
*For correspondence:

a.stewart@victorchang.edu.au

Present address: †School of Life

and Environmental Sciences,

University of Sydney, Sydney,

Australia

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 12

Received: 26 November 2018

Accepted: 25 March 2019

Published: 26 March 2019

Reviewing editor: Werner
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Abstract ATP synthase produces the majority of cellular energy in most cells. We have

previously reported cryo-EM maps of autoinhibited E. coli ATP synthase imaged without addition

of nucleotide (Sobti et al. 2016), indicating that the subunit e engages the a, b and g subunits to

lock the enzyme and prevent functional rotation. Here we present multiple cryo-EM reconstructions

of the enzyme frozen after the addition of MgATP to identify the changes that occur when this e

inhibition is removed. The maps generated show that, after exposure to MgATP, E. coli ATP

synthase adopts a different conformation with a catalytic subunit changing conformation

substantially and the e C-terminal domain transitioning via an intermediate ‘half-up’ state to a

condensed ‘down’ state. This work provides direct evidence for unique conformational states that

occur in E. coli ATP synthase when ATP binding prevents the e C-terminal domain from entering the

inhibitory ‘up’ state.

DOI: https://doi.org/10.7554/eLife.43864.001

Introduction
The majority of metabolic energy in cells is generated by F1Fo ATP synthase, a biological rotary

motor that converts the proton motive force (pmf) to adenosine tri-phosphate (ATP) in both oxida-

tive phosphorylation and photophosphorylation (Stewart et al., 2014; Walker, 2013). The enzyme

consists of two reversible rotary motors, termed F1 and Fo, coupled together by one central and one

peripheral stalk, with the simplest subunit composition found in bacteria such as Escherichia coli (Fig-

ure 1—figure supplement 1). The Fo motor spans the membrane and converts the potential energy

of the pmf into rotation of the central stalk that in turn drives conformational changes in the three

catalytic sites of the a3b3 F1 motor subunits to generate ATP. Moreover, this process is reversible so

that, if the pmf drops below the threshold needed to power ATP synthesis, the motor has the ability

to reverse and, in some bacterial species, operates primarily as a proton pump driven by ATP hydro-

lysis. Regulation of these ATPase/synthase activities is particularly important in times of cellular

stress, primarily to prevent wasteful ATP consumption. However, different regulatory mechanisms

are used by different F1Fo subtypes (bacterial, chloroplastic, mitochondrial) and species
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(Sielaff et al., 2018; Morales-Rios et al., 2015; Stewart and Stock, 2012; Gledhill et al., 2007;

Hahn et al., 2018; Stewart, 2014; Pullman and Monroy, 1963).

It has been postulated that bacterial ATP synthases are regulated by several mechanisms, with

conformational changes of the e subunit and catalytic nucleotide occupancies likely playing major

roles (Sielaff et al., 2018; Hyndman et al., 1994; Feniouk et al., 2006). A long-standing question

surrounds the role of the C-terminal domain of the e subunit (eCTD). The eCTD is known to change

conformation and block rotation of the central stalk in the F1 motor from several bacteria, but this

role is absent in the enzyme of mitochondria (Sielaff et al., 2018; Laget and Smith, 1979;

Cingolani and Duncan, 2011; Sobti et al., 2016; Yagi et al., 2007; Shirakihara et al., 2015). In the

active bacterial enzyme, the eCTD is proposed to adopt a condensed or ‘down’ conformation

(Krah et al., 2017), and this state has been observed for isolated e subunit from E. coli (Uhlin et al.,

1997; Wilkens and Capaldi, 1998a) and Geobacillus stearothermophilus (or Bacillus PS3, hereafter

termed PS3) (Yagi et al., 2007) as well as in isolated F1 from Caldalkalibacillus thermarum

(Ferguson et al., 2016). In autoinhibited states observed in crystal structures of F1 from E. coli and

PS3, the eCTDs are extended in similar ‘up’ conformations, so that a helix inserts into the F1 central

cavity and appears to block rotation of the complex by binding to both the central rotor subunit g

and several surrounding a and b subunits (Sielaff et al., 2018; Cingolani and Duncan, 2011; Men-

doza-Hoffmann et al., 2018) (Figure 1—figure supplement 2). However, there is a key structural

difference between these ‘up’ states: in E. coli, the eCTD consists of two helices (here termed eCTH1

and eCTH2; see Figure 1—figure supplement 2) separated by an extended loop, with each helix

interacting with a different region of the g subunit (Cingolani and Duncan, 2011; Rodgers and

Wilce, 2000); whereas in PS3, eCTH1 and eCTH2 instead join to form one continuous helix

(Shirakihara et al., 2015). In PS3 and a related Bacillus species, ATP is known to bind to the e sub-

unit and stabilise the ‘down’ conformation (Yagi et al., 2007; Krah et al., 2017; Kato-Yamada and

Yoshida, 2003; Kato-Yamada, 2005; Imamura et al., 2009), and a clear mechanism of regulation

by the eCTD and ATP levels has been proposed (Shirakihara et al., 2015). However, the physiologi-

cal importance of the eCTD in ATP synthases of other bacteria, such as E. coli, has remained uncer-

tain. Crosslinking studies have suggested that the eCTD of E. coli ATP synthase could act as a

ratchet, preventing hydrolysis - but not synthesis - of ATP (Tsunoda et al., 2001). However, deletion

studies performed in vivo, in which the E. coli eCTD was removed, showed minimal impact on cell

growth or viability (Shah and Duncan, 2015), although deletion of just the five terminal residues

results in decreased respiratory growth due to increased inhibition of ATP synthesis

(Taniguchi et al., 2011). For the highly latent enzyme from C. thermarum, an early study indicated

the eCTD is involved in inhibition (Keis et al., 2006), but thus far crystallographic studies of its F1
complex have shown the eCTD in the down conformation irrespective of ATP binding to e

(Ferguson et al., 2016). Despite confusion over the possible importance of the eCTD for the bacte-

ria noted above, one recent study demonstrated that the eCTD can impact the virulence of Strepto-

coccus pneumoniae. F1Fo is essential for viability of S. pneumoniae and functions in pH homeostasis

and in its acid tolerance response (Ferrándiz and de la Campa, 2002; Cortes et al., 2015). In a

mouse model of pneumococcal bacteraemia, a frameshift mutation that scrambled the sequence of

the eCTD was found to increase pneumococcal survival in the spleen, most likely by reducing killing

by splenic macrophages (Gerlini et al., 2014). Therefore, it is important to characterize more fully

the bacterial eCTD and its different conformational states and interactions within bacterial ATP

synthases.

In contrast to the crystallographic reports mentioned above with isolated e subunits or soluble F1,

our previous cryo-EM study (Sobti et al., 2016) provided maps of the intact E. coli ATP synthase.

These data were obtained using purified protein without the addition of exogenous nucleotide, thus

likely representing a state autoinhibited by e, here termed ATP synthaseAI. Here we have used similar

methodologies to investigate the effect of ATP on the conformation of E. coli F1Fo ATP synthase, by

cryo-freezing and subsequently imaging the enzyme after a brief incubation with 10 mM MgATP.

The maps obtained (termed ATP synthase+ATP hereafter) indicate that, in the presence of MgATP,

the eCTD became detached from the body of the enzyme, coupled with a large change in one of

the three catalytic b subunits. Further analysis identified an intermediate in which the eCTD was in a
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‘half-up’ conformation, suggesting that the enzyme can still rotate, even when the e subunit is not in

its condensed down position, as well as an eCTD ‘down’ conformation likely showing an active inter-

mediate. Further inspection of our maps demonstrated peaks present in all six nucleotide-binding

sites in the ATP synthase+ATP enzyme (three catalytic b sites and three noncatalytic a sites), in con-

trast to the autoinhibited protein in which only four binding pockets (a single catalytic b site and

three noncatalytic a sites) were occupied with nucleotide. Together with our previous work, these

results reveal three distinct positions taken up by the eCTD in response to different catalytic nucleo-

tide–bound states, providing further insight into the mechanism of ATP synthase regulation in E. coli

and related species.

Results

Structure of E. coli F1Fo ATP synthase in the presence of ATP
To determine the structure of the E. coli F1Fo ATP synthase in the presence of ATP, the detergent-

solubilized E. coli enzyme (Sobti et al., 2016) was incubated with 10 mM ATP (containing 50 mM

ADP [n = 3; stdev = 2 mM]) and 10 mM MgCl2 for 30 s at 20˚C prior to preparing grids for cryo-EM.

Sample preparation took a further 15 s before cryogenic temperature was reached, with approxi-

mately 0.25 mM ATP hydrolysed to ADP in the total time for preparation (45 s) (Figure 1—figure

supplement 3). The time used for these experiments was optimized to be within the linear range of

ADP production, so that uninhibited ATP synthase could be observed, with an ADP concentration

of ~0.3 mM at the time of freezing. 10 mM ATP and a 45 s preparation time were chosen to emulate

the concentrations seen in E. coli growing under aerobic conditions, where 9.6 mM ATP and 0.6 mM

ADP has been observed (Yaginuma et al., 2014; Bennett et al., 2009).

The grids produced after incubation with ATP were similar to those used in our previous study of

the autoinhibited enzyme and micrographs showed clear ATP synthase particles. A dataset of 8509

movie micrographs was collected at 200 kV accelerating voltage, of which 7858 were selected based

on image quality. 579,942 particles were picked and 319,315 of these appeared to be of the intact

complex (Figure 1—figure supplement 4). Three different rotational conformations could be fil-

tered from these data (each containing 97,095, 72,757 and 51,534 particles) that were related by a

120˚ rotation of the central stalk, displaying the hallmark dynamic movements predicted for

ATPases/synthases (Stewart et al., 2012). The quality of the maps obtained for each conformation

was comparable, with resolutions of 5.0 Å, 5.3 Å and 5.5 Å (Figure 1a and Figure 1—figure supple-

ments 5 and 6). However, the proportion of particles corresponding to each reconstruction differed

from our previous study (33% State 1, 44% State 2 and 23% State 3 in this study, compared with

46% State 1, 30% State 2 and 24% State 3 in Sobti et al., 2016), suggesting that a larger number of

molecules were now observed in State 2 rather than State 1. Single molecule studies have also

observed the enzyme populating the rotational dwell states in different proportions (Sielaff et al.,

2019), suggesting that each dwell state may be at a different energy minimum. Inspection of the

nucleotide-binding pockets in the a and b subunits revealed two further peaks, in addition to the

four nucleotide peaks we reported previously for the autoinhibited enzyme (Sobti et al., 2016) (Fig-

ure 1—figure supplement 7). This indicated that all six nucleotide-binding sites were occupied,

even though one b subunit (bE) remained in the open, low-affinity conformation (Figure 1—figure

supplement 1b).

Re-refinement of the ATP synthaseAI maps presented in our previous study (Sobti et al., 2016)

improved their nominal resolution to 5.7 Å, 6.6 Å and 7.2 Å (previously 6.9 Å, 7.8 Å and 8.5 Å,

respectively), and enabled features to be seen more clearly (Figure 1b and Figure 1—figure supple-

ment 8). The re-refined maps were used to compare ATP synthase before and after incubation with

ATP. Compared with ATP synthaseAI, the ATP synthase+ATP reconstructions showed a large confor-

mational change in one of the three b subunits (bDP) and that the eCTD was absent from the maps

(Figure 1). The conformation of the catalytic subunits in the ATP synthase+ATP map closely resembles

that of the isolated F1 enzyme from C. thermarum (Ferguson et al., 2016) (Figure 1—figure supple-

ment 9), except that no density was detectable for the eCTD. Even inspecting the unmasked unfil-

tered half maps at low threshold, it was difficult to formulate a clear idea of the position of the

eCTD, suggesting that under these conditions it may be sampling multiple conformations.
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Figure 1. Comparison of the maps obtained (a) in the presence of ATP (ATP synthase+ATP) and (b) the autoinhibited state in the absence of ATP (ATP

synthaseAI). Comparison of the active and autoinhibited maps shows that: (i) the overall architecture is similar; (ii) a single b subunit (brighter yellow) is in

a closed conformation in the active form and open conformation in the autoinhibited form (black arrows show the direction of movement – view is of

the segmented a and b subunits, viewed from below); (iii) density corresponding to the eCTD (coloured green) is very weak in the ATP synthase+ATP

map, suggesting it has multiple conformations, whereas in the ATP synthaseAI map, the eCTD is clearly identifiable in the ‘up’ position, with the eCTH1

and eCTH2 bound to the g subunit (coloured blue).

DOI: https://doi.org/10.7554/eLife.43864.002

The following figure supplements are available for figure 1:

Figure supplement 1. Schematic of E. coli F1Fo ATP synthase.

DOI: https://doi.org/10.7554/eLife.43864.003

Figure supplement 2. Autoinhibited structures of bacterial F1-ATPases.

DOI: https://doi.org/10.7554/eLife.43864.004

Figure supplement 3. E. coli ATP synthase hydrolyses ATP to ADP.

DOI: https://doi.org/10.7554/eLife.43864.005

Figure supplement 4. Representative micrograph and top ten 2D classifications.

DOI: https://doi.org/10.7554/eLife.43864.006

Figure supplement 5. Three rotational conformations of the E. coli F1Fo ATP synthase after incubation with ATP.

DOI: https://doi.org/10.7554/eLife.43864.007

Figure supplement 6. Flowchart describing cryo-EM data analysis.

DOI: https://doi.org/10.7554/eLife.43864.008

Figure supplement 7. Nucleotide occupancy of the ATP synthaseAI and ATP synthase+ATP maps.

DOI: https://doi.org/10.7554/eLife.43864.009

Figure supplement 8. Three rotational conformations of the E. coli F1Fo ATP synthase in their autoinhibited form.

DOI: https://doi.org/10.7554/eLife.43864.010

Figure supplement 9. The crystal structure of C.thermarum F1 ATPase compared to the ATP synthase+ATP cryo-EM map.

DOI: https://doi.org/10.7554/eLife.43864.011

Figure supplement 10. Position of the cysteines in wild-type E. coli F1-ATPase.

DOI: https://doi.org/10.7554/eLife.43864.012

Figure supplement 11. Fit of C. thermarum e subunit into the eCTD ‘down’ ATP synthase+ATP cryo-EM map, highlights density corresponding to the

ATP binding site.

DOI: https://doi.org/10.7554/eLife.43864.013

Figure supplement 12. ATPase activity of digitonin solubilized E. coli F1Fo ATP synthase.

DOI: https://doi.org/10.7554/eLife.43864.014
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To identify the position of the eCTD, the data were processed more extensively and refined into

sub-classifications (Figure 1—figure supplement 6). Although the resolution obtained in these sub-

classes was lower than in the general classification and they displayed the same rotational states,

they showed additional weak density corresponding to the eCTD in either a condensed ‘down’ posi-

tion (Figure 2a and Figure 2—figure supplement 1a), or intermediate ‘half-up’ position (Figure 2b

and Figure 2—figure supplement 1b). In the ‘down’ position, weak density was present for both

eCTH1 and eCTH2 with the helices arranged adjacent to one another, attached to the N-terminal

region of the e subunit. However, in the intermediate ‘half-up’ position weak density was only

observed for the eCTH1 bound to the g subunit, with no identifiable density for the eCTH2, suggest-

ing that this helix was mobile.

Peripheral stalk structure
The peripheral stalk of ATP synthase is constructed from a right-handed coiled coil and holds the

catalytic a and b subunits stationary relative to a rotating central stalk (Wilkens and Capaldi, 1998b;

Lee et al., 2010; Walker and Dickson, 2006). Our previous maps (Sobti et al., 2016) described the

overall peripheral stalk architecture in E. coli F1Fo ATP synthase, to which density was attributed as

belonging to two b subunits and one d subunit. In light of recent higher resolution cryo-EM maps of

the eukaryotic F1Fo ATP synthase from Spinacia oleracea chloroplasts (Hahn et al., 2018), we

attempted to assign the density of the peripheral stalk more precisely in the new maps. Of particular

interest was a small density peak (Figure 3a–c, pink density) that cannot be identified in other struc-

tures of related ATP synthases (Morales-Rios et al., 2015; Hahn et al., 2018). However, this density

can be identified in all cryo-EM maps produced of E. coli F1Fo ATP synthase thus far (EMD-8357,

EMD-8358, EMD-8359 and the maps presented in this study). The length of the density relating to

Figure 2. Two conformations of subunit e are observed in sub-classification of ATP synthase+ATP maps. Processing

and refinement of the ATP synthase+ATP dataset using Relion (Scheres, 2012) identified two conformations for the

eCTD. These show a ‘down’ conformation (a) where the eCTH1 and eCTH2 are bound to the N-terminal region of

the e subunit and a ‘half-up’ conformation (b) where the eCTH1 was still bound to the g subunit but the eCTH2 was

not visible even at low thresholds.

DOI: https://doi.org/10.7554/eLife.43864.015

The following figure supplement is available for figure 2:

Figure supplement 1. Two cryo-EM maps filtered from the ATP synthase+ATP dataset show conformational

changes in subunit e.

DOI: https://doi.org/10.7554/eLife.43864.016
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the b subunits was measured to investigate whether this additional density could be attributed to

the b subunits, and found to be 233 Å and 227 Å (termed b1 and b2, respectively; Figure 3d).

Together with the prediction that residues 66–122 of the b subunits form an unstaggered coiled coil

in the isolated dimer (Del Rizzo et al., 2002), this suggests that the additional density peak repre-

sents the C-terminus of just the b2 subunit. The differing conformation between the b1 and b2 subu-

nits seen here appears to be unique to some bacterial ATP synthases and is likely due to their being

a homodimer in these systems. Other related F-ATP synthases, such as Paracoccus denitrificans, con-

tain two different b subunits (termed b and b’) that differ in length and sequence (Morales-

Rios et al., 2015) and therefore can adopt their own individual folds. In E. coli ATP synthase, each b

subunit is required to adopt two different conformations using the same amino acid sequence. This

may be due to the requirement of the homodimer binding to asymmetric a and d surfaces, whereby

the b1 subunit forms the majority of the contacts between the F1 motor while the b2 subunit folds

back onto itself providing rigidity to the peripheral stalk. Most recently, a high-resolution structure

of PS3 ATP synthase has been reported using cryo-EM (Guo and Rubinstein, 2018). Although the

maps and models are not currently available, similar density can be seen suggesting that the break

in symmetry of the b subunits observed at the top of the F1 motor is conserved across species which

contain a homodimeric b subunit. Moreover, analysis of our improved maps of the E. coli ATP syn-

thaseAI (particularly State 2, which shows the clearest density in the Fo region) corroborates the

results from the far higher resolution structure of the PS3 enzyme, showing a similar overall fold in

the membrane Fo region to spinach chloroplast ATP synthase (Hahn et al., 2018), although following

Figure 3. Density observed for the F1Fo ATP synthase peripheral stalk. The cryo-EM map of ATP synthase+ATP

docked with the atomic model of S. oleracea chloroplast ATP synthase peripheral stalk (Hahn et al., 2018), reveal

a region of difference density (coloured pink density in a), (b and c) not seen in related F-ATP synthases. (a and b)

side views and (c) top view. Coot (Emsley et al., 2010) and PyMol (Schrödinger) were used to create a line object

that traced the density believed to be the b subunits. The magenta line (labelled b1) measured 233 Å and the pink

line (labelled b2) measured 227 Å (d), suggesting that the difference density seen corresponds to the C-terminus

of a single b2 subunit. The b1 and b2 subunits of the E. coli ATP synthase peripheral stalk follow different

trajectories across the F1 motor surface.

DOI: https://doi.org/10.7554/eLife.43864.017

The following figure supplements are available for figure 3:

Figure supplement 1. Comparison of the membrane anchoring domain.

DOI: https://doi.org/10.7554/eLife.43864.018

Figure supplement 2. Comparison of peripheral stalk conformations in the three rotational states.

DOI: https://doi.org/10.7554/eLife.43864.019
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slightly different trajectories (Figure 3—figure supplement 1). However, because the maps of the E.

coli enzyme show only weak density in this region it is difficult to draw a firm conclusion on this

point.

Discussion
The structural information obtained here using E. coli F1Fo ATP synthase incubated with MgATP

likely reflects conformations uninhibited by the eCTD. Although the maps generated are of limited

resolution, the position of the catalytic subunits and eCTD were clearly identifiable. Two different

eCTD conformations were observed: a ‘down’ conformation, in which eCTH1 and eCTH2 are

arranged next to one another and interacts with the N-terminal region of the e subunit, and a ‘half-

up’ conformation in which the eCTH1 lies against the g subunit (Figure 2). Because the ATP and

ADP concentrations present were comparable to those observed in intact cells (Bennett et al.,

2009) it is likely that both these conformations are present in E. coli. Furthermore, analysis of the

maps in light of the recent high-resolution structure of related S. oleracea enzyme has highlighted a

unique C-terminal fold of the peripheral stalk b subunits in E. coli ATP synthase that derives from the

homodimeric nature of this subunit in this system.

A considerable body of work has described the inhibition of F1-ATPases by ADP, Mg2+ and eCTD

(Sielaff et al., 2018; Hyndman et al., 1994; Laget and Smith, 1979; Cingolani and Duncan, 2011;

Sobti et al., 2016; Richter, 2004; Zhou et al., 1988; Avron, 1962; Drobinskaya et al., 1985;

Guerrero et al., 1990). Because the sample in the present study was imaged under conditions in

which ADP accumulated at a linear rate (Figure 1—figure supplement 3), we propose that the

maps represent structures of E. coli F1Fo ATP synthase in which the autoinhibitory state of the eCTD

is prevented. These results indicate that ATP induces the eCTD to exit from the central cavity of F1
and so facilitate rotation of the enzyme. The contribution of the eCTD to regulate E. coli F1Fo ATP

synthase activity has previously been unclear. Our structural studies on E. coli F1Fo ATP synthase

support a mechanism whereby the eCTD is primed to act as a ‘safety lock” (Feniouk and Junge,

2005) or ‘ratchet” (Tsunoda et al., 2001; Cipriano and Dunn, 2006) to prevent ATP synthase from

entering the ADP/Mg2+ inhibited state (Shah et al., 2013) even when ADP and Mg2+ concentrations

are high (Figure 4). The ‘half-up’ state that we identified in our cryo-EM maps has been previously

hypothesised (Cingolani and Duncan, 2011) and studies on the enzyme in the absence of the

eCTH2 support the hypothesis that the eCTD ‘half-up’ conformation can act as a weak inhibitor, par-

tially inhibiting without insertion into the F1 motor (Nakanishi-Matsui et al., 2014). It is unlikely that

the ‘half-up’ conformation we observe here is an artefact generated by the cysteine residue free con-

struct used in this study, because in our previous work (Sobti et al., 2016) the same cysteine-free

enzyme did not show the ‘half-up’ state. In addition, previous studies using gC87S mutant protein

did not show any change in e inhibition (Duncan et al., 1995), and in the structure of the native

enzyme (Figure 1—figure supplement 10) loops in the g subunit separate the cysteines in subunit g

and residues in the eCTH1, so that they are not in direct contact.

Structural data from this and previous studies suggest that loading multiple catalytic sites with

nucleotides disrupts access of the eCTD to the inhibitory ‘up’ state in E. coli (Figure 4). In a nucleo-

tide-free solution, the F1-ATPase adopts an autoinhibited state (seen in the crystal structure of iso-

lated E. coli F1-ATPase (Cingolani and Duncan, 2011) and the ATP synthaseAI cryo-EM map

(Sobti et al., 2016); Figure 4a and b). The isolated F1-ATPase shows one b subunit (bDP) in a ‘half-

closed’ state, with ADP bound, which interacts directly with the ‘up’ conformation of the eCTH2

(Figure 4a). In the ATP synthaseAI cryo-EM map, the same b subunit is unoccupied and has adopted

an open conformation that no longer interacts with the eCTH2, which could facilitate a reversible

mechanism whereby the helix is able to escape from its inserted position. When compared with iso-

lated F1, the reduced interactions with the ‘up’ state of subunit e seen in the complete F1Fo complex

may explain why e inhibition is significantly reduced upon rebinding of E. coli F1 to Fo. In the ATP

synthase+ATP cryo-EM maps, all catalytic sites are at least partially occupied with nucleotide (Fig-

ure 1—figure supplement 7) and the eCTD is seen in two conformations that no longer contact the

a and b subunits (Figure 4c and d). Because we only observed the eCTD in the ‘up’ conformation in

the absence of ATP, these results indicate that nucleotide binding to the catalytic subunits, in either

one or a combination of catalytic sites, is important for the release of the eCTD. Binding of ATP is

unlikely to accelerate release of the eCTD from the ‘up’ state, as that would conflict with the known
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noncompetitive nature of e inhibition with E. coli F1 and FoF1. Rather, as the eCTH2 escapes from the

central cavity of the ATP synthaseAI conformation (Figure 4b), rapid binding of ATP would induce a

transition from the open (Figure 4b, ‘O’) to the closed conformation (Figure 4c/d, ‘C’), preventing

re-entry of eCTH2 until the next catalytic dwell position. Finally, the ‘half-up’ conformation seen for

the eCTD supports the prediction that the eCTH2 can remain mobile, anchored to g by the eCTH1,

so that it can re-enter the central cavity at a later step in the cycle (Cingolani and Duncan, 2011). It

is also possible that this eCTH1 interaction alone may be able to modulate enzyme activity, as seen

in a previous deletion study (Nakanishi-Matsui et al., 2014).

The ‘down’ conformation of the e subunit has been observed for the isolated e subunit of PS3

with ATP bound (Yagi et al., 2007) and on F1 from C. thermarum (Ferguson et al., 2016). For ATP

synthase+ATP cryo-EM maps containing the eCTD in the ‘down’ conformation, close inspection

showed very weak density, consistent with a fraction of these complexes showing nucleotide bound

to the e subunit. Docking of the C. thermarum (Ferguson et al., 2016) e subunit with ATP bound,

showed good correlation between the position occupied by the nucleotide and additional density

seen in the ATP synthase+ATP map (Figure 1—figure supplement 11). Partial occupancy would be

Figure 4. Proposed mechanism for the release of eCTD from the inhibitory ‘up’ conformation in E. coli F1-ATPase. Structural models presented as maps

(above; E. coli crystal structure in (a) presented as low smooth map for comparison) and simple schematics (below) to describe the possible structural

movements of E. coli F1-ATPase during activation. In a nucleotide-free solution, the F1-ATPase adopts an inactive state (seen in the crystal structure of

isolated E. coli F1-ATPase (Cingolani and Duncan, 2011) and the ATP synthaseAI cryo-EM map (Sobti et al., 2016; (a) and (b) respectively). The

isolated F1-ATPase shows one of the b subunits in a ‘half-closed’ state (labelled as HC), interacting with the ‘up’ conformation of the eCTH2 (a). In the

cryo-EM maps of the intact enzyme (b), the same b subunit adopts an open conformation (labelled as O) where it no longer interacts with the eCTH2,

allowing the reversible release of the helix from its inserted position. In the presence of ATP, the eCTD is seen in two conformations (c and d) that no

longer contact the a and b subunits, and the aforementioned b subunit then adopts a closed state (labelled as C) that prevents the eCTD from

returning to the ‘up’ conformation. The eCTD can either be in a ‘half-up’ (c) conformation, with the eCTH2 mobile, or a ‘down’ conformation (d) with

both eCTH1 and eCTH2 in a condensed form.

DOI: https://doi.org/10.7554/eLife.43864.020
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consistent with the concentration of ATP employed in our study being slightly below the Kd of ~22

mM observed for ATP binding to isolated E. coli e subunit (Yagi et al., 2007), and so because weak

density attributable to nucleotide bound to the eCTD was only seen with the down conformation, it

is possible that the ‘half-up’ conformation, with the associated probable disorder of eCTH2, might

result when nucleotide is not bound to the e subunit. Further work, for example, using a range of

ATP concentrations, will be needed to resolve this point.

Although the movements of the eCTD are well defined by this study, the resolution of the recon-

structions is limited compared to others (Guo and Rubinstein, 2018; Murphy et al., 2019). We

believe this is likely due to inherent flexibility in the complex, possible varying subunit or lipid stoichi-

ometry (Chorev et al., 2018), the detergent used, ice thickness, particle density and the lower accel-

erator voltage used during image acquisition (200 vs. 300 kV). Moreover, we only observed three

rotational states whereas seven were seen in bovine mitochondrial ATP synthase (Zhou et al., 2015)

and thirteen in Polytomella sp. mitochondrial ATP synthase (Murphy et al., 2019). We did employ

methods similar to those used in these studies in an attempt to observe rotary sub-steps in the E.

coli enzyme, but were unsuccessful. Although the complex should be undergoing rotation, due to

the ATP hydrolysis that is occurring during freezing, single molecule studies have shown that in order

for the complex to spend significant time in rotary sub-steps it had to be imaged under high drag,

such as in 30% polyethylene glycol with a large object attached (Ishmukhametov et al., 2010).

Indeed, the poor density seen at the membrane interface of the subunit b dimer, points towards

these reconstructions containing multiple conformations, which may contribute to limiting the resolu-

tion obtained. It is possible that further work to obtain a much larger dataset, containing many more

particles, may enable identification of more of the rotary sub-steps that are likely present in this

sample.

Recent work on Polytomella sp. mitochondrial ATP synthase (Murphy et al., 2019) has described

this ATP synthase in great detail, showing a flexible coupling between the F1 and Fo motors medi-

ated by a hinge region in OSCP (analogous to the d subunit in E. coli ATP synthase). Comparison of

the peripheral stalks in this study, by superposition of either the Fo stator or the N-terminal region of

subunit d (Figure 3—figure supplement 2), shows that the peripheral stalk likely bends and twists

as the enzyme undergoes rotary catalysis, as suggested in previous studies (Hahn et al., 2018;

Stewart et al., 2012). We do not observe movement in the delta/OSCP hinge, most likely due to

our inability to resolve rotary substates in our maps.

In previous studies on E. coli ATP synthase, the enzyme has been shown to become inactive four

hours after purification, possibly due to aggregation (Ishmukhametov et al., 2010). In this study,

the enzyme was purified rapidly (see Materials and methods) and EM grids were made shortly after

purification to ensure active enzyme was being imaged. The images obtained showing free monodis-

perse protein with little evidence of aggregation. Furthermore, the enzyme was purified in digitonin

rather than the mixture of phosphatidylcholine, octyl glucopyranoside, sodium deoxycholate and

sodium cholate used previously (Ishmukhametov et al., 2010; Ishmukhametov et al., 2005). Digito-

nin was selected because enzyme purified in the original mixture of lipids and detergents was not

stable on the size exclusion chromatography (SEC) employed as a final purification step prior to grid

freezing. Because the enzyme had been purified in a different detergent and further purified using

SEC, we assessed the activity of the digitonin solubilized enzyme using ATP regeneration assays

after 0, 1, 2, 3, 4 and 8 hr to compare with data taken on enzyme purified in previous studies

(Ishmukhametov et al., 2010) (Figure 1—figure supplement 12). Importantly the enzyme showed

little change in activity over 8 hr, suggesting that E. coli ATP synthase purified with digitonin and

SEC may be less prone to inactivation or aggregation.

The present study has exploited the ability to manipulate sample conditions immediately before

freezing to obtain images of E. coli ATP synthase at a time when ADP formation from ATP proceeds

linearly, and hence likely unhindered, to identify the possible conformational changes that occur to

remove the eCTD from the autoinhibitory position. This outcome was achieved by optimizing experi-

mental design, considering particle concentration, as well as mixing and blotting time. Interestingly,

employing similar methods on the related bacterial A/V type ATPase from Thermus thermophilus,

showed that no conformational changes occur in the catalytic or related F subunits upon addition of

the ATP transition state mimic fluoroaluminate (Davies et al., 2017). This could be due to different

nucleotide affinity, operating temperature or indeed function of the complexes (Nakano et al.,

2008).
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In summary, this study presents structural data of E. coli ATP synthase imaged in the presence

of ~9.75 mM ATP and ~0.3 mM ADP, comparable to the concentrations present in the intact bacte-

rium. Compared to our previous work on the autoinhibited enzyme in the absence of ATP, the cryo-

EM reconstructions presented here show that a single b subunit and the C-terminal domain of sub-

unit e change conformation and position substantially upon addition of ATP. Together, our studies

provide strong support for the hypothesis that the e subunit acts as an emergency brake to minimize

wasteful hydrolysis of cellular ATP in situations where the ATP-to-ADP ratio is low. As the eCTD has

recently been shown to impact pathogenesis of at least one bacterial species (Gerlini et al., 2014),

the different conformations of the eCTD observed in these studies may have potential to guide

future development of drugs that could target this bacteria-specific inhibitory mechanism.

Materials and methods
ATP was purchased in the form of adenosine 5-triphosphate disodium salt hydrate (Sigma A7699).

Protein purification
The same preparation was used as in Sobti et al. (2016). However, the protein sample was concen-

trated to 11 mM (6 mg/ml) to improve particle density. An in-depth description of the methods used

to isolate this protein is described below with approximate timings for each step.

Cysteine-free E. coli ATP synthase (with all cysteines residues substituted with alanine residues

and a His-tag introduced on the b subunit) was expressed in E. coli DK8 strain

(Ishmukhametov et al., 2005). Cells were grown at 37˚C in LB medium supplemented with 100 mg/

ml ampicillin for 5 hr. The cells were harvested by centrifugation at 5,000 g, obtaining ~1.25 g cells

per litre of culture [~20 min for centrifugation step]. Cells were resuspended in lysis buffer containing

50 mM Tris/Cl pH 8.0, 100 mM NaCl, 5 mM MgCl2, 0.1 mM EDTA, 2.5% glycerol and 1 mg/ml DNase

I, and processed with three freeze thaw cycles followed by one pass through a continuous flow cell

disruptor at 20 kPSI [~1 hr for lysis]. Cellular debris was removed by centrifuging at 7,700 � g for 15

mins, and the membranes were collected by ultracentrifugation at 100,000 � g for 1 hr [~1 hr 45 min

for centrifugation steps]. The ATP synthase complex was extracted from membranes at 4˚C for 1 hr

by resuspending the pellet in extraction buffer consisting of 20 mM Tris/Cl, pH 8.0, 300 mM NaCl, 2

mM MgCl2, 100 mM sucrose, 20 mM imidazole, 10% glycerol, 4 mM digitonin and EDTA-free prote-

ase inhibitor tablets (Roche) [~1.5 hr for resuspension]. Insoluble material was removed by ultracen-

trifugation at 100,000 g for 30 min. The complex was then purified by binding on Talon resin

(Clontech) [~1 hr] and eluted in 150 mM imidazole [~1 hr for affinity step]. The protein was further

purified with size exclusion chromatography on a 16/60 Superose six column equilibrated in a buffer

containing 20 mM Tris/Cl pH 8.0, 100 mM NaCl, 1 mM digitonin and 2 mM MgCl2 [~1 hr for gel fil-

tration step]. The purified protein was then concentrated to 11 mM (6 mg/ml) [~15 min for concentra-

tion step], and snap frozen and stored for grid preparation. The total time from membranes to

freezing was ~6 hr.

ATPase enzymatic assay
The reaction mixture was started by vigorously mixing 27 ml of 11 mM (6 mg/ml) purified cysteine-

free E. coli F1Fo ATP synthase and 3 ml of 100 mM ATP/100 mM MgCl2 (pH 8.0) and incubated at

22˚C. 5 ml of the reaction mixture was removed at 15, 30, 45, 60, 120 and 240 s time points and

stopped immediately by adding 25 ml of ice-cold 0.4 M perchloric acid and mixed vigorously with a

pipette. Samples were subsequently spun at 1700 x g at 4˚C for 5 min. 30 ml of 1 M KH2PO4 and 7.5

ml of 3 M KOH was added to neutralize the mixture before a further spin at 1700 x g for 5 min at

4˚C. The samples were then stored at �80˚C prior to analysis via HPLC-UV.

Analysis of ADP and ATP content by HPLC-UV
ADP and ATP in enzymatic reactions were detected as described previously in Micheli et al. (1993)

with slight modifications. Briefly, 50 ml of sample was subjected to HPLC coupled with UV detection

(Agilent 1200 series). ADP and ATP were separated on a Supelcosil C18 column (5 mM, 250 � 4.6

mm) by gradient elution using mobile phase A (0.1 M KH2PO4 pH 5.5 containing 6 mM tetrabutylam-

monium phosphate) and mobile phase B (100% methanol) at 1 mL/min. The gradient consisted of

7% mobile phase B (0–6 min) and 30% mobile phase B (6–11 min). The column was re-equilibrated
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with 7% mobile phase B for 9 min. To obtain the ADP concentration in commercially bought ATP, a

10 mM ATP sample was loaded, and ADP and ATP were detected as described previously in

Huang et al. (2010) and subtracted from subsequent readings. Briefly, ADP and ATP were sepa-

rated on a Supelcosil C18 column (5 mM, 250 � 4.6 mm) by isocratic elution using 39 mM KH2PO4

pH 6.5 at 1 mL/min. For both chromatographic methods, ADP and ATP were detected by UV254nm

and quantified by area comparison with authentic commercial standards (Sigma Aldrich, USA) and

data analysed using ChemStation software (Agilent Technologies, USA).

Cryo-EM grid preparation
1 ml of 100 mM ATP/100 mM MgCl2 (pH 8.0) was added to an aliquot of 9 ml of purified cysteine-

free E. coli F1Fo ATP synthase (Sobti et al., 2016; Ishmukhametov et al., 2005) at 11 mM (6 mg/ml)

and the sample was incubated at 22˚C for 30 s, before 3.5 ml was placed on glow-discharged holey

gold grid (Ultrafoils R1.2/1.3, 200 Mesh). Grids were blotted for 3 s at 22˚C, 100% humidity and

flash-frozen in liquid ethane using a FEI Vitrobot Mark IV (total time for sample application, blotting

and freezing was 15 s).

Data collection
Grids were transferred to a Thermo Fisher Talos Arctica transmission electron microscope operating

at 200 kV. Images were recorded automatically using EPU, yielding a pixel size of 0.98 Å. A total

dose of 50 electrons per Å (Walker, 2013) was used, with the first 30 electrons spread over the ini-

tial 31 frames and the final 20 electrons captured as the final frame. The total exposure time was 62

s and the data were collected using a Falcon III in counting mode. 8509 movie micrographs were col-

lected in two data collections (Figure 1—figure supplement 6).

Data processing
200 kV ATP synthase+ATP dataset
MotionCorr2 (Zheng et al., 2017) was used to correct local beam-induced motion and to align

resulting frames, with 5 � 5 patches. Defocus and astigmatism values were estimated using Gctf

(Zhang, 2016) and 7858 micrographs were selected after exclusion based on ice contamination, drift

and astigmatism. ~1000 particles from each data set were manually picked and subjected to 2D clas-

sification to generate templates for autopicking in RELION-3.0-beta (Scheres, 2012). The automati-

cally picked micrographs were manually inspected to remove false positives, yielding 579,942

particles. These particles were re-extracted from motion corrected images that were dose-weighted

and did not contain the final frame. These particles were then subjected to four rounds of 2D classifi-

cation generating a final dataset of 319,315 particles. To reduce model bias, an independent initial

map was made with RELION-3.0-beta using a subset of particles (13,461 particles) from the first data

collection. Each dataset was classified into 3D classes using this initial model in RELION-3.0-beta,

and similar classes were pooled yielding maps for ATP synthase+ATP, related by a rotation of the cen-

tral stalk (total: 221,386 particles; three states: 97,095, 72,757 and 51,534 particles). Subclassifictions

were merged based on whether the eCTD could be observed in the ‘half-up’ or ‘down’ state (45,446

and 40,262 particles respectively). Final refinements were performed in cryoSPARC (Punjani et al.,

2017). See Figure 1—figure supplement 6 for a flowchart of the data processing strategy.

300 kV ATP synthaseAI dataset
Particles from our previous study (Sobti et al., 2016), ATP synthaseAI, were refined using cryoSPARC

(Punjani et al., 2017), resulting in superior maps and FSC.

Map deposition
Maps for the ATP synthase+ATP, eCTD ‘half-down’ and eCTD ‘down’ were deposited to the EMDB

with accession codes EMD-9345, EMD-9346 and EMD-9348 respectively. Maps for the three ATP

synthaseAI were updated in the EMDB.
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