TY - JOUR TI - Representational untangling by the firing rate nonlinearity in V1 simple cells AU - Gáspár, Merse E AU - Polack, Pierre-Olivier AU - Golshani, Peyman AU - Lengyel, Máté AU - Orbán, Gergő A2 - Rust, Nicole A2 - Gold, Joshua I A2 - DiCarlo, Jim VL - 8 PY - 2019 DA - 2019/09/10 SP - e43625 C1 - eLife 2019;8:e43625 DO - 10.7554/eLife.43625 UR - https://doi.org/10.7554/eLife.43625 AB - An important computational goal of the visual system is ‘representational untangling’ (RU): representing increasingly complex features of visual scenes in an easily decodable format. RU is typically assumed to be achieved in high-level visual cortices via several stages of cortical processing. Here we show, using a canonical population coding model, that RU of low-level orientation information is already performed at the first cortical stage of visual processing, but not before that, by a fundamental cellular-level property: the thresholded firing rate nonlinearity of simple cells in the primary visual cortex (V1). We identified specific, experimentally measurable parameters that determined the optimal firing threshold for RU and found that the thresholds of V1 simple cells extracted from in vivo recordings in awake behaving mice were near optimal. These results suggest that information re-formatting, rather than maximisation, may already be a relevant computational goal for the early visual system. KW - vision KW - linear decoding KW - intracellular KW - mixed selectivity KW - firing rate nonlinearity KW - membrane potential JF - eLife SN - 2050-084X PB - eLife Sciences Publications, Ltd ER -