep in the 4-day recording. As an estimate of the lower asymptote, the intersec-

tion of the distribution of delta power values in NREM sleep with REM sleep was taken. At the start

of the simulation, an iteration through the first 24 hr was performed with S0 = 150 at t = 0. The value
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reached after 24 hr is independent of S0 at t = 0 and, assuming a steady state during baseline,

reflects Process S at the start of the baseline for a given combination of time constants.

The fit was optimized by minimizing the mean squared difference of simulated and observed

delta power for a range of ti: 1–25 hr, step size 0.125 hr; td: 0.1–5.0 hr, step size 0.025 hr; that is the

simulation was run for all 38’021 combinations of ti and td for each mouse. The combination of ti
and td giving the best fit was used to assess differences in Process S between genotypes.

We noted a subtle but consistent linear discrepancy in the alignment of the simulated Process S

to the measured delta power values at the end of the light phase on baseline day 1 and 2, and

recovery day 2 (Pearson correlation, slope6¼0: 1 sample t-test; t(35)=-4.38, p=0.0001). This change

correlated well with the day-to-day changes in total spectral power in the EEG calculated across all

sleep-wake states in baseline day 1 and 2, and recovery day 2 (Pearson correlation: R2 = 0.70,

p<0.0001; n = 36). There was no effect of genotype on the slope (D delta power %/h; students’

t-test; t(34)=0.62; p=0.54; WT:�0.086 ± 0.027; KO:�0.065 ± 0.021) or intercept (t(34)=-0.88; p=0.38;

WT: 101.5 ± 0.62; KO: 100.7 ± 0.56; WT: n = 20, KO: n = 17) of the linear correlation. We attributed

these linear changes to be of non-biological origin and detrended the measured NREM sleep EEG

delta power values before optimizing the fit between observed and simulated delta power.

Gene expression in liver and brain
Five mice of each genotype (n = 15 per genotype in total) were sacrificed either prior to sleep depri-

vation (ZT0), at ZT6 allowing them to sleep ad lib (i.e. without sleep deprivation; ZT6-NSD), or at

ZT6 after 6 hr sleep deprivation (ZT6-SD) across four experimental cohorts. Mice were randomly

assigned to one of the three experimental conditions. Genes of interest included transcripts affected

by sleep deprivation (Maret et al., 2007; Mongrain et al., 2010) and/or by the presence of CIRBP

(Liu et al., 2013; Morf et al., 2012) with a special interest for clock genes. Specific forward and

reverse primers and Taqman probes were designed (see Table 5) to quantify mRNA.

Upon sacrifice, both the cerebral cortex and liver were extracted and immediately flash frozen in

liquid nitrogen. Samples were stored at �80˚C. RNA from cortex was extracted and purified using

the RNeasy Lipid Tissue Mini Kit 50 (QIAGEN, Hombrechtikon, Switzerland); RNA from liver was

extracted and purified using the RNeasy Plus Mini Kit 50 (QIAGEN, Hombrechtikon, Switzerland),

according to manufacturer’s instructions. RNA quantity (NanoDrop ND-1000 spectrophotometer;

Thermo Scientific, Wilmington, NC, USA) and integrity (Fragment Analyzer, Advanced Analytical,

Ankeny, IA, USA) was measured and verified for each sample. 1000 ng of purified total RNA was

reverse-transcribed in 20 mL using a mix of First-strand buffer, DTT 0.1M, random primers 0.25 mg/m

l, dNTP 10 mM, RNAzin Plus RNase Inhibitor and Superscript II reverse transcriptase (Invitrogen, Life

Technologies, Zug, Switzerland) according to manufacturers’ procedures. The cDNA was diluted 10

times in Tris 10 mM pH 8.0, and 2 mL of the diluted cDNA was amplified in a 10 mL TaqMan reaction

in technical triplicates on an ABI PRISM HT 7900 detection system (Applied Biosystems, Life Technol-

ogies, Zug, Switzerland). Cycler conditions were: 2 min at 50˚C, 10 min at 95˚C followed by 45 cycles

at 95˚C for 15 s and 60˚C for 1 min. Standard curves were calculated to determine the amplification

efficiency (E). A sample maximization strategy was used where all biological replicates of one tissue

were amplified for two genes per plate. Gene expression levels were normalized to two reference

genes (cortex: Eef1a2 and Gapdh: M = 0.23, CV = 0.09 and liver: Gadph and Tbp; M = 0.32,

CV = 0.11) using QbasePLUS software (Biogazelle, Zwijnaarde, Belgium). Rbm3 isoforms

were quantified in a separate run in liver and cortex, again with their housekeeping genes (same as

previously; cortex: M = 0.22, and CV = 0.08; liver: M = 0.13, CV = 0.05). Transcripts with an average

Ct-value >30 were omitted from analysis (in KO and WT livers: Rbm3, Dusp4, Homer1a and Npas2;

in cortex and liver of KO mice: Cirbp). Results are expressed as normalized relative quantity (NRQ)

which based on the overall mean expression per gene, which was set at 1.0 (Hellemans et al.,

2007).

CIRBP affects the poly-adenylation sites of several transcripts (Liu et al., 2013). We explored if

this newly discovered role of CIRBP could be corroborated in our study by focusing on the transcript

Splicing factor, proline and glutamine rich (Sfpq) which exhibits CIRBP-dependent alternative poly-

adenylation (APA) (Liu et al., 2013, see their Supplemental Figures 4-5). We calculated the ratio of

the prevalence of the external 3’UTR region over the common region according to equation. (6),
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Ratio ext = comm ¼
E
�Ctext

E�Ctcomm
(6)

where E is the amplification efficiency and Ctext and Ctcomm the number of cycles for the detection

of the extended and common isoform, respectively.

Statistics
Statistics were performed in R (version 3.3.2) and Prism (version 7.0). The threshold of significance

was set at p=0.05, and all statistics were solely performed on biological replicates. To be more spe-

cific, our RT-qPCR data stems from five biological replicates, whereas amplification of cDNA from

one biological replicate is performed in three technical replicates. Deviations from the mean are rep-

resenting standard error of the mean. The distribution of the locomotor activity data was normalized

by a log2 transformation on the hourly values, allowing for subsequent parametric analyses on the

relationship between cortical temperature and locomotor activity as in Figure 3. Time course data

were analyzed by one- and two-way repeated measures (RM) analysis of variance (ANOVA) with as

factors ‘time’ and ‘genotype’ (GT). Upon significance, post-hoc Fisher LSD tests were computed. Dif-

ferences between baseline and recovery values within genotype were computed by paired t-tests.

EEG spectra were also analyzed by one- and two-way RM ANOVA with as factors ‘time’ or ‘fre-

quency’ and ‘genotype. When genotype or its interaction with time or frequency reached signifi-

cance, post-hoc t-tests were computed. The above-mentioned analyses were all performed in Prism.

Correlation coefficients of linear regression were calculated in Prism over all hourly values of loco-

motor activity, cortical temperature and waking per genotype (96 per mice). To compare slopes of

regression lines between genotypes, an ANCOVA was applied based on (Zar, 1984) and run in

Prism. To quantify the contribution of waking and locomotor activity independent from each other

to cortical temperature, a partial correlation was performed (R software; package ‘ppcor’, function

pcor.test). Mixed model analysis was performed with factors locomotor activity (log2 transformed),

waking, and genotype (R packages ‘lme4’, ‘lmer’, ‘lmerTest’, and’ MuMIn’). Model1 quantified the

predictive power of waking, Model2 of waking and locomotor activity per unit of waking (LMA/Wak-

ing) and Model3 of waking, LMA/Waking and its interaction, to predict cortical temperature. Predic-

tive power of models was compared with Chi-squared tests by assessing the statistical significance

in the reduction of residual sum of squares between two models ordered by complexity; that is

Model1 was compared to Model2, and upon significance, Model2 was compared to Model3. Good-

ness-of-fit was assessed by the marginal R-squared (R2
m) which explains the effect of the fixed fac-

tors only, and the conditional R-squared (R2
c), which considers the individual variance as well and is

therefore more biological relevant. Hence, in the results section only the R2
c values are reported.

For the molecular data, the qPCR NRQ values were log2-transformed to normalize the distribu-

tion. Genotype differences at ZT0 were tested with a t-test. The effect of sleep deprivation and

genotype at ZT6 was assessed by two-way ANOVA with post-hoc Fisher LSD tests upon significance.

One outlier (WT, cortex) in the ext/com ratio analyses was detected by the Grubbs outliers test

(a <0.05) and excluded.
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Buzsáki G. 2006. Rhythms of the Brain. England: Oxford University Press. DOI: https://doi.org/10.1093/acprof:
oso/9780195301069.001.0001
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