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Abstract The VPS13A gene is associated with the neurodegenerative disorder Chorea

Acanthocytosis. It is unknown what the consequences are of impaired function of VPS13A at the

subcellular level. We demonstrate that VPS13A is a peripheral membrane protein, associated with

mitochondria, the endoplasmic reticulum and lipid droplets. VPS13A is localized at sites where the

endoplasmic reticulum and mitochondria are in close contact. VPS13A interacts with the ER

residing protein VAP-A via its FFAT domain. Interaction with mitochondria is mediated via its

C-terminal domain. In VPS13A-depleted cells, ER-mitochondria contact sites are decreased,

mitochondria are fragmented and mitophagy is decreased. VPS13A also localizes to lipid droplets

and affects lipid droplet motility. In VPS13A-depleted mammalian cells lipid droplet numbers are

increased. Our data, together with recently published data from others, indicate that VPS13A is

required for establishing membrane contact sites between various organelles to enable lipid

transfer required for mitochondria and lipid droplet related processes.

DOI: https://doi.org/10.7554/eLife.43561.001

Introduction
The vertebrate VPS13 protein family consists of four closely related proteins, VPS13A, VPS13B,

VPS13C and VPS13D (Velayos-Baeza et al., 2004). Mutations in VPS13B, VPS13C and VPS13D are

associated with the onset of neurological and developmental disorders (Kolehmainen et al., 2003;

Seifert et al., 2009; Lesage et al., 2016; Gauthier et al., 2018; Seong et al., 2018). Mutations in

the VPS13A gene are causative for a specific autosomal recessive neurological disorder, Chorea

Acanthocytosis (ChAc) (Rampoldi et al., 2001; Ueno et al., 2001). Most reported VPS13A mutations

in ChAc patients result in low levels or absence of the protein (Dobson-Stone et al., 2004). ChAc

patients display gradual onset of hyperkinetic movements and cognitive abnormalities

(Hermann and Walker, 2015). The function of VPS13A may not be restricted to the brain but also

to other tissues since VPS13A is ubiquitously expressed in human tissues (Velayos-Baeza et al.,

2004; Rampoldi et al., 2001).
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The molecular and cellular function of VPS13 proteins only recently start to emerge. The current

knowledge is largely derived from studies about the only Vps13 gene in Saccharomyces cerevisiae.

In yeast, Vps13 is a peripheral membrane protein localized at membrane contact sites including

nucleus-vacuole, endoplasmic reticulum (ER)-vacuole and endosome-mitochondria contact sites

(Park et al., 2016; Lang et al., 2015; John Peter et al., 2017). Vps13 mutants are synthetically

lethal with mutations in genes required to form the ER-mitochondria encounter structure (ERMES)

complex (Park et al., 2016; Lang et al., 2015), suggesting a redundant role of Vps13 at membrane

contact sites. In addition, Vps13 is involved in the transport of membrane bound proteins between

the trans-Golgi network and prevacuolar compartment (PVC) (Redding et al., 1996; Brickner and

Fuller, 1997) and from endosome to vacuole (Luo and Chang, 1997). Vps13 is also required for pro-

spore expansion, cytokinesis, mitochondria integrity, membrane contacts and homotypic fusion and

the influential role of Vps13 in these processes is postulated to be dependent on the availability of

phosphatidylinositides (Park et al., 2016; Lang et al., 2015; John Peter et al., 2017; Park and Nei-

man, 2012; Nakanishi et al., 2007; De et al., 2017; Rzepnikowska et al., 2017).

The VPS13A gene is located at chromosome 9q21 and encodes a high molecular weight protein

of 3174 amino acids (Velayos-Baeza et al., 2004; Rampoldi et al., 2001; Ueno et al., 2001). In vari-

ous model systems, loss of VPS13A is associated with diverse phenotypes, such as impaired auto-

phagic degradation, defective protein homeostasis (Muñoz-Braceras et al., 2015; Lupo et al.,

2016; Vonk et al., 2017), delayed endocytic and phagocytic processing (Korolchuk et al., 2007;

Samaranayake et al., 2011), actin polymerization defects (Föller et al., 2012; Alesutan et al.,

2013; Schmidt et al., 2013; Honisch et al., 2015) and abnormal calcium homeostasis (Yu et al.,

2016; Pelzl et al., 2017). Proteomic studies revealed that VPS13A is associated with multiple cellular

organelles (Huttlin et al., 2015; Zhang et al., 2011; Hung et al., 2017) suggesting that VPS13A

probably plays a role in a multitude of cellular functions and its loss of function could be associated

with a wide range of cellular defects in eukaryotes. Here, to understand the versatile role of VPS13A

at the molecular level, the subcellular localization, binding partners and the role of the domains of

VPS13A were studied in mammalian cells. We used biochemical and sub-cellular localization studies

and demonstrated that VPS13A is associated to multiple cellular organelles including at areas where

mitochondria and ER are in close proximity and at lipid droplets. By using CRISPR/Cas9 a VPS13A

knock-out cell-line was generated to investigate these organelles under VPS13A-depleted condi-

tions. Part of the observed phenotype is also present in a Drosophila melanogaster Vps13 mutant, a

phenotype rescued by overexpression of human VPS13A in the mutant background, indicating a

conserved function of this protein. We discuss how our findings, in combination with other recently

published VPS13A-related manuscripts, are consistent with an ERMES-like role for VPS13A at mem-

brane contact sites in mammalian cells.

Results

Human VPS13A is a peripheral membrane protein
To determine the subcellular localization of endogenous human VPS13A, we first used a biochemical

approach and the membrane and cytosolic fractions of HeLa cells were separated by high-speed

centrifugation. VPS13A was enriched in the pellet, which contained the transmembrane epidermal

growth factor receptor (EGFR) and relatively little of a-tubulin, a cytosolic marker protein

(Figure 1A, Figure 1—figure supplement 1). To further investigate the membrane association of

VPS13A, a detergent based subcellular fractionation was performed in HEK293T cells (Holden and

Horton, 2009). Following digitonin treatment and centrifugation, more than 80% of VPS13A,

remained in the fraction containing membrane associated proteins such as EGFR and the ER integral

protein- VAMP-associated protein A (VAP-A), and little VPS13A was detected in the cytosolic non-

membrane bound and GAPDH containing fraction (Figure 1B and B’). The type of membrane associ-

ation of VPS13A was further investigated by assessing its dissociation from lipid bilayers after treat-

ment with different chemical agents. Similarly to ATP5A, a peripheral membrane associated protein

of mitochondria, part of VPS13A was solubilized by alkaline and urea-containing solutions. In con-

trast, the integral membrane protein EGFR was not solubilized by alkaline containing solutions and

was, as expected, only partly removed by urea containing solutions (Figure 1C,C’). Altogether, these

analyses suggest that VPS13A is a peripheral membrane-associated protein.

Yeshaw et al. eLife 2019;8:e43561. DOI: https://doi.org/10.7554/eLife.43561 2 of 37

Research article Cell Biology

https://doi.org/10.7554/eLife.43561


D

Fractions

P
ro

te
in

 l
e
v
e
l s

 (
%

o
f 
to

ta
l)

D’

1 3 5 7 9 11 13 15 17 19 21In
p

u
t

VPS13A

RAB7

VAP-A

ATP5A

P
e

lle
t

5%

55%

C’

1M KCl PH=11 6M UreaCtr

VPS13A

EGFR

ATP5A

M
e

m
b

ra
n

e

S
o

lu
b

le

In
s
o

lu
b

le

S
o

lu
b

le

In
s
o

lu
b

le

S
o

lu
b

le

In
s
o

lu
b

le

S
o

lu
b

le

In
s
o

lu
b

le

1M KCl PH=11 6M UreaCtr

C

A B

VPS13A

GAPDH

VAP-A

EGFR

In
pu

t

C
yt
os

ol

M
em

br
an

e

0

20

40

60

80

100

VPS13A

GAPDH

EGFR

VAP-A

Cytosol Membrane

P
ro

te
in

 l
e
v
e
ls

 (
%

o
f 
to

ta
l)

VPS13A

EGFR

α-Tub

In
pu

t

C
yt
os

ol

M
em

br
an

e

0

25

50

75

100

125

V
P
S
13

A

E
G
FR

A
TP

5A

V
P
S
13

A

E
G
FR

A
TP

5A

V
P
S
13

A

E
G
FR

A
TP

5A

V
P
S
13

A

E
G
FR

A
TP

5A

Soluble Insoluble

B’

1 3 5 7 9 11 13 15 17 19 21

0

10

20

30

40 VPS13A

RAB7

VAP-A

ATP5A

P
ro

te
in

 l
e
v
e
ls

 (
%

o
f 
to

ta
l)

Figure 1. VPS13A is enriched in membrane fractions and is peripherally associated to membranes. (A) Light membrane fractions from HeLa cell

homogenates were separated by centrifugation in a cytosolic and a membrane fraction. Equal amounts of proteins were processed for immunoblot

analysis of VPS13A, EGFR and a-tubulin. (B) Digitonin extraction of cytosolic proteins in HEK293T cells were immunoblotted for the indicated proteins.

The amount of protein was quantified using ImageJ and presented as a percentage of the total (B’). (C) Membrane fractions of HeLa cells were

Figure 1 continued on next page
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To determine to which intracellular membranes endogenous VPS13A is associated, we performed

subcellular fractionation experiments on a sucrose gradient. These experiments showed that

VPS13A was predominantly detected in fractions containing VAP-A, Rab7 and ATP5A, which are

marker proteins of the ER, endosomes and mitochondria respectively (Figure 1D,D’).

VPS13A localization to mitochondria is mediated via the C-terminal end
To characterize the subcellular localization of VPS13A in more detail, GFP- and Myc-tagged VPS13A

were expressed in HEK293T cells. This yielded a high molecular weight band, corresponding to full-

length tagged VPS13A (Figure 2—figure supplement 1). Under normal growth conditions, VPS13A-

GFP showed two main subcellular distribution patterns. In most cells, VPS13A-positive filamentous

structures (Figure 2A,A’) and/or punctated or vesicular-like structures (Figure 2B’, B’) were

observed. To identify these compartments, we co-localized VPS13A with a variety of organelle

marker proteins. Although not co-localizing with the endosomal/lysosomal marker proteins Rab5,

Rab7, LAMP1 and FYCO1 (Figure 2—figure supplements 1–2), VPS13A-GFP strongly decorated

the periphery of nearly all mitochondria stained with Mitotracker (Figure 2C,C’, C” and Video 1).

To determine whether endogenous VPS13A is a mitochondrial membrane protein, crude mito-

chondria fractions isolated by centrifugation were analyzed by immunoblotting. VPS13A was highly

enriched in the mitochondria fraction and slightly in the microsomal (pellet) fraction (Figure 3—fig-

ure supplements 1–2). For the alkaline treatment, crude mitochondria fractions were incubated with

0.1 M Na2CO3 (pH = 11.5). In this experiment, TOMM20 and ATP5A, which are integral and periph-

eral mitochondria membrane proteins respectively, served as markers. While TOMM20 was mostly

retained in the insoluble membrane fraction following Na2CO3 treatment, VPS13A was now also

found in the soluble supernatant in a similar way as ATP5A (Figure 3—figure supplements 1–

2). Moreover, when crude mitochondria fractions were treated with proteinase K (PK), both

TOMM20 and VPS13A were stripped off, suggesting that VPS13A is exposed to the cytosol (Fig-

ure 3—figure supplements 1–2).

This interesting VPS13A localization to the mitochondria surface prompted us to determine the

VPS13A domain that mediates this localization. To do so, GFP-tagged truncated forms of VPS13A

(Figure 2D and Figure 3—figure supplements 3–4) were expressed in U2OS cells, which are more

stretched out and possess less rounded and more elongated mitochondria, as compared to

HEK293T, and would therefore be better suitable for these imaging studies. Most of these con-

structs showed an apparently cytosolic distribution pattern except, the C-terminal region of VPS13A

(aa 2615–3174) which showed a localization pattern similar to that of the mitochondrial outer mem-

brane marker TOMM20 (Figure 2E). Note that, although mitochondria of U2OS possess a different

shape, compared to HEK293T cells, VPS13A (aa 2615–3174) localizes in both cell lines in close vicin-

ity to mitochondria (Figure 3—figure supplement 3) Analysis of co-localization studies using Mito-

tracker and VPS13A (aa 2615–3174) showed that the VPS13A signal is localized at the periphery

rather than within mitochondria (Figure 3—figure supplement 3). This strongly suggests that the

C-terminal region of VPS13A is involved in targeting the protein to close vicinity of the outer mito-

chondrial membrane.

Figure 1 continued

prepared as in A and subjected to different chemical agents to extract proteins from membranes. Equal amount of proteins were processed for

immunoblotting using antibodies against VPS13A, EGFR and ATP5A. The amount of protein was quantified using ImageJ and presented as a

percentage of the total (C’) (D) Sucrose gradient fractionation from HeLa cells. HeLa cells were lysed in detergent free buffer and separated in 5–55%

sucrose gradients by high speed centrifugation. After TCA precipitation, fractions were processed for immunoblotting using antibodies against VPS13A,

VAP-A, RAB7 and ATP5A. Quantification of protein band intensities in D was performed using ImageJ and plotted as percentage of the total (D’). In B’,

C’, D’, error bars, mean ±s.e.m (n = 3).

DOI: https://doi.org/10.7554/eLife.43561.002

The following figure supplement is available for figure 1:

Figure supplement 1. Scan of original blots for Figure 1.

DOI: https://doi.org/10.7554/eLife.43561.003
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Figure 2. VPS13A is localized at mitochondria via its C-terminal domain. (A,B) HEK293T cells were transfected with VPS13A-GFP and the GFP signal was

visualized using confocal microscopy. White arrowheads show reticular structures (A, A’) and magenta arrowheads show vesicular structures (B, B’). Cell

borders are marked by white dashed lines and the nucleus is marked by magenta dashed lines. (C) Single stack image from a time-lapse recording of

HEK293T cells expressing VPS13A-GFP for 48 hr (Video 1). Mitochondria were labeled using Mitotracker orange. C’, C’ Line scan analysis of VPS13A-

Figure 2 continued on next page
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VPS13A localizes to the ER-mitochondria interface
Furthermore, the VPS13A localization pattern partly overlapped with the ER markers VAP-A and

BFP-Sec61B (yellow signal in Figure 3A, white arrowheads in Figure 3B,C). Note that in areas where

VPS13A and Sec61B or VAP-A are in close contact, a Mitotracker or TOMM20-positive signal is pres-

ent as well (white arrowheads in Figure 3B,C), in contrast to locations positive for an ER marker and

negative for VPS13A (magenta arrows in Figure 3B). To further investigate the localization pattern

of VPS13A in relation to the ER, we conducted time-lapse imaging of live cells expressing VPS13A-

GFP and mCherry-VAP-A. This analysis showed that VPS13A-GFP was closely associated to VAP-A

positive regions of the ER, the signals partially overlapped, and the dynamics of the VPS13A positive

regions are similar to the ER dynamics (Figure 3D and Video 2). Given the peripheral-membrane

protein characteristics of VPS13A, the decoration of mitochondria with VPS13A-GFP, its enrichment

in the outer mitochondria membrane and its close association with VAP-A positive ER regions, these

results suggest that VPS13A was enriched at the interface between these two organelles, rather than

being localized in the interior of both mitochondria and ER.

VPS13A directly binds VAP-A through its FFAT motif
We then asked what mediated the VPS13A association to the ER. Several membrane-associated pro-

teins bind to the ER resident protein VAP-A through a seven amino acids FFAT motif

(Loewen et al., 2003; Loewen and Levine, 2005; Murphy and Levine, 2016). Interestingly,

VPS13A also contains a putative FFAT motif (Murphy and Levine, 2016), which is located between

amino acids 842–848 (Figure 4A). To test whether VPS13A indeed interacts with VAP-A, we per-

formed co-immunoprecipitation experiments with endogenous proteins. In line with this hypothesis,

VAP-A was enriched in immunoprecipitates of endogenous VPS13A (Figure 4B, Figure 4—figure

supplements 1–2). Conversely, VPS13A was present in the VAP-A immunoprecipitates (Figure 4B’).

To test whether VPS13A and VAP-A interact via the putative VPS13A FFAT motif, we conducted

a set of in vitro pull-down experiments. We generated GST-tagged recombinant VPS13A fragments

(Figure 4C) that were incubated with bacterially

expressed 6x-His tagged VAP-A. We found that

all the constructs containing the VPS13A FFAT

motif were efficiently binding VAP-A

(Figure 4D), including the FFAT motif itself

(Figure 4D, Lane 3). Importantly, the introduc-

tion of the D845A point mutation in this motif,

which is known to affect VAP-A binding in other

FFAT-containing proteins (Loewen et al., 2003;

Saita et al., 2009), reduced its association to

VAP-A (Figure 4D, Lane 6). Similar results were

obtained when these GST-tagged recombinant

VPS13A fragments were incubated with HeLa

cell lysates. Following GST pull down, endoge-

nous VAP-A from HeLa cells was found to be

enriched together with GST-VPS13A fragments

Figure 2 continued

GFP and Mitotracker orange indicates the peri-mitochondrial localization of VPS13A. (D) Schematic representations of full length VPS13A and

N-terminally GFP tagged VPS13A fragments. Numbers denote the first and last amino acid positions. (E) GFP-VPS13A (green) constructs represented in

D were overexpressed in U2OS cells for 24 hr. Cells were stained for TOMM20 (red) and DAPI (blue). Line scan co-localization analysis was done for all

channels. Scale bars = 10 mm (A–C) and 25 mm (E).

DOI: https://doi.org/10.7554/eLife.43561.004

The following figure supplements are available for figure 2:

Figure supplement 1. VPS13A colocalizes with mitochondria but not with the endocytic compartment.

DOI: https://doi.org/10.7554/eLife.43561.005

Figure supplement 2. Scan of original blots for Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.43561.006

Video 1. HEK 293 T cells overexpressing VPS13-GFP

were incubated with mitotracker orange for 20 min.

Time lapse images were taken every 500 milliseconds

and the video is played at 10 frames per second.

DOI: https://doi.org/10.7554/eLife.43561.007
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Figure 3. VPS13A is localized at the ER-mitochondria interface. (A) HEK293T cells were co-transfected with VPS13A-Myc and the ER marker GFP-VAP-A.

Cells were stained with anti-Myc (red) and DAPI (blue). A’ shows higher magnification of the inserts in A. (B) Representative single stack image of

HEK293T cells expressing the ER marker BFP-Sec61B and VPS13A-GFP. Mitochondria were labeled using Mitotracker red. White arrowheads indicate

the enrichment of VPS13A at the ER-mitochondria interface. Magenta arrows indicate BFP-Sec61B positive ER tubules, negative for VPS13A-GFP and

Figure 3 continued on next page
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in a FFAT-dependent manner (Figure 4—figure supplements 3–4). These results indicate that

VPS13A interacts with VAP-A via its FFAT domain.

To investigate whether the FFAT motif is required for the localization of VPS13A to the ER, we

generated a VPS13A FFAT-deletion mutant (VPS13ADFFAT) tagged with GFP. Analysis of confocal

images showed that VPS13ADFFAT still presented co-localization to mitochondria comparable to the

full length (Figure 4—figure supplement 3, yellow signal in the overlay images) but no co-localiza-

tion was observed between ER-marker VAP-A and VPS13ADFFAT (absence of yellow signal in the

overlay image of VPS13ADFFAT and VAP-A, (Figure 4E’, Figure 4—figure supplement 3), indicating

that the FFAT domain is the main hub for ER targeting of VPS13A. The FFAT domain appeared not

to be sufficient for an in vivo association with the ER, since FFAT containing VPS13A fragments

appeared to remain cytosolic and did not show a reticular pattern (Figure 2D,E). To further investi-

gate the requirement of the FFAT domain in the interaction with VAP-A, we expressed VPS13A-

GFPDFFAT and found no immunoprecipitation with endogenous VAP-A, whereas the full length con-

struct did (Figure 4F).

The assembly of membrane contact sites is

regulated by cellular calcium levels

(Giordano et al., 2013; Idevall-Hagren et al.,

2015). Calcium levels are mainly regulated

through the activity of sarcoendoplasmic reticu-

lum calcium ATPase (SERCA), which can be phar-

macologically inhibited with thapsigargin (TG),

leading to an increase in cytosolic calcium. In

order to understand the effect of cellular calcium

on VPS13A-VAP-A interaction, we treated cells

with different concentrations of TG. GFP-VAP-A

was expressed in HeLa cells and after TG treat-

ment GFP-trap assays were used to immunopre-

cipitate GFP-VAP-A and an increased amount of

endogenous VPS13A bound to GFP-VAP-A was

observed (Figure 4G,H). The increase was pro-

portional to the concentration of TG applied.

The calcium mediated VPS13A-VAP-A interac-

tion suggests that VPS13A plays a role in ER-

mitochondria contact sites.

In conclusion, our data support a model

where VPS13A can associate simultaneously with

mitochondria and ER via its C-terminus and

FFAT domain, respectively.

Figure 3 continued

not in close association with mitochondria. (C) Representative single stack image of HEK293T cells expressing mCherry-VAP-A (ER marker) and VPS13A-

GFP. Mitochondria were labeled using TOMM20 antibody. White arrowheads indicate the enrichment of VPS13A at areas positive for ER and

mitochondria markers. C’ shows higher magnification of the insert in C. (D) Representative time-lapse images of HEK293T cells expressing VPS13A-GFP

and mCherry-VAP-A for 48 hr (Video 2). White arrowheads points to continuous dynamic associations of VPS13A-GFP and mCherry VAP-A. Scale

bars = 10 mm (A, C, D), and 2 mm (B).

DOI: https://doi.org/10.7554/eLife.43561.008

The following figure supplements are available for figure 3:

Figure supplement 1. VPS13A is enriched in fractions of the outer mitochondria membrane.

DOI: https://doi.org/10.7554/eLife.43561.009

Figure supplement 2. Scan of original blots for Figure 3—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.43561.010

Figure supplement 3. VPS13A interacts with VAP-A in human cells.

DOI: https://doi.org/10.7554/eLife.43561.011

Figure supplement 4. Scan of original blots for Figure 3—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.43561.012

Video 2. HEK 293 T cells overexpressing VPS13-GFP

and mCherry-VAP-A were imaged lapse images were

taken every 5 s. The video is played at five frames per

second.

DOI: https://doi.org/10.7554/eLife.43561.013
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Figure 4. Direct interaction of VPS13A and VAP-A. (A) Amino acid sequence alignment of VPS13A-FFAT and four other FFAT containing proteins. The

FFAT containing region (gray box) of each protein was selected and aligned using ClustalW multiple alignment tool. (B) Endogenous VPS13A was

immunoprecipitated from HeLa cells using an anti-VPS13A antibody. Rabbit IgG was used as a control. (B’) Endogenous VAP-A was

immunoprecipitated from HeLa cells using an anti-VAP-A antibody. Goat IgG was used as a control. Indicated proteins were detected by

Figure 4 continued on next page
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Depletion of VPS13A is associated with decreased areas of proximity
between ER and mitochondria
Our results so far indicate that VPS13A is localized, among others, at areas were the ER and mito-

chondria are in close proximity. We aimed to investigate a possible role for VPS13A in influencing

ER-mitochondria contact sites. We used a split-GFP-based contact site sensor (SPLICS) engineered

to fluoresce when organelles are in proximity (Cieri et al., 2018). This assay consists of co-expression

of two constructs, one encoding a non-fluorescent portion of GFP fused to an ER-targeting signal,

and another one encoding a complementing non-fluorescent portion of GFP fused to an OMM moi-

ety targeting it to the cytoplasmic side of the outer mitochondrial membrane. When in close contact,

the two non-fluorescent portions of GFP fold and a fluorescent GFP is obtained. We used two var-

iants, named SPLICSS and SPLICSL, detecting narrow (» 8–10 nm) and wide ( » 40–50 nm) distances

between ER and mitochondria respectively. Contact sites between ER and mitochondria result in

bright spots (Cieri et al., 2018). In order to investigate a possible role of VPS13A in ER-mitochondria

contact sites, we used a MCR5 VPS13A KO cell line, obtained via a CRISPR/Cas9 approach, with no

detectable levels of VPS13A protein while its closest homologous protein VPS13C appears normal

(Figure 5—figure supplements 1–2). In these cells using the SPLICS sensor, contact sites could be

visualized (Figure 5A,B) as previously reported (Cieri et al., 2018). Both signals from the SPLICS

assay, for narrow and wide distances, are significantly decreased in VPS13A depleted cells compared

to the parental cell line (Figure 5A’’–B”). Together our results not only indicate that VPS13A is pres-

ent at areas were mitochondria and ER are in close proximity, but also that VPS13A is involved in the

formation or stabilization of ER-mitochondria contact sites.

Mitochondria elongation is impaired in VPS13A depleted cells
ER-mitochondria contact sites are required for the transfer of lipids between the ER (where majority

of lipid synthesis occurs) and mitochondria (Gatta and Levine, 2017) and, therefore, a decrease in

ER-mitochondria contact sites may have consequences for mitochondria processes such as fission,

fusion and mitophagy which are all influenced by the lipid composition of mitochondria membranes

(Böckler and Westermann, 2014; Lahiri et al., 2015). We used the VPS13A KO cell line to investi-

gate the consequences of VPS13A depletion in these processes. Upon morphological examination

we found that VPS13A depleted cells contained less elongated mitochondria compared to control

cells when cultured under standard conditions (Figure 5C,C’).Upon starvation, a process which

Figure 4 continued

immunoblotting. (C) Schematic representations of bacterially expressed GST tagged VPS13A fragments used for the in vitro binding assays in D. (D) In

vitro binding assay using 6xHis-VAP-A and GST-fusions of VPS13A fragments (depicted in C) expressed in E.Coli. GST-fusion proteins were enriched on

Sepharose beads and incubated with equal amounts of bacterial lysate containing 6xHis-VAP-A. GST alone used as a control. Samples were

immunoblotted against VAP-A, GST and N-terminal VPS13A (H-102). (E) Representative single stack image of HEK293T cells expressing mCherry-VAP-A

(red) and VPS13A-GFP (E) or VPS13A-GFP DFFAT (E’). A yellow signal in the overlay indicates a close association between VPS13A-GFP and VAP-A (E)

and the absence of a yellow signal indicates the absence of a close association between VPS13A-GFP DFFAT and VAP-A (E’). (F) GFP tagged full length

VPS13A and VPS13A DFFAT were transiently expressed in HEK293T cells. Cell lysates were immunoprecipitated using a GFP-trap assay. GFP alone was

used as a control. Indicated proteins were detected by immunoblotting. Arrowhead indicates the VPS13A-GFP band and arrow indicates free GFP

band. (G) GFP-VAP-A was immunoprecipitated from HeLa cells treated with different concentrations of Thapsigargin (TG) for 6 hr. DMSO was used as

control. Indicated proteins were detected by immunoblotting. (H) Densitometric quantification of protein bands in G. The ratio of immunoprecipitated

VPS13A was normalized to the respective amount of GFP-VAP-A. Cells treated with DMSO were used as controls. Data above (B, D, F) represents

(n = 3), in H, error bars, mean ±s.e.m (n = 3), two-tailed unpaired Student’s t-test was used (*p�0.05, **p�0.01). Scale bars = 10 mm (E, E’).

DOI: https://doi.org/10.7554/eLife.43561.014

The following figure supplements are available for figure 4:

Figure supplement 1. Scan of original blots for Figure 4.

DOI: https://doi.org/10.7554/eLife.43561.015

Figure supplement 2. Scan of original blots for Figure 4.

DOI: https://doi.org/10.7554/eLife.43561.016

Figure supplement 3. VPS13A interacts with VAP-A.

DOI: https://doi.org/10.7554/eLife.43561.017

Figure supplement 4. Scan of original blots for Figure 4—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.43561.018
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Figure 5. Depletetion of VPS13A results in less elongated mitochondria and impaired mitophagy. (A–B) Representative images of control MRC5 cells

(WT) (A, B) and VPS13 KO MRC5 cells (A’, B’) transfected with SPLICSS (A, A’) or SPLICSL (B, B’) to detect narrow (~8–10 nm) or long (~40–50 nm)

distance ER-mitochondria contact sites respectively. A’, B’. Quantification of narrow and long distance contact sites in WT and VPS13A KO MRC5 cells.

Error bars, mean ±s.e.m (n = 3 (A”) and n = 5 (B”)), two-tailed unpaired Student’s t-test was used (*p�0.05, **p�0.01). (C) Quantification of the

Figure 5 continued on next page
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induces the formation of elongated mitochondria (Rambold et al., 2011), an increased amount of

VPS13A KO cells with elongated mitochondria was observed, however, not to the extent as

observed in control cells (Figure 5C,C’). Finally, a reduced capacity to eliminate damaged mitochon-

dria by mitophagy was observed in the KO cell line, after inducing mitophagy with CCCP and over-

expression of Parkin (Narendra et al., 2008) (Figure 5D) together with an increase in S616

phosphorylation of Drp1, a phosphorylation associated with decreased fusion and increased fission

(Figure 5E–F, Figure 5—figure supplement 3) (Rambold et al., 2011; Kashatus et al., 2015).

Together our results demonstrate that VPS13A depleted cells show an apparent mitochondria phe-

notype consistent with decreased fusion, increased fission and impairment of mitophagy.

VPS13A is associated with lipid droplets
In addition to a localization at areas were mitochondria and the ER are in close proximity, we

observed that VPS13A is also appeared in a punctate and vesicular-shaped pattern. These vesicular-

like structures did not represent mitochondria (Video 1). Using confocal microscopy with lipid drop-

lets (LDs) specific dyes, BODIPY-FA or LipidTox red, we showed that the VPS13A positive structures

co-localized with these dyes, indicating that these VPS13A positive vesicular-like structures were LDs

(Figure 6A).

In order to elaborate further on this observation, cells were cultured under conditions that elicit

LD biogenesis and oleic acid (OA), a fatty acid known to induce intracellular LD formation

(Wilfling et al., 2013; Thiel et al., 2013; Kassan et al., 2013) was added to the cells. Cells express-

ing VPS13A-GFP were visualized at different times after OA induction. Before the addition of OA

and under normal culturing conditions, a small amount of LDs were observed which were positive

for VPS13A-GFP, in addition to the VPS13A-GFP signal present in the reticular pattern reflecting its

distribution at the mitochondria-ER contact sites (Figure 6B, left panel). After 2 hr of exposure to

OA, numerous LDs were formed and VPS13A-GFP was found at BODIPY-FA-positive LDs. Line scan

analysis of individual large LDs at a high magnification revealed that VPS13A-GFP uniformly encircled

them (Figure 6C,C’), indicating enrichment of VPS13A at the membrane and not at the interior of

LDs, the ring-like VPS13A positive signal is most obvious at the periphery of larger LDs (such as after

120’ OA, Figure 6B).

To corroborate these observations, we next investigated whether endogenous VPS13A was also

enriched in fractions enriched with LDs. We thus analyzed the subcellular distribution of endogenous

VPS13A by sucrose gradient fractionation of cells grown under normal conditions, starved for serum

or exposed to OA for 24 hr (Figure 6—figure supplement 1). Western blot analysis of sucrose

Figure 5 continued

mitochondria morphology of cells cultured under normal conditions (control) or under starved conditions (HBSS). WT and VPS13A KO MRC5 cells, were

stained for the mitochondria marker TOMM20 (red) and DAPI (blue). For the quantification three cell-types with different mitochondrial appearances

were pre-defined, type 1 cells with short, fragmented, densely packed mitochondria, type 2 cells with a mixture of round densely packed and more

tubulated and less densely packed mitochondria and type 3 cells with tubulated dispersed and long mitochondria. Typical images and schematics are

provided(C’). Error bars, mean ±s.e.m (n = 3), two-tailed unpaired Student’s t-test was used (*p�0.05). (D) Mitophagy assay of control MRC5 (WT) and

VPSA13 KO cells. The cells were transfected with FLAG-Parkin, which allows for the removal of damaged mitochondria and were treated with DMSO

(control) or 20 mM CCCP (inducing mitochondria damage). After the transfection/treatment the cells were stained for the mitochondria marker

TOMM20 and the mean fluorescence TOMM20 intensity was measured exclusively in FLAG-Parkin positive cells. The decrease in TOMM20 fluorescence

after CCCP represents mitophagy. Error bars, mean ±s.e.m (n = 3), two-tailed unpaired Student’s t-test was used (**p�0.01, ***p�0.001). (E,F) In

control and starved (HBSS) MRC5 WT and VPS13A KO cells levels of pDRP1 and total DRP1 were determined by immunoblotting using GAPDH as a

loading control (E). Quantification of protein band intensities in F was performed using ImageJ and plotted as a ratio of pDRP to GAPDH (F). Error

bars, mean ±s.e.m (n = 3), two-tailed unpaired Student’s t-test was used (*p�0.05, **p�0.01, ***p�0.001). Scale bars = 10 mm (A, A’, B, B’, C’).

DOI: https://doi.org/10.7554/eLife.43561.019

The following figure supplements are available for figure 5:

Figure supplement 1. Validation of the VPS13A mutant cell line (VPS13A KO).

DOI: https://doi.org/10.7554/eLife.43561.020

Figure supplement 2. Scan of original blots for Figure 5—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.43561.021

Figure supplement 3. Scan of original blots for Figure 5.

DOI: https://doi.org/10.7554/eLife.43561.022
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gradient fractions revealed that VPS13A was mainly enriched in the heavier fractions under starvation

(Figure 7A,A’ and A”) and normal (Figure 7—figure supplements 1–4) growth conditions, and only

a small portion (~4%) appeared in fraction 1, corresponding to LDs that floated on top of the sucrose

gradient, which was identified using the Perilipin2 (PLIN2) as a specific LD marker protein. Part of

PLIN2 was sequestered in the fractions with high density organelles that contained marker proteins

such as VAP-A, EGFR and ATP-5A (Figure 7A,A’ and A”, Figure 7—figure supplement 1–

A
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Figure 6. VPS13A decorates Lipid droplets. (A) HEK293T cells were transfected with VPS13A-GFP for 24 hr and Lipidtox red was used as a marker for

LDs. (B) HEK293T cells transfected with VPS13A-GFP for 48 hr were pulsed with 1 mM BODIPY-FA (red) at 37˚C for 30 min followed by a chase in

medium containing 500 uM OA for 2 hr at 37˚C. (C) A close-up image of a LD in a cell taken from B in vivo is shown. Line profile analysis across the LD

showed the enrichment of the VPS13A-GFP signal on the periphery of the LD (C’). Scale bar = 1 mm. Scale bars = 10 mm (A, B) and 1 mm (C).

DOI: https://doi.org/10.7554/eLife.43561.023

The following figure supplement is available for figure 6:

Figure supplement 1. Endogenous VPS13A is enriched at fractions containing LDs upon OA induction Workflow of LDs isolation and sucrose gradient

fractionation.

DOI: https://doi.org/10.7554/eLife.43561.024
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Figure 7. Endogenous VPS13A is enriched in LDs containing fractions. (A) FBS starved HeLa cells were processed as described in Figure 6—figure

supplement 1. Fractions with equal amounts of proteins were processed for Western blot analysis and specific protein levels were detected using

antibodies for VPS13A, LAMP1, EGFR, PLIN2, VAP-A and ATP5A. Quantification of protein band intensities in A was performed using ImageJ and

plotted as percentage of the total (A’). A’ shows a close-up of values of the top three light sucrose density fractions of A. In A’and A’, error bars,

Figure 7 continued on next page
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4), consistent with previous work showing that very minimal amount of LDs are formed under starva-

tion conditions (Kassan et al., 2013). Induction of LD formation after incubation of cells with OA for

24 hr resulted in a shift in the distribution of endogenous VPS13A towards the LD fraction. As

expected, PLIN2 was enriched in the top fraction consistent with the fact that LDs are formed in

response to OA induction (Figure 7B,B’ and B”, Figure 7—figure supplements 1–4). The distribu-

tion of the plasma membrane protein EGFR and the lysosomal protein LAMP1 was not affected

upon OA induction or serum starvation (Figure 7A–B”, Figure 7—figure supplements 1–4). In addi-

tion, comparison of the amount of VPS13A in the LD fraction showed that VPS13A was partly con-

centrated in the LD fractions of OA fed cells. Addition of OA to starved cells increased the amount

of VPS13A in the LD fraction (Figure 7C, Figure 7—figure supplements 1–4). Taken together, these

data confirmed our observation that VPS13A is associated with LDs.

We then questioned whether the ER localization through VAP-A binding was important for the

LDs localization of VPS13A. To do so, we expressed VPS13A-GFPDFFAT in OA fed cells and showed

that it was recruited to LDs similarly as WT VPS13A-GFP (Figure 7D,D’). This indicates that the FFAT

motif of VPS13A is not required for its recruitment to LDs.

VPS13A negatively affects lipid droplet size and motility
We investigated the role of VPS13A on LDs biology by studying the number of LDs in the presence

and absence of VPS13A, and we compared the motility of VPS13A-positive and VPS13A-negative

LDs. Under normal culturing conditions, VPS13A KO cells showed increased numbers of LDs

(Figure 8A–B) compared to the parental control line. In addition, fluorescent activated cell sorting

(FACS) quantification of the total Nile red intensity showed a significantly increased intensity in the

absence of VPS13A (Figure 8C). VPS13A is not required for LD formation, because VPS13KO cells

do contain LDs and OA induction in VPS13A KO cells resulted in an increase in LDs comparable to

control cells (Figure 8D).

Live cell analysis was used to track individual LDs in VPS13A-GFP expressing cells. Visual examina-

tion showed that VPS13A-GFP positive LDs slowly and randomly oscillated. When these LDs were

briefly dissociated from VPS13A-GFP, they directionally traveled faster and such motility was inter-

rupted when VPS13A-GFP was again associated with the LD (Video 3). To further substantiate this,

we recorded LDs in adjacent control (Figure 8E,E’ cell 2) and VPS13A-GFP overexpressing (Figure

E, E’ cell 1) HEK293T cells, at two different times and quantified the LDs that did not move at this

time interval. In VPS13A-GFP overexpressing cells, a larger fraction of the LDs showed an overlap-

ping pattern compared to the non-transfected cells (Figure 8E–F), further suggesting that VPS13A

overexpression reduces LD motility.

Figure 7 continued

mean ±s.e.m (n = 3). (B) FBS starved Hela cells were incubated with 500 mM OA and processed as described under A and as in Figure 6—figure

supplement 1. Quantification of protein band intensities in B was performed using ImageJ and plotted as percentage of the total (B’). B’ shows a

close-up of values of the top three lowest sucrose density fractions. In B’and B’, error bars, mean ±s.e.m (n = 3). (C) HeLa cells were either grown in

complete medium (Control), FBS starved (Stv, as in A) or further incubated with 500 mM OA and processed as described in Figure 6—figure

supplement 1. LDs were isolated from the top fraction. Equal amounts of proteins were resolved by Western Blot and detected using antibodies for

VPS13A, LAMP1, EGFR, PLIN2, VAP-A, ATP5A and a-Tubulin. Specific bands are indicated with an asterisks D) Representative single stack image of

HEK293T cells expressing VPS13A-GFP (D) or VPS13A-GFP D FFAT (D’). Cells were incubated with 500 mM OA for 3 hr. LDs stained with LipidTox red.

Scale bar = 10 mm (D).

DOI: https://doi.org/10.7554/eLife.43561.025

The following figure supplements are available for figure 7:

Figure supplement 1. Scan of original blots for Figure 7.

DOI: https://doi.org/10.7554/eLife.43561.026

Figure supplement 2. Endogenous VPS13A is enriched at fractions containing LDs upon OA induction.

DOI: https://doi.org/10.7554/eLife.43561.027

Figure supplement 3. Scan of original blots for Figure 7—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.43561.028

Figure supplement 4. Endogenous VPS13A is enriched at fractions containing LDs upon OA induction.

DOI: https://doi.org/10.7554/eLife.43561.029
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In summary, the presence of VPS13A on LDs negatively influenced their motility and when LDs

temporarily did not contain VPS13A, they showed faster directional motility. In the absence of

VPS13A increased LD numbers are present, strongly indicating a role of VPS13A in LD related

processes.

Eyes of Drosophila Vps13 mutants show an increase in LDs
Previously it has been demonstrated that in pigment cells (glia cells) of Drosophila eyes LDs can be

formed in response to various stressors occurring in neuronal cells (Liu et al., 2015). In order to

investigate the role of VPS13A in LD related processes in a multicellular organism, we investigated
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Figure 8. VPS13A negatively regulates LD mobility. (A) WT (A) and VPS13A KO MRC5 cells (A’) were stained with LipidTox green for LDs (green) and

the nuclear marker DAPI (blue) and imaged by confocal microscopy. (B) Quantification of LD numbers in A. Error bars, mean ±s.e.m (n = 3), two-tailed

unpaired Student’s t-test was used (*p�0.05, **p�0.01). (C) WT and VPS13A KO MRC5 cells were stained with Nile red and intensity was measured

using FACS. Error bars, mean ±s.e.m (n = 3), two-tailed unpaired Student’s t-test was used (*p�0.05, **p�0.01). (D) WT and VPS13A KO MRC5 cells

were exposed to 500 mM OA for 16 hr. Afterwards cells were stained with LipidTox green to visualize LDs and LD numbers were quantified. Error bars,

mean ±s.e.m (n = 3), two-tailed unpaired Student’s t-test was used. (E) HEK293T cells were transfected with VPS13A-GFP and stained with LipidTox red

to visualize LDs in vivo. Images with a time interval of 6 s were recorded of VPS13-GFP positive (cell 1) and adjacent VPS13-GFP negative (cell 2) cells.

The locations of LDs at t = 0 are indicated in green, the locations of the same LDs at t = 6 s are indicated in magenta (E). If the LD did not move

between time frames, the overlapping signal (green and magenta) is white. The VPS13A signal is shown in E’: Cell one is transfected with VPS13A-GFP;

Cell two is a non-transfected cell. (F) Quantification of the fraction of non-moving (white) LDs compared to the total number of LDs in VPS13A-GFP

positive or VPS13A-GFP negative cells. Error bars, mean ±s.e.m, two tailed unpaired Student’s t-test was used (*p�0.05). Scale bars = 10 mm (A, A’, E,).

DOI: https://doi.org/10.7554/eLife.43561.030
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LDs in eyes of the available and established Dro-

sophila Vps13 mutant (Vonk et al., 2017). Dro-

sophila Vps13 is most similar to human VPS13A

and VPS13C (Velayos-Baeza et al., 2004).

Homozygous mutants show a decreased life

span, impaired locomotor function upon ageing,

impaired protein homeostasis and large brain

vacuoles (Vonk et al., 2017). Examination of the

eyes using Nile red to visualize LDs showed that

5 day old Vps13 mutants have increased numbers

of LDs compared to wildtype (Figure 9A–C’).

Overexpression of human VPS13A in the mutant

background (Figure 9D–E, Figure 9—figure sup-

plement 1) rescued the phenotype back to nor-

mal. These data indicate that Drosophila Vps13

and human VPS13A share functional properties.

Discussion
Our biochemical and localization studies show

that human VPS13A is a peripheral membrane

protein present, at least, at two distinct subcellu-

lar localizations: at sites where mitochondria and

the ER are in close proximity and VPS13A is localized at the surface of LDs. These results confirm

early observations obtained from overexpression of human VPS13A in mammalian cells and identify

the characteristic ‘vesicular-like’ structures as LDs (Velayos-Baeza et al., 2008). The peripheral mem-

brane characteristics of VPS13A are shared by the other human VPS13 proteins (B, C and D), the

yeast and the Drosophila Vps13 protein (Lesage et al., 2016; Brickner and Fuller, 1997;

Vonk et al., 2017; Velayos-Baeza et al., 2008; Seifert et al., 2011), suggesting a common feature

of VPS13 proteins.

VPS13A is localized at ER-mitochondria contact sites
The association of VPS13A with the ER is established via its FFAT domain which binds to the ER

residing protein VAP-A. VAP-A/B proteins have been extensively characterized as a hub when the

ER establishes membrane contacts with other organelles including endosomes, mitochondria, perox-

isomes, plasma membrane and Golgi (Alpy et al., 2013; Eden et al., 2016; Costello et al., 2017;

Hua et al., 2017; Stoica et al., 2014; Gomez-Suaga et al., 2017; Mesmin et al., 2013;

Stefan et al., 2011; Rocha et al., 2009; Dong et al., 2016). Our results showed that VPS13A also

interacts with VAP-B in a FFAT dependent manner (Figure 4—figure supplements 2–3), consistent

with the fact that VAP-A and VAP-B functions are often redundant (Dong et al., 2016).

The association of VPS13A with mitochondria is mediated via the C-terminal domain. In addition,

fractionation studies show that VPS13A co-fractionates with TOMM20, a protein localized at the

outer membrane of mitochondria. Our observed interaction between VPS13A and VAP-A in a FFAT-

dependent manner and our reported localization at the ER-mitochondria contact sites is consistent

with localization studies recently reported by Kumar et al (Kumar et al., 2018).

VPS13A depleted cells show mitochondria abnormalities
We further show that ER-mitochondria contact sites are decreased in VPS13A depleted cells, consis-

tent with results by Kumar et al, which demonstrate that upon overexpression of VPS13A an increase

in ER-mitochondria contact sites is observed. Our data and the data by Kumar et al are in line with

studies in yeast demonstrating that Vps13 is present at various organelle contact sites and is

required for ER-mitochondria contact sites, all pointing to a conserved function of VPS13A at these

sites. Our reported mitochondria phenotypes (less elongated and a decreased mitophagy capacity)

in the VPS13A depleted cells could all be explained by abnormal lipid composition of mitochondria

membranes. A possible defect in lipid transfer between ER and mitochondria due to VPS13A deple-

tion is in line with results from Kumar et al., who demonstrated in vitro that the N-terminal part of

Video 3. HEK 293 T cells overexpressing VPS13-GFP

were incubated with 500 uM for 3 hr. LDs were stained

with LipidTox red to visualize and time lapse images

were taken every 600 milliseconds. The video is played

at 10 frames per second.

DOI: https://doi.org/10.7554/eLife.43561.031
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Figure 9. Vps13A mutants show a lipid droplet phenotype in the Drosophila adult eye, which can be rescued by

ectopic expression of the human VPS13A. (A) Optical section (A) and schematic (A’) of a Drosophila adult

ommatidium, taken at the height of the cone cells (Ready, 1989). Cone cells (c), pigment cells (1˚, 2˚, 3˚) and
bristles (b) are indicated in different colors. Naturally occurring or (in mutants) ectopically accumulating LDs (red

Figure 9 continued on next page
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yeast Vps13, which is highly similar to human VPS13A, is able to transfer lipids between two mem-

branes. Together, these data favor a model in which human VPS13A plays a role in tethering ER to

the outer membrane of mitochondria to create areas of close proximity and to enable transfer of lip-

ids between these membranes via the VPS13A N-terminal domain (Figure 10A,C).

VPS13A is localized at the surface of lipid droplets
In addition to the localization at ER-mitochondria contact sites, VPS13A localizes to the periphery of

LDs in a FFAT-independent manner, consistent with the recent report from Kumar et al

(Kumar et al., 2018). Under circumstances of increased fatty acid uptake, more LDs accumulate in

cells and thereby more VPS13A positive LDs are observed. The origin of LD-associated VPS13A

could be either newly synthesized VPS13A or protein relocated from the already available VPS13A

pool, mainly at the ER-mitochodria contact sites, more in depth studies are required to address this

point. Bean et al. (Bean et al., 2018) have recently shown in yeast that different adaptor proteins

present at specific subcellular locations compete for binding to Vps13. Organelle-specific VPS13A

adaptor proteins may be present as well in mammalian cells; LD specific adaptor proteins would

increase in conditions when LDs are increased, resulting in enhanced competition for VPS13A which

could possibly be relocated to LDs from other sub-cellular locations. This explanation (Figure 10B,

D) is in line with our observation of increased levels of VPS13A in fractions containing LDs in cells

with an increased amount of LDs. Different VPS13 members may have their own specific adaptor

proteins which would explain their different reported localizations, such as VPS13B at the Golgi

(Seifert et al., 2011) or VPS13C at endosomes (Kumar et al., 2018). Conversely, since different

VPS13 proteins can localize at the same organelles, such as VPS13A and VPS13C in LDs and mito-

chondria (Lesage et al., 2016; Kumar et al., 2018; Yang et al., 2016; this report), it is also possible

that the same adaptor protein could bind several VPS13 proteins.

VPS13A influences lipid droplet motility
LDs have long been considered as inert lipid inclusions and studies of their biology were constrained

(Gluchowski et al., 2017). Evidence is now accumulating that LDs are far from being only fat depots

as they are decorated by a large number of proteins that regulate their formation, destruction and

communication with other organelles (Kassan et al., 2013; Thiam and Forêt, 2016; Salo et al.,

2016; Wang et al., 2016; Bi et al., 2014; Krahmer et al., 2011; Kory et al., 2015; Cermelli et al.,

2006). Given the described functions of VPS13A in tethering ER-mitochondria membranes and trans-

ferring lipids, it could be expected that VPS13A at LDs is probably performing a comparable func-

tion. Kumar et al demonstrated that LDs decorated with VPS13A are surrounded by ER and,

therefore, most likely VPS13A could be at contact sites between LDs and ER (Figure 10B,D).

VPS13A influences the motility of LDs, a feature reminiscent of identified proteins regulating dynam-

ics of endosomal vesicles. Endosomal movement is halted when endosomes make contacts with the

ER (Raiborg et al., 2015) and movement of peroxisomes is increased upon loss of the VAP-ACBD5

tethering complex (Costello et al., 2017; Hua et al., 2017). Consistent with this, we show that

Figure 9 continued

circles) are found in the pigment cells (Liu et al., 2015; Liu et al., 2017). (B,C) Optical cross-section and

longitudinal section through the adult eye of Drosophila control (B/B’) and Vps13 homozygous mutant flies (C/C’)

at day 5 past eclosion. Nile Red was used to reveal the presence of LDs (red arrow heads) in the pigment cells. (D)

Optical cross-sections through the adult eye of Vps13 homozygous mutant flies, control flies and Vps13

homozygous mutant flies expressing human VPS13A at day 3 after eclosion. Nile Red was used to detect LDs. D:

Vps13/Vps13, (=Vps13 homozygous mutant). D’: Vps13/Vps13;hVPS13A/Act-Gal4 (=Vps13 homozygous mutant

expressing human VPS13A). D’: Vps13/+;UAS-hVPS13A/Act-Gal4 (heterozygous for Vps13 expressing human

VPS13A). (E) Western blot to demonstrate the absence of Drosophila Vps13 in mutant flies and the expression of

human VPS13A in the rescued Drosophila Vps13 mutant background. Samples marked with a red asterisk were

used for the Nile Red staining in the rescue experiment (D–D’’). Scale bars = 10 mm (B–D).

DOI: https://doi.org/10.7554/eLife.43561.032

The following figure supplement is available for figure 9:

Figure supplement 1. Scan of original blots for Figure 9.

DOI: https://doi.org/10.7554/eLife.43561.033
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Figure 10. Proposed model for VPS13A function. (A) Under normal growth conditions VPS13A is localized at the ER-mitochondria contact sites where it

is anchored to VAP-A through its FFAT domain and via its C-terminal region it is associated with mitochondria, most likely via mitochondria specific

adaptor proteins. VPS13A at this location may facilitate the transfer of lipids between ER and mitochondria and mitochondria fusion and mitophagy

occur normally. (B) Under normal conditions VPS13A is also associated to LD, an association mediated via LD specific adaptor proteins. Via VPS13A LD

Figure 10 continued on next page
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VPS13A negatively influences LD motility and LDs are more fixed under conditions of VPS13A

overexpression.

VPS13A depleted cells and Drosophila Vps13 mutants show increased
amount of lipid droplets
Increased numbers of LDs in VPS13A depleted cells can be explained because in the absence of

VPS13A the association with the ER may be reduced and lipid transfer decreased. This in turn could

lead to disruption of LD turnover processes such as lipophagy and release of LD content to other

organelles (Rambold et al., 2015; Kaushik and Cuervo, 2015). Homozygous Drosophila Vps13

mutants also show an increase in LDs, which could be explained by a combination of impaired mito-

chondria function and abnormal LD turnover capacity. It has been reported that, in response to

impaired mitochondria function in neuronal cells of the Drosophila eye, ROS levels increase and lip-

ids are transferred from neurons to glia cells where LDs transiently form (Liu et al., 2015; Liu et al.,

2017). An increase in LDs in glia cells in response to impaired mitochondria functioning is also

observed in neurodegenerative mouse models (Liu et al., 2015; Liu et al., 2017). Thus, it is possible

that the increased numbers of LDs in glia cells of the fly Vps13 mutant eyes could be caused by an

initial impairment in mitochondrial function.

VPS13A and ChAc
The question remains why loss of VPS13A leads to ChAc, a movement disorder mostly presenting in

the third decade of the patient’s life. Impairment of mitochondria processes such as fusion and

mitophagy could explain the neurodegeneration observed in ChAc patients, since impairment of

these processes has been largely linked to neurodegeneration (Ryan et al., 2015). In addition,

impairment of LD related processes could explain neurodegeneration as well since LD abnormalities

are associated with several neurodegenerative diseases such as hereditary spastic paraplegias

(Inloes et al., 2014), Huntington’s disease (Martinez-Vicente et al., 2010), and Parkinson’s disease

(Outeiro and Lindquist, 2003). The role of LD in the adult central nervous system is largely

unknown. It may be possible that in ageing ChAc patients oxidative stress builds up due to impaired

mitochondria functions and LDs form and accumulate because of a compromised turnover due to

decreased contact sites with their target organelles. Gradually increasing numbers of large LDs in an

aging organism may form physical obstructions that could eventually hamper cellular functions of

glia and their neighboring neuronal cells. It is also well possible that overall lipid homeostasis and

other metabolic pathways are imbalanced in ChAc, leading to neurodegeneration in an ageing

organism. Since LDs have not been studied in ChAc models or in material derived from ChAc

patients, these possible ‘disease mechanisms’ are only hypotheses which would require further

experimental data to be properly tested, leaving this field largely open for future research.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Flag
(rabbit polyclonal)

Sigma F7425 IF (1:500)

Antibody Myc
(mouse monoclonal)

Enzo Life Science ADI-MSA-110-F IF (1:500) WB (1:1000)

Continued on next page

Figure 10 continued

are associated to the ER and VPS13A facilitate the transfer of lipids between ER and LDs. The VPS13A mediated ER-lipid connection halts LD

movement. (C) Depletion of VPS13A leads to impaired lipid transfer between ER and mitochondria, leading to abnormal function of mitochondria which

become less elongated. (D) Depletion of VPS13A also leads to disconnection of LD and the ER, leading to increased movement and reduced

degradation of LD, resulting in increased LD numbers.

DOI: https://doi.org/10.7554/eLife.43561.034
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody TOMM20
(mous monoclonal)

BD biosciences 612278 IF (1:200) WB (1:1000)

Antibody Normal
Goat IgG
(goat polyclonal)

Santacruz sc-2028 IP (1:200)

Antibody Normal
rabbit IgG
(rabbit polyclonal)

Santacruz sc-2027 IP (1:200)

Antibody VAP-A
(goat polyclonal)

Santacruz sc-48698 IP (1:100) WB (1:1000)

Antibody VAP-B
(rabbit polyclonal)

Sigma HPA013144 IP (1:100) WB (1:1000)

Antibody VPS13A
(rabbit polyclonal)

Sigma HPA021652 IP (1:100) WB (1:1000)

Antibody ATP5A
(mouse monoclonal)

Abcam ab14748 WB (1:5000)

Antibody a-Tubulin
(mouse monoclonal)

Sigma T5168 WB (1:5000)

Antibody EGFR
(rabbit polyclonal)

Santacruz SC-03-G WB (1:1000)

Antibody GAPDH
(mouse monoclonal)

Fitzgerald 10R-G109A WB (1:10000)

Antibody GFP
(mouse monoclonal)

Clontech 632381 WB (1:5000)

Antibody GST
(mouse monoclonal)

Santacruz sc-138 WB (1:1000)

Antibody LAMP1
(mouse monoclonal)

Abcam ab25630 WB (1:1000)

Antibody DRP1
(rabbit monoclonal)

cell signaling 8570 s WB (1:500) D6C7

Antibody pDRP1
(rabbit polyclonal)

cell signaling 3455 s WB (1:1000) ser616

Antibody PLIN2
(rabbit polyclonal)

Abcam ab78920 WB (1:1000)

Antibody RAB7
(mouse monoclonal)

Abcam ab50533 WB (1:1000)

Antibody Vps13 #62
(rabbit polyclonal)

PMID:28107480 WB (1:1000)

Antibody VPS13A
(rabbit polyclonal)

Sigma HPA021662 WB (1:1000)

Antibody VPS13A (H-102)
(rabbit polyclonal)

Santacruz sc-367262 WB (1:1000)

Antibody VPS13C
(rabbit polyclonal)

Sigma HPA043507 WB (1:1000)

Other Nile Red Thermo
Fisher Scientific

N1142 FACS (1:500)

Other BODIPY-FA Thermo
Fisher Scientific

D3835 IF 1 mM

Other LipidTox-green Thermo
Fisher Scientific

H34475 IF (1:200)

Other LipidTox-red Thermo
Fisher Scientific

H34476 IF (1:200)

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Other Mitotracker
Orange

Thermo
Fisher Scientific

M-7510 100 nM (live) and 200 nM (fixed)

Other Mitotracker Red Thermo
Fisher Scientific

M-7512 100 nM (live) and 200 nM (fixed)

Other Nile Red Thermo
Fisher Scientific

N1142 IF (1:1000)

Other DAPI Thermo
Fisher Scientific

62247 0.2 mg/ml

Recombinant
DNA reagent

Lamp1-GFP Addgene 34831

Recombinant
DNA reagent

mCherry-FYCO1 PMID:25855459

Recombinant
DNA reagent

GFP-Rab5 Q79L Addgene 28046

Recombinant
DNA reagent

GFP-Rab7 Q67L Addgene 28049

Recombinant
DNA reagent

BFP-Sec61B Addgene 49154

Recombinant
DNA reagent

mCherry-Sec61B Addgene 49155

Recombinant
DNA reagent

peGFP-C1 Clontech discontinued

Recombinant
DNA reagent

peGFP-N1 Clontech 6085–1

Recombinant
DNA reagent

VPS13-GFP (FL) this paper Progentiors:PCR
VPS13-myc and
pEGFP-N1; VPS13-myc

Recombinant
DNA reagent

VPS13-Myc (FL) PMID:28107480

Recombinant
DNA reagent

VPS13-
GFP- DFFAT

this paper mutagenesis
on VPS13-GFP

Recombinant
DNA reagent

VPS13-GFP
2–854

this paper Progentiors:
PCR VPS13-GFP;
pEGFP-C1

Recombinant
DNA reagent

VPS13-GFP
835–1700

this paper Progentiors:
PCR VPS13-GFP;
pEGFP-C1

Recombinant
DNA reagent

VPS13-GFP
855–1700

this paper Progentiors:
PCR VPS13-GFP;
pEGFP-C1

Recombinant
DNA reagent

VPS13-GFP
2003–2606

this paper Progentiors:
PCR VPS13-GFP;
pEGFP-C1

Recombinant
DNA reagent

VPS13-GFP
2615–3174

this paper Progentiors:
PCR VPS13-GFP;
pEGFP-C1

Recombinant
DNA reagent

pGEX5�2 GE Healthcare 28954554

Recombinant
DNA reagent

GST-FFAT this paper Progentiors:
oligo FFAT domain;
pGEX5�2

Recombinant
DNA reagent

GST-VPS13A (2-834) this paper Progentiors:
PCR VPS13-G
FP; pGEX5�2

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Recombinant
DNA reagent

GST-VPS13A (2-854) this paper Progentiors:
PCR VPS13-
GFP; pGEX5�2

Recombinant
DNA reagent

GST-VPS13A (2–854/D845A) this paper mutagensis
on GST-VPS13
(2-854)

Recombinant
DNA reagent

GST-VPS13A (835–1700) this paper Progentiors:
PCR, VPS13-
GFP; pGEX5�2

Recombinant
DNA reagent

pET28a EMD Biosciences 69864–3

Recombinant
DNA reagent

GFP-VAP-A this paper Progentiors:
PCR pET28a-
VAP-A; pEGFP-C1

Recombinant
DNA reagent

mCherry-VAP-A this paper Progentiors:
PCR pET28a-VA
P-A; mCherry-tubuline

Recombinant
DNA reagent

pET28a-VAPA this paper Progentiors:
PCR cDNA He
k293T; pET28a

Recombinant
DNA reagent

SPLICSs PMID: 29229997

Recombinant
DNA reagent

SPLICSL PMID: 29229997

Recombinant
DNA reagent

OMM-GFP1-10 PMID: 29229997

Recombinant
DNA reagent

FLAG-Parkin PMID: 12937272

Recombinant
DNA reagent

pSpCas9(BB)
�2A-Puro (PX459)

Addgene 48139

Recombinant
DNA reagent

mCherry-tubuline PMID: 15558047

Cells (human) Hek293T ATCC CRL-3216

Cells (human) HeLa S3 ATCC CCL-2.2

Cells (human) U2OS ATCC HTB-96

Cells (human) MRC5 WT (MRC-5 SV2) ECACC 84100401
PMID: 6313714

Cells (human) MRC5 Clone 4
MRC5-SV2_A01-01t_A2b

A. Velayos-Baeza

Chemical
compound, drug

Oleic acid Sigma O3008

Chemical
compound, drug

Thapsigargin Merck Millipore 586005

Chemical
compound, drug

Carbonyl cyanide
3-chlorophenyl
hydrazone (CCCP)

Sigma C2759

Chemical
compound, drug

Proteinase K (recombinant),
PCR grade

Fermentas EO0491

Commercial
assay or kit

Gibson assembly
master mix

NEB E2611

Chemical
compound, drug

HBSS, calcium
magnesium

Thermo
Fisher Scientific

14025092

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

QuickChange
Site Directed
Mutagenesis Kit

Agilent 200519

Commercial
assay or kit

Glutathione
Sepharose 4B (10 ml)

GE healthcare 17-0756-01

Commercial
assay or kit

GFP-Trap_MA Chromotek gtma-20

chemical
compound, drug

polyethy
lenimine (PEI)

Polysciences 23966

Commercial
assay or kit

protein A/G plus
agarose beads

Santa Cruz sc-2003

Genetic reagent
(D. melanogaster)

w1118 Bloomington
Drosophila
Stock Center

3605 FlyBase
symbol: w[1118]

Genetic reagent
(D. melanogaster)

VPS13 (c03628) Harvard c03628 FlyBase symbol:
PBac{PB}Vps
13c03628/CyO

Genetic reagent
(D. melanogaster)

hVPS13 PMID:28107480

Genetic reagent
(D. melanogaster)

Act-Gal4 Bloomington
Drosophila Stock Center

3954 y1w*;P{w[+mC]=Act5 C-GAL4}17bFO1/TM6B, Tb

Cell culture and transfection
HeLa, U2OS and HEK293T cells (all cell lines were obtained from ATCC, see Key Resources table)

and are mycoplasma negative (GATC Biotech GA, Konstanz, Germany). MRC-5 SV2 cells (SV40-

immortalized human male fetal lung fibroblasts), here referred to as MRC5, were initially obtained

from ECACC (# 84100401), and were tested negative for mycoplasma. Cells were cultured in Dul-

becco’s modified eagle medium (DMEM, Gibco or Sigma) containing 10% Fetal Bovine Serum (FBS,

Greiner Bio-one) and Penicillin/Streptomycin (Gibco) in 5% CO2 at 37˚C. Plasmid transfections of

HeLa and U2OS cells were done using polyethylenimine 1 mg/ml(PEI, Polysciences) in 1:1 concentra-

tion. For procedures that required overexpression of full length VPS13A-GFP or VPS13A-Myc,

HEK293T cells were transfected using the Calcium Phosphate precipitation method. In both cases

cells were analyzed 24 or 48 hr after transfection and medium was refreshed 24 hr after transfection.

Oleic acid (OA, Sigma) was added at indicated concentrations for different time points. Thapsi-

gargin (Merck Millipore) was added in indicated concentrations for 6 hr. Prior to HBSS (Thermo

Fischer scientific) treatment, cells were washed 1x with HBSS and then incubated for 5 hr (pDRP1

determination) or for 16 hr (to assay mitochondria morphology) at 37˚C in 5% CO2.

Plasmids and constructs
The full-length cDNA of the human VPS13A gene, variant 1A, was obtained as previously described

(Velayos-Baeza et al., 2004; Vonk et al., 2017) and sub-cloned into pcDNA4-TO-mycHis (Invitro-

gen) to generate pcD13A-1A-mH, for expression in mammalian cells of VPS13A with a C-terminal

myc +His tag (here referred to as VPS13A-Myc). A XhoI-PciI fragment of this plasmid, containing the

myc-His tags and the zeocin selection marker, was replaced by a XhoI-EcoO109I fragment from

pEGFP-N1 vector (Clontech), including EGFP and the kanamycin/neomycin selection marker, to gen-

erate pcD13A-1A-EGFP for expression of VPS13A with a C-terminal EGFP tag (here referred to as

VPS13A-GFP). To generate the GFP-VPS13A constructs 2–854, 835–1700 and 855–1700, the corre-

spond fragments were amplified by PCR from the full length VPS13A plasmid and inserted in to

pEGFP-C1 (Clontech) via BamHI and XhoI restriction sites. To generate the GFP-VPS13A constructs

2003–2606 and 2615–3174, the corresponding fragments were amplified by PCR from the full length

VPS13A plasmid and inserted in to the BamHI/KpnI site pEGFP-C1 with the Gibson assembly kit

(NEB) according to the manufactures instructions. To generate the GST-VPS13A constructs 2–835,

2–854 and 835–1700, the fragments were amplified by PCR from the full length VPS13A plasmid
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and inserted into pGEX5�2 (GE Healthcare) via SalI and NotI restriction sites. To generate the GST-

VPS13A (2–854/D845A) and VPS13A-GFPDFFAT, a mutagenesis was performed on GST-VPS13A (2-

854) or VPS13-GFP respectively, with the QuickChange Site Directed mutagenesis kit (Agilent)

according to the manufacturer’s protocol. To obtain GST-FFAT, oligonucleotides encoding the FFAT

domain in human VPS13A (AA 842–848), flanked with SalI and 3’ NotI sites, were synthesized,

annealed and inserted into pGex5�2 via SalI and NotI restriction sites. To generate His-VAP-A,

human VAP-A was amplified by PCR from HEK293 cDNA and inserted into pET28a (EMD Bioscien-

ces) via NdeI and BamHI restriction sites. To obtain GFP-VAP-A, VAP-A was amplified by PCR from

the His-VAP-A plasmid and inserted into pEGFP-C1 (Clontech) via EcoRI and BamHI restriction sites.

To obtain mCherry-VAP-A, tubulin in pcDNA3.1-mCherry-Tubulin (kind gift from B. Giepmans,

(Shaner et al., 2004) was replaced by a VAP-A PCR fragment via BspEI and XhoI restriction sites. All

restriction enzymes used where purchased from New England BioLabs (NEB). BFP-Sec61B (Addgene

plasmid #49154) and mCherry-Sec61B (Addgene plasmid #49155) were kind gifts from Gia Voeltz

(Zurek et al., 2011). GFP-Rab5 Q79L (Addgene plasmid #28046) and GFP-Rab7 Q67L (Addgene

plasmid #28049) were kind gifts from Qing Zhong (Sun et al., 2010). LAMP1-mGFP (Addgene plas-

mid # 34831) was a kind gift from Esteban Dell’Angelica (Falcón-Pérez et al., 2005). (Raiborg et al.,

2015). Plasmid pSpCas9(BB)�2A-Puro (PX459) (Addgene plasmid #48139) was a gift from Feng

Zhang (Ran et al., 2013). mCherry FYCO1 was a kind gift from Harald Stenmark (Raiborg et al.,

2015). OMM-GFP1-10, SPLICSs and SPLICSL were a kind gift from Tito Cali (Cieri et al., 2018) FLAG-

Parkin was a kind gift from Helen Ardley (Ardley et al., 2003).

Primers Sequence 5’�3’

GFP-VPS13A (2-854) FW AATTGCTCGAGAAGGCGGCGTTTTCGAGTCGGTGGTCGTGGAC

Rev GGCCAAGGATCCAGGTTCTTCCAAGGGACTACAT

GFP-VPS13A (835–1700) FW GATCTCTCGAGGGGGCGGCTCTGAAGATGATTCAGAGGAG

Rev GGCCGGGATCCAAGAAACCACATTTTTAAAGTCTTTG

GFP-VPS13A (855–1700) FW ATGAGCTCGAGGGGGCGGCCTTCAGTTTCCAACTGGAGTTAAA

Rev GGCCGGGATCCAAGAAACCACATTTTTAAAGTCTTTG

GFP-VPS13A (2003–2606) FW TTCTGCAGTCGACGGTACTTCAGTCCCACTGTCTGTTTACG

Rev TCAGTTATCTAGATCCGGTGGGTTAGGCGAACCGGAACATTAGTGTCC

GFP-VPS13A (2615–3174) FW TTCTGCAGTCGACGGTACTCTGCAGCCGCATGTAATAGC

Rev TCAGTTATCTAGATCCGGTGTCAGAGGCTCGGAGAAGGTTCTCTTG

VPS13A-GFP DFFAT FW AAGATGATTCAGAGGAGAGTCCCTTGGAAGAACCTC

Rev GAGGTTCTTCCAAGGGACTCTCCTCTGAATCATCTT

GST-VPS13A (2–854/D845A) FW TCAGAGGAGGAATTTTTTGCTGCACCATGTAGTCCCTTG

Rev CAAGGGACTACATGGTGCAGCAAAAAATTCCTCCTCTGA

his VAP-A FW CCAGCCACATATGATGGCGTCCGCCTCAGGGGCCATG

Rev GGCAGGAGCGGATCCCTACAAGATGAATTTCCCTAGAAAGAATCC

GST-VPS13A (2-835) FW ATGCTAGTCGACTGTTTTCGAGTCGGTGGTCGTG

Rev GGTATAGCGGCCGCACAGATGGAAGTTCCAAGAGAGG

GST-VPS13A (2-854) FW ATGCTAGTCGACTGTTTTCGAGTCGGTGGTCGTG

Rev ATTTAAGCGGCCGCAGGTTCTTCCAAGGGACTACATG

GST-VPS13A (835–1700) FW GCACTGGAGTCGACTTCTGAAGATGATTCAGAGGAG

Rev CCGGAAGCGGCCGCAAGAAACCACATTTTTAAAGTC

FFAT domain only FW TCGACTGAATTTTTTGATGCACCATGTGC

Rev GGCCGCACATGGTGCATCAAAAAATTCAG

GFP VAP-A FW AGGCCGGAATTCTCAAAATATGATGGCGTCCGCCTCAG

Rev GCTTCCTTTCGGGCTTTG

mCherry VAP-A FW ATTGGCTCCGGATATATGATGGCGTCCGCCTCAG

Rev ATTCCGCTCGAGGCTTCCTTTCGGGCTTTG
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Generation of VPS13A KO cell line
Human VPS13A gene was targeted via a CRISPR/Cas9 approach (Ran et al., 2013) using guide

sequence GACGTGTTGAACCGGTTCTT in exon 1, positions + 25 to+44 of VPS13A cDNA. Oligonu-

cleotides HsA01-01t-F (5’-CACCGACGTGTTGAACCGGTTCTT-3’) and HsA01-01t-R (5’-AAACAA-

GAACCGGTTCAACACGTC-3’) were annealed and used to replace the BbsI 22nt-fragment in the

single-guide RNA (sgRNA) sequence of plasmid pSpCas9(BB)�2A-Puro (PX459), also expressing the

Streptococcus pyogenes Cas9 nuclease and the puromycin resistance gene, to obtain the targeting

plasmid 48139-HsA01-01t. MRC5 cells (150,000 per well in 6-well plate) were grown in complete

medium as described above and transfected with the targeting plasmid (2.5 mg per well) using Tur-

boFect transfection reagent (Fermentas) (2 ml per mg DNA) according to manufacturer’s instructions.

Puromycin selection (3 mg / ml) was applied for two days, starting one day after transfection. The

remaining cells were then washed, collected by trypsinization, diluted and seeded in 15 cm culture

dishes with complete medium without puromycin. Colonies were picked after two weeks and cells

were expanded in normal growing conditions. To detect VPS13A knock-out clones, these cells were

characterized by Western blotting (see Figure 5—figure supplement 1–2) to analyse the expression

levels of endogenous VPS13A protein. Clone #4, (full name: MRC5-SV2_A01-01t_A2b), with no

detectable VPS13A signal, was selected for further experiments.

Immunoblotting
Fly heads were processed as described before (Vonk et al., 2017). Cells were homogenized by soni-

cation in 2x Laemmli buffer containing urea (Sigma) and DTT (Sigma) to a final concentration of 0.8M

and 50 mM respectively. Afterwards the homogenates were boiled at 99˚C for 5 min. The indicated

proteins were separated with 8% polyacrylamide gels and overnight wet transfer, or on 10% or 12%

mini protean TGX stain-free gels (Bio-Rad). Stain-free gels were activated and imaged with the

ChemiDoc imager (Bio-Rad) before transfer to PVDF membranes using the Trans Blot Turbo System

(Bio-Rad). The membranes were blocked in 5% fat free milk for 1 hr at room temperature and rinsed

in PBS-Tween 20. Incubations with primary antibodies were done overnight at 4˚C followed by incu-

bations with secondary antibodies for 1.5 hr at room temperature. The following primary antibodies

were used: anti-ATP5A (Abcam, 1:1000), anti-DRP1 (to detect total DRP) Cell Signaling 1:500), anti-p

(hospho)DRP1 ser616 (Cell signaling, 1:1000), anti-GAPDH (Fitzgerald 1:10,000), anti-GFP (Clontech

1:1000), anti-GST (Santacruz Biotechnology, 1:1000), anti-EGFR (Santacruz Biotechnology, 1:1000),

anti-LAMP1 (Abcam, 1:1000), anti-Myc (Enzo Life Sciences, 1:1000), anti-PLIN2 (Abcam, 1:1000),

anti-Rab7 (Abcam, 1:1000), anti-TOMM20 (BD biosciences 1:1000), anti-a tubulin (Sigma, 1:5000),

anti-VAP-A (Santa Cruz Biotechnology, 1:1000), anti-VAP-B (Sigma, 1:1000), anti-VPS13A

(Sigma,1:1000), anti-VPS13A (H-102) (Santa Cruz Biotechnology, 1:500), Drosophila VPS13A #62

(Vonk et al., 2017), VPS13C (Sigma). Membranes were developed using ECL reagent (Thermo

Fisher Scientific) and the signal was visualized using the ChemiDoc imager (Biorad), images exported

as. tiff files and densitometric analysis of band intensities was performed using ImageJ software.

Immunofluorescence
For fixed samples, cell were seeded in Poly-L-Lysine coated (Sigma-Aldrich) cover slips and allowed

to settle for 24 hr. Afterwards the cells were fixed with 3.7% formaldehyde or 4% paraformaldehyde

(Sigma Aldrich) for 20 min, washed briefly with phosphate-buffered saline (PBS) + 0.1% Triton-X-100

(Sigma Aldrich) and permeabilized with PBS + 0.2% Triton-X-100. The slides with cells were then

incubated with primary antibody (anti-TOMM20, 1:200; anti-Myc, 1:500; anti-FLAG, 1:500) at 4˚C
overnight and after an additional washing step in PBS + 0.1% Triton-X-100 probed with matching

secondary antibodies (Molecular Probes) for two hours at room temperature (RT). The cell nucleus

was detected by DAPI staining (0.2 mg/ml) (Thermo Fischer Scientific). Finally the samples were

mounted in 80% glycerol and analysed with one of the confocal microscopes listed below.

For LipidTox staining, cells were fixed as described above, then quenched for 10 min in 50 mM

NH4Cl in PBS, permeabilized for 5 min with 0.1% Triton x-100 in PBS followed by incubation with

LipidTox dye (Thermo Fischer Scientific 1:200) for 30 min at room temperature. Cells were mounted

using citifluor mounting medium (Agar Scientific) and imaged immediately. Mitotracker (Thermo
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Fischer Scientific) was added for 20 min in serum free medium at a concentration of 100 nM (for live)

and 200 nM (for fixed) cells, after which the cells were fixed and co-stained as described above.

For Live imaging procedures, cells were seeded in 35 mm glass bottom dishes coated with poly-

D-lysine (Mat Tek). BODIPY-FA (Thermo Fischer Scientific) 1 mM was added for 30 min (live). Live cell

recordings (600 ms/frame) were made using a DeltaVision confocal microscope. Prior to imaging,

the cage was allowed to reach 37˚C and cells were supplemented with 5% CO2 throughout the

entire recording. Images were deconvoluted by the SoftwoRx software and stored as movies.

Cytosol and membrane fractionation
Around 4–5, 90% confluent, T75 flasks of HeLa cells were scraped in ice cold PBS and resuspended

in 1 ml homogenization buffer HB (50 mM Tris HCl pH 7.5, 150 mM NaCl, 1 mM EDTA, Protease

inhibitor cocktail (Roche)). The cell suspension was lysed through 2 freeze-thaw cycles and 20 strokes

using a 27 gauge needle. The nuclei and intact cells were pelleted by centrifugation for 5 min at 800

g, and the resulting postnuclear supernatant (PNS) was applied to ultracentrifugation at 100,000 x g,

for 1 hr, using a TLA 100.3 rotor in a Beckman Coulter, to generate the cytosol and the membrane

fraction. The membrane fraction was washed in 1 ml of HB and centrifuged 1 hr at 100,000 x g. All

centrifuge steps were carried out at 4 degrees. Laemmli sample buffer was added to the cytosol and

membrane fractions, samples were quantified and 20 mg of proteins of each sample were loaded on

SDS-gel and processed for Western blot analysis.

Digitonin based subcelullar fractionation
Digitonin extraction of cytosolic proteins was performed according to (Holden and Horton, 2009).

Briefly, HEK293T cells were cultured in 5 cm dishes. When about 70% confluent, cells were collected

by trypsinization, washed with ice cold PBS and resuspended in 5 ml of digitonin buffer (150 mM

NaCl, 50 mM HEPES PH = 7.4, 25 ug/ml digitonin, protease inhibitor cocktail (Roche)). After rolling

the suspension for 10 min at 4 degrees, the tube was centrifuged at 2000 x g for 5 min. The superna-

tant was collected as cytosolic fraction. The pellet was washed once with cold PBS and resuspended

in 5 ml of NP-40 buffer (150 mM NaCl, 50 mM HEPES PH = 7.4, 1% NP-40, protease inhibitor cock-

tail (Roche)). After rolling the suspension for 30 min at 4 degrees, the tube was centrifuged at 7000

x g for 5 min. The supernatant was collected as membrane fraction. All centrifuge steps were carried

out at 4 degrees. Both the cytosolic and membrane fractions underwent TCA precipitation and equal

amounts of proteins were processed for immunoblotting as described above.

Membrane extraction
The membrane fractions (after digitonin extraction) were resuspended in HB (control), 1M KCl, 0.2M

sodium carbonate (pH 11) or 6M urea for 45 min shaking on ice, and then centrifuged at 4 degrees,

100,000 x g for 1 hr, using a TLA 100.3 rotor in a Beckman Coulter, obtaining soluble (supernatant)

and insoluble (pellet) fractions. Laemmli sample buffer was added to the insoluble and soluble frac-

tions, samples were quantified and 20 mg of proteins of each sample were loaded on SDS-gel and

processed for Western blot analysis.

Subcellular fractionation
For subcellular fractionation around 5–6, 90% confluent, T75 flasks of HeLa cells were scraped in ice

cold PBS and resuspended in 1 ml of homogenization buffer HB1 (50 mM Tris HCl pH 7,5, 150 mM

NaCl, 1 mM EDTA, Protease inhibitor, 0.25 M sucrose). The cell suspension was homogenized as

previously described (see cytosol and membrane fractionation) to obtain PNS. The PNS was then

loaded onto a 10 ml continuous sucrose gradient containing 5–55% (w/v) in HB1, and was spun at 4

degrees at 274, 000 x g for 4 hr using a swinging bucket SW41 rotor in a Sorvall Discovery 90se.

Gradient fractions of 0.5 ml were collected from top to bottom. The proteins in each fraction were

concentrated using trichloroacetic acid (TCA) precipitation and resuspended in 75–100 ml of sample

buffer. All the procedures were performed on ice. Equal volume of each fraction was loaded onto

SDS-gel and processed for Western blot analysis.
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Immunoprecipitation
HeLa cells were washed once with ice cold PBS and then scrapped into ice cold PBS. After centrifu-

gation the cells were resuspended in immunoprecipitation buffer (IB) (50 mM Tris HCl, 150 mM

NaCl, 1 mM EDTA, 1.5 mM MgCl2, 10 mM KCl, 1% Triton X-100, pH 7.6) supplemented with prote-

ase inhibitor cocktail (Roche). Cells were then snap frozen in liquid nitrogen twice and in between

passed through a 26 gauge needle, 10 strokes. The resulting homogenate was spun down at 10,000

x g for 10 min, the supernatant was recovered and subjected to overnight immunoprecipitation

using indicated antibodies or control IgG of the same host. Immunoprecipitates were enriched on

agarose beads (Santa Cruz) at 4 degrees for 1.5 hr. Protein A/G plus agarose beads (Santa Cruz)

were gently washed with IB and resuspended in 2x Laemmli buffer containing DTT and urea and

processed for immunoblotting as described above. Co-immunoprecipitation using GFP-Trap beads

(Chromo Tek) was done according to manufactures instructions.

In vitro protein-protein interaction
GST-tagged protein coding plasmids were transformed in E.coli BL21 and bacteria was grown over-

night in 1 liter Luria Broth (LB) medium. When the bacteria suspension reach the OD600 of 0.6 pro-

tein expression was induced using IPTG 1 mM for 4 hr. Cells were pelleted by centrifugation at 5000

x g for 15 min and lysed by sonication in 40 ml lysis buffer (LB) (50 mM Tris HCl, PH +7.5, 150 mM

NaCl, 5% glycerol, 0.1% Triton S-100, 1 mM PSMF, protease inhibitor cocktail (Roche)). Debris was

removed by centrifugation at 4000 x g for 15 min and the clean supernatant was mixed with 1 ml

glutathione beads (GE healthcare), incubated for 2 hr at 4 degrees. Beads were washed with LB 3

times. For protein-protein interaction assays, a bacterial lysate that contains His-VAP-A or HeLa cell

lysate was added to the GST-VPS13A enriched beads and incubated at 4 degrees overnight. Beads

were gently washed with LB and resuspended in 2x laemmli buffer containing DTT and urea, incu-

bated for 5 min at 99˚C and processed for immunoblotting as decribed above.

Splics
Cells were transfected as described (Cieri et al., 2018). Briefly, 48 hr after transfection cells were

fixed as described above and stained with DAPI. A z-stack covering the cell was acquired using a

Leica SP8 confocal microscope. Z-stacks were processed using ImageJ with the VolumeJ plugin

(http://bij.isi.uu.nl/vr.htm). The image was then used to count ER-mitochondria contact sites.

Mitochondria morphology
Mitochondria were scored according to (Rambold et al., 2011). Briefly, 80% confluent cells were

washed once with HBSS and incubated for 16 hr in HBSS or normal medium at 37˚C + 5% CO2. The

cells were stained with TOMM20 as describe above and mitochondrial morphology was scored in

three types as follows and partly based on (Rambold et al., 2011) : type 1; fragmented, mainly small

and round mitochondria, mainly localized and densely packed at one site of the nucleus; type 2;

intermediate, mixture of round densely packed and shorter tubulated mitochondria more surround-

ing the nucleus; and type 3; tubulated dispersed and long mitochondria..

Mitophagy
Mitophagy was performed as previously described (Narendra et al., 2008). Briefly, MRC5 control

and clone 4 cells were transfected with FLAG-parkin. 24 hr post transfection the cells were treated

with 20 mM CCCP (Sigma) or DMSO for 48 hr. Cells were labelled with anti-TOMM20, anti-FLAG

and stained with DAPI. To correct for transfection efficiency, the TOMM20 mean value was mea-

sured exclusively in Parkin-positive cells using ImageJ.

LD fractionation
HeLa cells were collected by trypsinization and washed once with PBS. After centrifugation, cell pel-

lets were resuspended in detergent free homogenizing buffer (50 mM Tris HCl, 150 mM NaCl, 1 mM

EDTA, 1.5 mM MgCl2, 10 mM KCl, PH 7.6) supplemented with protease inhibitor cocktail. Cells

were snap frozen in liquid nitrogen 3 times and in between passed through a 26 gauge needle 20

strokes. Nucleus and unbroken cells were removed by spinning down at 1600 x g for 5 min. The

supernatant was recovered and mixed with equal volumes of 0.25M sucrose in homogenizing buffer.
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After saving an input, the sample was loaded on top of a discontinuous sucrose gradient prepared

by layering 1 ml of 30%, 20%, 10% and 5% sucrose in SW55 ultracentrifuge tube. The gradient was

centrifuged at 4 degrees for 3 hr at 194,000 x g, using an ultracentrifuge in a Sorvall discovery 90se.

The tubes were carefully removed and 8 fractions of 600 ml were collected from top to bottom. 600

ml of the top fraction containing LDs were collected using a 20 ml pipette with a tip cut off. The

refractive index of each fraction was measured and correlated to the linearity of the sucrose concen-

tration throughout the tube. The bottom part containing the pellet was resuspended with buffer to

a final volume of 600 ml and was neither included in the refractive index measurement nor in the

quantification of protein distribution among gradients. Proteins from each fraction were precipitated

using the TCA precipitation method. Equal amounts of proteins were processed for immunoblotting

as described above. The amount of protein in each fraction was calculated as a ratio of the densito-

metric signal in each fraction to the sum of the total protein in fractions 1–8 (Protein per fraction (%)

=densitometric signal of a fraction/sum of total densitometric signal (1-8) x 100)

FACS analysis
Cells were collected by trypsinization, centrifuged and washed and resuspended in 200 mL PBS with

Nile Red stock solution diluted to 1:500. Cells were incubated at room temperature for 15 min. After

incubation the cells were washed with PBS and resuspended in 300 ml PBS. Finally, the cells were

measured on a FACScalibur (BD) and analyzed with FlowJO V10. For this experiment the mean fluo-

rescence intensity of ~10,000 cells was analyzed.

Fly stocks and genetics
Fly stocks were maintained and experiments were done at 25˚C on standard agar food unless indi-

cated otherwise. The Vps13{PB}c03628 stock (here referred to as Vps13) was acquired from the Exe-

lixis stock centre and isogenized to the w1118 stock (Vonk et al., 2017). The UAS-hVPS13A

expressing Drosophila line in the Vps13 mutant background has previously been described in

Vonk et al., 2017. For the rescue experiment two stocks were created, Vps13/CyO; Act-Gal4/TM6B

and Vps13/CyO, UAS-hVPS13A, and mated to produce the offspring listed in Figure 9 (homozygous

or heterozygous Vps13 mutant flies expressing or not expressing UAS-hVps13A ubiquitously under

the control of Act-Gal4).

Whole mount staining of fly retinas
LD staining of adult fly retinas was performed as described previously (Liu et al., 2015). Images of

male flies are shown (Figure 9), female flies were also stained and showed a comparable phenotype.

Mitochondria membrane fractionation
Fractionation studies were performed as described previously (Sugiura et al., 2017; Mattie et al.,

2018). Briefly, cells were seeded in 10 � 14,5 cm dishes and when 90% confluent, were scraped into

ice cold PBS after a wash step with PBS. After centrifugation they were resuspended in 5 ml homog-

enization buffer HB2 (30 mM Tris-HCL pH 7.4, 225 mM mannitol, 75 mM sucrose). The cell suspen-

sion was then lysed using a 27 gauge needle (20 strokes). Afterwards it was centrifuged at 1000 x g

for 10 min, transferred to a new tube an spun again at 1000 x g for 5 min. The postnuclear superna-

tant (PNS) was transferred and spun for 15 min at 8000 x g, the cytosolic and membrane fraction at

100,000 x g for 30 min, using a TLA 100.3 rotor in a Beckman Coulter Centrifuge, to separate the

two fractions. The membrane fraction was then washed with HB2 and centrifuge 100,000 x g for 30

min.

After centrifugation the pellet for the PNS was resuspended in mitochondria resuspending buffer

MRB (250 mM mannitol, 5 mM HEPES pH 7.4, 0,5 mM EGTA) and passed through a 27 gauge nee-

dle once. It was centrifuged for 15 min at 8000 x g then the mitochondria resuspended in 1 ml MRB.

Half of the sample was usedfor proteinase K treatment and the other half for the alkaline carbonate

extraction (see below).

For Proteinase K treatment different concentrations (as indicated in Fig X) of proteinase K (Fer-

mentas) were added to the mitochondria either with or without 2% Triton X-100 and incubated on

ice for 30 min.
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For Alkaline carbonate extraction the mitochondria were centrifuged at 8000 x g for 5 min, resus-

pended in 0,1 M Na2CO3. They were then incubated for 30 min on ice, vortexed every 10 min and

finally centrifuged at 100,000 x g for 30 min. All centrifuges steps were done at 4 degrees. Proteins

from each fraction were precipitated using the TCA precipitation method. Equal amounts of proteins

were processed for immunoblotting as described above.

Hardware/software used for imaging/image work
Confocal images were collected by

. DeltaVision confocal microscope (Applied Precision) fitted with 60x or 100x oil immersion
objective. Images from the Delta Vision microscope were deconvolved by the SoftwoRx soft-
ware (Applied Precision) and saved as movies or exported as. tiff files using ImageJ (NIH). The
Delta Vision was used for: Figure 2 (A-C/E), 3 (D), 4 (E/E’), 6 (A-C), 7 (D/D’), 8 (E/E’), S3 (D), S4
(B/B’).

. Leica SP8 confocal laser scanning microscope fitted with a 63x oil immersion objective and
images were exported as. tiff files using the Leica software. The Leica SP8 was used for: Fig-
ure 3 (A/B), 5 (A/B/C’), 8 (A/A’), S1 (C-F’), S3 (B-C).

. Zeiss 780 NLO confocal microscope fitted with a 40x oil immersion objective +optical zoom.
Zeiss Zen software was used to capture the images and export them as. tiff files. The Zeiss 780
was used for: Figures 3 (C) and 9 (A-D’’’).

ImageJ (NIH) was used for quantifying LDs (Figure 8B and D), mean gray intensity (Figure 5D),

line scan (Figure 2C”, E and 6C’), SPLICS with volumeJ plugin (Figure 5A’, B’), lipid movement

(Figure 8F,H) and colocalization with JACoP plugin (Figure 4—figure supplement 3).

Adobe Photoshop and Illustrator (Adobe Systems Incorporated, San Jose, California, USA) were

used for image manipulation (changing intensity and cropping of images) and image assembly as

well as creating the schematics.

Statistical analysis
All experiments are presented as mean of at least three independent experiments ± SEM, unless

stated otherwise in the legends. Statistical significance was determined by a two-tailed unpaired Stu-

dent’s t test where applicable. Statistical P values � 0.05 were considered significant (*p�0.05,

**p�0.01, ***p�0.001). Data were analysed using GraphPad Prism (GraphPad Software, San Diego,

CA, USA)
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