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Abstract The regulation of feeding plays a key role in determining the fitness of animals through

its impact on nutrition. Elucidating the circuit basis of feeding and related behaviors is an important

goal in neuroscience. We recently used a system for closed-loop optogenetic manipulation of

neurons contingent on the feeding behavior of Drosophila to dissect the impact of a specific subset

of taste neurons on yeast feeding. Here, we describe the development and validation of this

system, which we term the optoPAD. We use the optoPAD to induce appetitive and aversive

effects on feeding by activating or inhibiting gustatory neurons in closed-loop – effectively creating

virtual taste realities. The use of optogenetics allowed us to vary the dynamics and probability of

stimulation in single flies and assess the impact on feeding behavior quantitatively and with high

throughput. These data demonstrate that the optoPAD is a powerful tool to dissect the circuit

basis of feeding behavior, allowing the efficient implementation of sophisticated behavioral

paradigms to study the mechanistic basis of animals’ adaptation to dynamic environments.

DOI: https://doi.org/10.7554/eLife.43924.001

Introduction
The ability to experimentally manipulate the activity of neurons with cellular resolution has revolu-

tionized our understanding of how circuits generate behavior (Luo et al., 2018). This ability has

gone hand in hand with an improvement in technologies allowing for the automated and quantita-

tive analysis of behavior (Anderson and Perona, 2014; Branson et al., 2009; Brown and de Bivort,

2018; Calhoun and Murthy, 2017; Egnor and Branson, 2016; Mathis et al., 2018;

Wiltschko et al., 2015). While most methods for analyzing behavior quantitatively rely on video

recordings, alternative methods play important roles in neuroscience research (Davis, 1973;

McLean and Kinsey, 1964). Such approaches have become especially important to study feeding in

Drosophila melanogaster (Murphy et al., 2017; Ro et al., 2014; Yapici et al., 2016). We have

recently established a new method for quantifying feeding behavior in the fly which relies on capaci-

tance measurements (Itskov et al., 2014). The flyPAD allows automated, high-throughput, quantita-

tive analysis of feeding behavior with high temporal resolution. This high temporal resolution

enables the dissection of feeding behavior at the level of the motor pattern and the microstructure

of feeding. Using this framework, we have shown that different circuit and molecular mechanisms

impinge on food intake by modulating two key variables of the feeding microstructure: the probabil-

ity of initiating a feeding burst and the length of feeding bursts (Corrales-Carvajal et al., 2016;

Itskov et al., 2014; Steck et al., 2018; Walker et al., 2015).

At the neural circuit level, gustation plays a pivotal role in regulating food intake. Classically, gus-

tation has been shown to allow animals to both detect suitable food sources as well as to reject

harmful foods (Dethier, 1976; Jaeger et al., 2018; Scott, 2018; Yarmolinsky et al., 2009). A key

feature of gustation when compared to olfaction or audition is that it requires the physical
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interaction of taste organs with the sampled substrate. As such, gustatory information is outstand-

ingly contextual and depends critically on the behavior of the animal as it actively explores sub-

strates. Ideally, therefore, manipulations of circuit function during feeding should be tightly coupled

to the ongoing behavior. Techniques allowing for the real-time analysis of behavior have enabled

neuroscientists to trigger neuronal manipulation specifically when the animal is performing specific

behaviors. We have previously used such an approach to show that in D. melanogaster, taste peg

sensory neurons specifically control the length of yeast feeding bursts (Steck et al., 2018).

Here, we describe the design and implementation of such a high-throughput system allowing

optogenetic manipulation of neurons in Drosophila contingent on the feeding behavior of the fly:

the optoPAD. We show that the optoPAD system allows for the specific, bidirectional manipulation

of sweet and bitter neurons thereby triggering or suppressing appetitive or aversive feeding behav-

iors. We furthermore demonstrate the ability of our system to implement dynamic as well as proba-

bilistic stimulation protocols. These protocols significantly expand the scope of the optoPAD,

allowing for complex experimental designs. These additions significantly extend the toolset available

to study complex behaviors in high throughput in Drosophila.

Results

The optoPAD system
We set out to develop a system allowing the optogenetic manipulation of circuit activity in Drosoph-

ila conditional on specific aspects of its ongoing feeding behavior (Figure 1A). To develop such a

device, it is essential to be able to measure specific parameters of feeding behavior in real time. We

previously developed the flyPAD system, which reliably measures feeding behavior in high through-

put using capacitive proximity sensors from two food sources (Itskov et al., 2014). To allow for

optogenetic manipulation of neurons, we designed an LED board housing a high-power multicolor

LED (four colors), as well as metal-oxide-semiconductor field-effect transistor (MOSFET) gates and

current limiting resistors, that fits on top of the flyPAD arenas (Figure 1B).

In the original flyPAD system, the relevant aspects of feeding behavior are extracted by offline

processing of the capacitance signal after the behavioral experiment. We took advantage of the low

complexity of the capacitance signal paired with the real-time data processing capacities of the Bon-

sai data stream processing language (Lopes et al., 2015) to analyze feeding behavior of flies in real

time. Bonsai is a powerful visual programming framework especially designed for the acquisition and

online processing of complex data streams such as those generated during behavioral experiments.

We focused on using Bonsai to extract the periods in which the fly was actively interacting with food

(‘activity bouts’), as we previously showed that the total time of these interactions correlated well

with total food intake (Itskov et al., 2014). After a series of simple signal processing steps

(Figure 1C), we could obtain the onset time of activity bouts in real time. In order to precisely con-

trol the LED illumination, we designed a control breakout board (a standard 32-arena flyPAD system

requires three of these boards), each of which uses one microcontroller (Arduino Mega) which oper-

ates as an IO device controlling the gates of the MOSFETs. This included a power distribution circuit

to distribute power to the 128 channels of the LEDs (32 LEDs x 4 colors) (blueprints available at

https://github.com/ribeiro-lab/optoPAD-hardware). The Arduino Mega runs a standard Firmata soft-

ware, allowing it to function as a digital general-purpose input/output (GPIO) board from within the

Bonsai environment. This allowed us to write all the controlling software, including the finite state

machine controlling the experiments for all of the 64 channels of the flyPAD, in Bonsai.

The resulting optoPAD system has the following dataflow (Figure 1D): The flyPAD system uses a

capacitance-to-digital converter to measure the interaction of the fly with the food. The capacitance

information is sent to a computer via the flyPAD mainboard, and the real-time Bonsai algorithm

detects when the fly starts to interact with one of the food electrodes. The software sends a signal

to one of the digital pins of the microcontroller, which in turn controls the opening of the MOSFET

on the LED board, leading to the illumination of a predefined LED color channel and thereby corre-

sponding activation/inactivation of genetically identified neurons (Video 1).

Importantly, five parameters of LED activation can be easily controlled using this software: which

food source triggers LED activation; which LED color is activated; the delay between the detection

of the initiation of an interaction with the food and light onset; the duration the LED remains
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Figure 1. The optoPAD system. (A) Concept for the use of closed-loop capacitance measurement of feeding with optogenetic manipulation of neurons

in behaving flies. The interaction of the fly with the food source triggers the activation of the LED. (B) Overview of the components of the optoPAD, the

flyPAD arena and the high-power RGBA LEDs. (C) Algorithm for real-time detection of food interactions. Extracted food interaction bouts (activity

bouts) are shaded in gray. (D) Schematic overview of the optoPAD experimental dataflow.

Figure 1 continued on next page
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on during the light stimulation; and the probability with which an onset of food interaction leads to

LED illumination. Furthermore, the user can set how many times the light is triggered, can use a

script which allows the delivery of the light after an activity bout is terminated, and can choose to

deliver the light in an open-loop mode using predefined set intervals.

In order to ensure that the LED can be rapidly activated following the initiation of food interac-

tions, we measured the latency of this system. The latency is defined as the time between food con-

tact and LED illumination (with the ‘delay’ parameter set to 0). Our measurements revealed that it

takes between 50 and 120 ms for the LED to be activated upon contact with the food. The latency is

likely to originate in delays inherent to the serial communication bus, while the range of the latency

is likely due to the buffer length of the flyPAD’s system communication. Importantly, this latency is

very short relative to the time it takes the fly to initiate a feeding burst after touching the food. This

delay is quite reproducibly in the range of 400 ms (Figure 1—figure supplement 1). It is therefore

very unlikely that the fly starts feeding before the LED is activated. By setting the delay parameter to

250 ms one can even time the light onset to coincide even better with feeding onset. Thus, our sys-

tem is fast enough to ‘close the loop’ within the duration of a single sip.

To test how well the online activity bout detector works, we compared the performance of the

new online algorithm with the previously validated offline algorithm (Itskov et al., 2014). We wrote

a MATLAB script that replicates the online Bonsai workflow and classified each sample of a raw

capacitance trace as belonging to an activity bout or not and compared this classification to the

already validated flyPAD offline detector (Itskov et al., 2014). We then performed an ROC analysis

to confirm the accuracy of the online detector. The detection of activity bouts by the online method

correctly identified 91.5% of the capacitance trace samples as belonging to an activity bout (8.5%

false negatives) and misclassified 1.6% of the samples as activity bouts (false positives). These data

show that the online activity bout detector operates within the range of accuracy observed for state-

of-the-art offline methods (Itskov et al., 2014).

Optogenetic gustatory virtual realities
To validate the ability of the optoPAD system to manipulate neuronal activity in closed-loop, we

decided to use it to create ‘virtual gustatory realities’ and test their impact on feeding behavior. To

be able to better control the stimulation parameters, we used a switching DC power supply (40 A)

to regulate the intensity of the LEDs. The luminous flux of the LEDs increased linearly with the for-

ward voltage on the LEDs above 2 V for the red and amber LEDs and 2.5 V for the green and blue

LEDs (Figure 2A), allowing us to vary the inten-

sity of stimulation over a significant range. It is

important to note that the maximum level of irra-

diance which can be achieved strongly depends

on the wavelength of the LED.

To test if we can induce appetitive consum-

matory behaviors using the optoPAD, we used

the Gr5a-GAL4 line, which drives expression in

sugar-sensing neurons of the labellum

(Marella et al., 2006; Thorne et al., 2004).

These neurons have been shown to be sufficient

to initiate feeding (Zhang et al., 2007). Starved

male flies expressing the red-shifted channelrho-

dopsin CsChrimson (Klapoetke et al., 2014) in

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.43924.002

The following source data and figure supplements are available for figure 1:

Figure supplement 1. Quantification of the probability of the occurrence of a feeding burst onset depending on the time after activity bout onset.

DOI: https://doi.org/10.7554/eLife.43924.003

Figure supplement 1—source data 1. Source data file for Figure 1—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.43924.004

Video 1. Video showing the optopad system in operation.

DOI: https://doi.org/10.7554/eLife.43924.005
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Figure 2. Increasing light intensity affects the feeding behavior of flies expressing different optogenetic effectors.

(A) Irradiance of all four LEDs increases linearly with increasing voltage (for red and amber above 2 V, for green

and blue above 2.5 V). The average value of the three measurements is shown and error bars indicate standard

error of mean. (B) Difference in total number of sips on the stimulated (ON) and unstimulated (OFF) food patches

of the same arena for 24 hr starved male flies expressing CsChrimson under the control of Gr5a-GAL4, and

Figure 2 continued on next page
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Gr5a neurons were given the choice to feed from two 5 mM sucrose sources in an optoPAD arena.

One food source in each arena was programmed to trigger the activation of the red LED upon inter-

action (ON channel) while interactions with the other food source in the same arena never led to

light activation (OFF channel). Even very low stimulation intensities (2 V) led to a clear and strong

increase of feeding from the food source paired with optogenetic stimulation compared to the unsti-

mulated source (Figure 2B). Interestingly, increasing the stimulation intensity did not lead to an

increase in appetitiveness, indicating that a maximal behavioral impact can be achieved at low irradi-

ances, thereby minimizing possible side effects caused by light.

Mated female flies deprived of protein for 3 days develop a robust appetite for yeast – their main

protein source (Carvalho-Santos and Ribeiro, 2018; Leitão-Gonçalves et al., 2017; Ribeiro and

Dickson, 2010; Steck et al., 2018). This appetite is driven by an increase in the length of feeding

bursts, which is controlled by the activity of specific subsets of yeast gustatory neurons (taste pegs

gustatory neurons) located on the labellum (Corrales-Carvajal et al., 2016; Steck et al., 2018). We

previously demonstrated that silencing taste peg neurons with the anion channelrhodopsin GtACR1

(Mohammad et al., 2017) using the optoPAD system is sufficient to terminate feeding on yeast

(Steck et al., 2018). To better characterize this silencing effect, flies were given the choice between

two sources of yeast, one of which was paired with green light illumination. As we increased the

intensity of light by increasing the voltage of the LED to 3 V, flies expressing GtACR1 in taste peg

neurons fed significantly less from the channel paired with light compared to control flies

(Figure 2C). In contrast to the Gr5a activation experiments (Figure 2B), the decrease in yeast feed-

ing was accentuated with the increase in the applied voltage. This can be easily explained by the

fact that the irradiance for the red and green lights reach the same intensity at different voltages

(Figure 2A). Furthermore, it is important to note that in both experiments, we observed no behav-

ioral effect of light in control genotypes. This indicates that the illumination itself has minimal effects

on fly feeding behavior. Importantly, the optoPAD can also be used to stimulate neurons using

Figure 2 continued

corresponding genetic controls. Both food sources contained 5 mM sucrose solution in 1% agarose. (C) Difference

in total number of sips on the stimulated (ON) and unstimulated (OFF) food patches of the same arena for 3 days

yeast-deprived, mated female flies expressing GtACR1 under the control of 57 F03-GAL4, which labels taste peg

GRNs, and corresponding genetic control. For genotypes, see Materials and methods and key resources table.

Both food sources contained 10% yeast solution in 1% agarose. The numbers below the graphs indicate the

number of flies tested in each condition. ***p<0.001, **p<0.01, *p<0.05, ns non-significance. Boxes represent

median with upper/lower quartiles; groups compared by Wilcoxon rank-sum test, followed by Bonferroni multiple

comparison test when more than two groups were compared.

DOI: https://doi.org/10.7554/eLife.43924.006

The following source data and figure supplements are available for figure 2:

Source data 1. Source data file for Figure 2A.

DOI: https://doi.org/10.7554/eLife.43924.011

Source data 2. Source data file for Figure 2B.

DOI: https://doi.org/10.7554/eLife.43924.012

Source data 3. Source data file for Figure 2C.

DOI: https://doi.org/10.7554/eLife.43924.013

Figure supplement 1. Mean number of sips per feeding bursts during open-loop stimulation (1 s ON, 2 s OFF)

measured on both food patches of the same arena for 3 days yeast-deprived, mated female flies expressing

GtACR1 under the control of 57 F03-GAL4 or 67E03-GAL4, which both label taste peg GRNs, and corresponding

genetic control (Steck et al., 2018).

DOI: https://doi.org/10.7554/eLife.43924.007

Figure supplement 1—source data 1. Source data file for Figure 2—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.43924.008

Figure supplement 2. Difference in total number of sips on the stimulated (ON) and unstimulated (OFF) food

patches of the same arena for 3 days yeast-deprived, mated female flies expressing CsChrimson under the control

of SS02299-GAL4, and corresponding genetic controls.

DOI: https://doi.org/10.7554/eLife.43924.009

Figure supplement 2—source data 2. Source data file for Figure 2—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.43924.010
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open-loop experimental designs. Indeed, silencing taste peg neurons by delivering the light in a

fixed pattern not contingent on the behavior of the animal led to a specific decrease in the length of

feeding bursts (Figure 2—figure supplement 1). Such experiments can be very useful when no

hypothesis exists as to how the activity of a neuronal population of interest relates to the microstruc-

ture of the behavior. By correlating the relationship between light onset and specific behavioral phe-

notypes post-hoc, it should be possible to generate specific hypotheses of how the activity of a

neuron relates to specific features of feeding behavior, guiding the design of specific follow-up

closed-loop experiments.

To show that the optoPAD can also be used to manipulate sparse sets of neurons located deeply

within the brain, we chose to activate giant fiber neurons in closed-loop upon initiation of feeding.

The rationale of this proof-of-concept experiment was to use a sparse line labeling few (2) neurons

deep in the brain of the fly, which has a readily observable phenotype (jumping), and which should

have a clear effect on feeding behavior (termination of feeding). Indeed, upon the initiation of feed-

ing and concomitant light activation, flies expressing CsChrimson in escape neurons (Namiki et al.,

2018) jumped, leading to the termination of feeding (Videos 2 and 3). This led to a drastic decrease

in feeding from the food source triggering light when compared with the control food source (Fig-

ure 2—figure supplement 2). These results show that the optoPAD can be used to manipulate very

sparse, centrally located neurons, and monitor the impact of the manipulation on feeding behavior.

The mechanistic dissection of specific neurons’ contribution to a behavior often requires the

observation of opposite behavioral effects upon increases and decreases in their activity. Gustatory

neurons are an ideal test case for this as they elicit both appetitive (e.g. sweet neurons) as well as

aversive behavioral responses (e.g. bitter neurons). We tested the ability of the optoPAD system to

both induce and suppress appetitive feeding responses using the Gr64f-GAL4 line, which labels

appetitive sugar-sensing neurons previously shown to be important to sustain carbohydrate feeding

(Jiao et al., 2008). As observed for Gr5a neurons, closed-loop activation of Gr64f neurons using

CsChrimson led to increased feeding (Figure 3A, left panel). This effect was absent in control geno-

types (Figure 3A, right panel). Conversely, hyperpolarization of Gr64f neurons using GtACR1 led to

a loss of appetitive behavior and hence a decrease in feeding from the sugar source paired with

green light activation (Figure 3B).

To characterize the effect of closed-loop optogenetic manipulation of aversive neurons on feed-

ing, we used Gr66a-GAL4, which labels bitter-sensing neurons (Marella et al., 2006; Thorne et al.,

2004). In contrast to the depolarization of sweet gustatory neurons, flies expressing CsChrimson in

bitter gustatory neurons immediately terminated feeding from an appetitive food source upon light

activation (Figure 3C). This strong effect clearly mimics the potent aversive effect bitter substances

have on feeding behavior. To test if we could suppress the aversive effect of bitter food using the

optoPAD setup, we expressed GtACR1 in Gr66a neurons and observed the effect of green light acti-

vation on feeding from a quinine-laced sucrose solution. Indeed, flies exhibited higher feeding from

the bitter food source paired with light stimulation than from the unpaired food source (Figure 3D).

These experiments demonstrate the ability of the optoPAD to induce and suppress both appetitive

and aversive effects on feeding behavior using

Video 2. Optogenetic activation of the giant fiber

neurons marked by the C17-Gal4 line triggers escape

responses upon feeding initation.

DOI: https://doi.org/10.7554/eLife.43924.014

Video 3. Optogenetic stimulation of control fly triggers

no escape responses upon feeding initation.

DOI: https://doi.org/10.7554/eLife.43924.015
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Figure 3. Creating virtual taste realities for Drosophila using the optoPAD. (A–D) Total number of sips from the unstimulated (LED OFF) and the light-

stimulated (LED ON) food patches of the same arena by flies expressing CsChrimson (A and C) or GtACR1 (B and D), under the control of Gr64f-GAL4

(A and B) or Gr66a-GAL4 (C and D) (left side of the panels). Difference in total number of sips on the stimulated (ON) and unstimulated (OFF) food

patches for flies expressing CsChrimson or GtACR1 (A and C), under the control of Gr64f-GAL4 (A and B) or Gr66a-GAL4 (C and D), and corresponding

genetic controls (right side of the panels). All flies were 24 hr starved male flies (for genotypes, see Materials and methods and key resources table).

The food substrate is indicated in each panel. The numbers below the graphs indicate the number of flies tested in each condition. ***p<0.001,

**p<0.01, *p<0.05. Boxes represent median with upper/lower quartiles; groups compared by Kruskal-Wallis test, followed by Dunn’s multiple

comparison test.

DOI: https://doi.org/10.7554/eLife.43924.016

The following source data is available for figure 3:

Source data 1. Source data file for Figure 3A.

DOI: https://doi.org/10.7554/eLife.43924.017

Source data 2. Source data file for Figure 3B.

DOI: https://doi.org/10.7554/eLife.43924.018

Source data 3. Source data file for Figure 3C.

DOI: https://doi.org/10.7554/eLife.43924.019

Source data 4. Source data file for Figure 3D.

DOI: https://doi.org/10.7554/eLife.43924.020
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either optogenetic activation or inhibition of different neuronal populations.

Creating dynamic gustatory virtual realities
One of the unique features of virtual realities is the ability to generate stimuli that can change

dynamically in a way that might be impossible with natural stimuli. The high temporal precision of

optogenetics makes it ideal to both tightly link changes in activity of specific neurons to the behavior

of the animal, as well as to change this contingency in a flexible while precise manner. We therefore

implemented the ability to arbitrarily predefine the conditions upon which the behavior of the animal

triggers light activation. As a proof of concept, we first set out to determine how flies would respond

to dynamically changing the identity of the food source triggering gustatory stimulation. When flies

expressing CsChrimson in bitter neurons (using Gr66a-GAL4) are given the choice between two

identical appetitive food sources, they avoid feeding from the one paired with light activation

(Figure 3C). Bonsai allows us to change the variables controlling this stimulation in a dynamic fash-

ion. We programmed the system to switch the identity of the food source paired with light activation

every 5 min (Figure 4A). From the beginning of the assay, the behavior of the flies appears to follow

the stimulation pattern, with flies feeding less from the food source paired with light activation

(Figure 4B). Only after 10 min of exploration, however, did these preferences reach statistical signifi-

cance. As clearly visible in the raster plots of the feeding behavior, some flies always interact with

both channels, but in the two first blocks of the experiment (0–5 min and 5–10 min) overall few flies

interact with the food (Figure 4—figure supplement 1). This likely reduces the statistical power to

detect a possible preference and might be due to an ‘acclimatization’ period from the moment the

animals are introduced into the chambers (Corrales-Carvajal et al., 2016).

Next, we tested if we can alter the length of the interaction of the fly with food by increasing the

delay between the initiation of food interactions and LED activation (Figure 4C). By initiating the

optogenetic activation of Gr66a neurons 1.5, 3 or 6 s after the fly starts interacting with the food, we

could make the flies terminate their interaction with food after precisely 2.66, 4.25 or 7.34 s, respec-

tively (Figure 4D). This was a dramatic shortening of their activity bout, as control flies displayed

reproducibly long bouts with a median of around 15 s. These experiments show that the optoPAD

system can be used to dynamically change the contingency between the behavior of the animal and

the optogenetic stimulation.

Creating probabilistic gustatory virtual realities
While the optogenetic experiments described up to this point have been deterministic in nature,

behavioral experiments in which the behavior of the animal is linked to a probabilistic delivery of a

reward or punishment have been very powerful in probing the neuronal substrates of complex

learned behaviors (Fiorillo et al., 2003). Such designs can be either used to allow the animal to learn

specific statistical properties of the environment (Lottem et al., 2018), or unstimulated trials (catch

trials) can be used as controls within a task (Lak et al., 2014). We tested the ability of the optoPAD

system to implement such probabilistic experimental designs. We used Bonsai to set the probability

of red light activation upon food interactions to 90% for both food sources (Figure 4E). Therefore,

10% of food interactions (trials) did not result in LED activation. Importantly, these ‘catch trials’ were

randomly selected and therefore could not be predicted by the fly. Protein-deprived female flies

expressing CsChrimson in bitter taste neurons were subjected to such a probabilistic experimental

design for an hour. Similarly to the experiments described in Figure 4C and D, for each fly red light

was either triggered after 1.5, 3, or 6 s. As expected from Figure 4D, in stimulation trials, the length

of activity bouts was shortened to different extents under the three different delays. Intriguingly

however, in the catch trials, the food interaction bouts were much longer than in control experiments

where no light was triggered throughout the experiment (Figure 4F). This effect was independent of

the length of the interval between food contact and light onset.

This data is consistent with the hypothesis that flies undergoing the optogenetic activation proto-

col learn to expect that their interaction with the food will be ‘interrupted’ by a bitter stimulus after

a relatively short time window. When this expectation is not met, the animal compensates by staying

longer on the food, allowing it to ingest as much food as possible during the bout. An alternative

explanation of why flies exhibit longer activity bouts might be due to a rebound effect: since activa-

tion of Gr66a neurons prevents consumption of sufficient food, flies remain hungry which leads them
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Figure 4. The optoPAD allows for complex dynamic closed-loop experimental designs. In all experiments, 5–7 days old female Gr66a-

GAL4 > CsChrimson flies were used. (A) Schematic overview of the dynamic virtual taste reality experiment: every five minutes the contingency of the

experiment is reversed (in each experimental block the fly’s interaction with a different channel triggered light stimulation). (B) Number of sips from

channel 1 (upper half of the plot) and channel 2 (lower half of the plot) across time in the changing virtual taste reality setting described in A. Columns

Figure 4 continued on next page
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to overconsume on catch trials. This hypothesis is supported by the analysis of the dynamics of food

intake, which reveals clear differences in total food intake across the experimental groups

(Figure 4G). These differences should lead to drastic differences in internal states between the flies

exposed to the light and those exposed to the no-light control situation, and hence big differences

in the feeding microstructure (Corrales-Carvajal et al., 2016; Itskov et al., 2014). In order to control

for the effect of internal state on the catch trials, we decided to only include in our analysis the catch

trials, in the time period until the flies have performed their first 1100 sips of yeast, therefore control-

ling for differences in food intake (dashed line in Figure 4G). This analysis revealed no significant dif-

ferences in the length of food interactions in catch trials between the flies that did not receive Gr66a

neurons stimulation (no light) and any of the experimental groups (Figure 4H). This result strongly

suggests that the originally observed increase in the duration of food interactions during catch trials

can be explained by differences in the deprivation state of the fly. This interpretation is supported

by the observation that the main difference between the calibrated and non-calibrated data is the

increase in the length of activity bouts in the non-light population of the calibrated dataset

(Figure 4H). While we cannot rule out that in this behavioral paradigm flies learn to adapt their

behavior to an expectation of a possible outcome, the behavioral effects can be explained by differ-

ences in internal metabolic state induced by alteration in the feeding behavior of the animal. Overall

these experiments show that the optoPAD system allows the implementation of behavioral para-

digms, in which stimuli are delivered optogenetically in a probabilistic manner. It however also high-

lights the importance of controlling for differences in internal state induced by complex

experimental designs when interpreting behavioral data. Importantly, this challenge can be over-

come using the rich and highly quantitative behavioral data generated by the flyPAD system.

Figure 4 continued

and lines represent mean and the standard error of the mean, respectively. The trials leading to LED activation are shaded in red. (C) Onset of light

stimulation (red box) can be freely set to occur at different times after the initiation of an interaction with food (delay of 1.5, 3 and 6 s). The lower part of

the diagram represents a representative capacitance trace with the onset of food contact marked with an arrow. (D) Duration of activity bouts in flies

exposed to light after different delays relative to the initiation of food interactions and corresponding controls (experimental design described in C).

Plotted are the duration of activity bouts for the stimulated flies (light) and for the same number of trials that were longer than 1.5, 3 and 6 s (from left

to right) performed by the ‘no light’ control flies. (E) Schematic of the experimental design in which light activation was set to happen in a probabilistic

manner. (F) Duration of activity bouts of the catch trials. Plotted are the duration of activity bouts for the stimulated flies (light) and for a selection of

10% of all the trials that were longer than 1.5, 3 and 6 s (from left to right) performed by the ‘no light’ control flies. (G) Cumulative feeding for the four

different groups of the experiment described in (E). Line represents the mean and the shading the standard error of the mean. Dotted line indicates the

1100 sips threshold used to calibrate the data for the internal state of the animal. (H) Duration of activity bouts of the catch-trials for sip-calibrated flies

(trials performed until the flies had reached a total of 1100 sips). Plotted are the duration of activity bouts for the stimulated flies (light) and for a

selection of 10% of all the trials that were longer than 1.5, 3 and 6 s (from left to right) performed by the ‘no light’ control flies. For genotypes, see

Materials and methods and key resources table. ***p<0.001, **p<0.01, *p<0.05, ns non-significance. The numbers below the graphs in D, F and H

indicate the number of flies tested in each condition. In D, F, and H, boxes represent median with upper/lower quartiles. In D, F and H, groups were

compared by Kruskal-Wallis test, followed by Dunn’s multiple comparison test. In B, the total number of sips for all bins in each channel during each

period of 5 min was compared by Wilcoxon rank-sum test.

DOI: https://doi.org/10.7554/eLife.43924.021

The following source data and figure supplements are available for figure 4:

Source data 1. Source data file for Figure 4B.

DOI: https://doi.org/10.7554/eLife.43924.024

Source data 2. Source data file for Figure 4D.

DOI: https://doi.org/10.7554/eLife.43924.025

Source data 3. Source data file for Figure 4F.

DOI: https://doi.org/10.7554/eLife.43924.026

Source data 4. Source data file for Figure 4G.

DOI: https://doi.org/10.7554/eLife.43924.027

Source data 5. Source data file for Figure 4H.

DOI: https://doi.org/10.7554/eLife.43924.028

Figure supplement 1. Activity bouts of individual flies in a dynamic experimental protocol experiment.

DOI: https://doi.org/10.7554/eLife.43924.022

Figure supplement 1—source data 1. Source data file for Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.43924.023
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Discussion
We describe an experimental setup which allows the closed-loop optogenetic manipulation of spe-

cific neurons in Drosophila melanogaster contingent on the feeding behavior of the animal. The sys-

tem extends the ability of the flyPAD to efficiently detect interactions of flies with food using

capacitive sensing, by implementing real-time analysis of feeding behavior and the ability to activate

light sources of different wavelengths depending on this behavior. This has allowed us to explore

the effect of activating and silencing specific gustatory neurons on feeding behavior. Importantly, by

activating and inhibiting sweet and bitter neurons, we were able to produce both phagostimulatory

and phagoinhibiting effects in a coherent manner. This demonstrates that our closed-loop optoge-

netic manipulations are able to induce all phenotypes expected from the known biology of these

neurons. Given that the exposure of the animal to gustatory stimuli is highly dependent on its behav-

ior, it is essential that the design of gustatory circuit manipulations takes into account the behavior

of the animal. We therefore envisage that the optoPAD will be especially valuable when exploring

the involvement of sensorimotor circuits in feeding behavior. As the modular regulation of feeding

microstructure plays a key role in nutrient homeostasis, the high temporal sensitivity of the flyPAD

makes the optoPAD ideally suited to study its circuit basis.

The ability to analyze feeding behavior in a quantitative, high-resolution, and high-throughput

fashion using the flyPAD technology has been leveraged to significantly advance our understanding

of Drosophila feeding behavior. The optoPAD highlights a further advantage of this technology: its

flexibility and expandability. After we described the first use of the flyPAD technology to manipulate

behavior using optogenetics (Steck et al., 2018), Jaeger and colleagues also described an adapta-

tion of the flyPAD technology to manipulate taste neurons during feeding (Jaeger et al., 2018).

Interestingly, their approach is fundamentally different from the one we described, attesting to the

flexibility of the flyPAD system. They define at the level of the hardware, specific features of the

capacitance signal to trigger light activation. This approach allows the rapid triggering of light when

the capacitance signal reaches a certain level, which is likely to be highly correlated with the time

periods the fly touches the food. Given that the analysis of the behavior is implemented at the level

of the hardware, it is however not possible for the user to readily modify the analysis of the behavior

leading to the triggering of the light or to modify how and when the light stimulus gets triggered

(delays, probabilities of stimulation, dynamic changes to the stimulation protocol). Furthermore,

while this system is fast, the signal is not processed to detect sips and the light onset is therefore

unlikely to reliably coincide with these feeding events. While our experiments clearly show that the

current optoPAD system is able to modulate feeding behavior using closed-loop optogenetic manip-

ulations, the ability to process the behavioral data in a flexible and complex way is likely to introduce

a longer latency than that of the STROBE system. This latency can be counteracted using the exist-

ing knowledge of the very stereotyped parameters underlying feeding behavior, which allow us to

tune the stimulation parameters in order for the light to better coincide with sip onset. It should also

be possible to further optimize the efficiency with which the hardware handles the incoming signals

and the speed at which the software processes these, leading to a significant improvement in the

temporal precision of the delivery of the light stimulus. This might be important when dissecting the

relationship between circuit activity and behavior at the scale of a single action potential. There will,

however, always be a conflict between flexibility in experimental design, requiring computation time

to analyze the behavioral signal, and minimizing the delay between behavior detection and light

stimulation. We propose that as long as the delay is not beyond the behaviorally meaningful scale,

the advantages of flexibility outweigh small improvements in the speed of the system. In any case as

shown by both the optoPAD and the STROBE system, the flyPAD technology is flexible enough to

allow the implementation of either priority.

Given its flexible design, the optoPAD system not only allows for a fixed closed-loop manipula-

tion of neurons, but confers substantial flexibility to define how feeding behavior is linked to light

activation. The researcher can for example predefine how many light stimulations will happen in one

session, stimulate after the termination of an activity bout, or perform experiments in an open-loop

mode. An important further feature if the possibility to design experiments in which light activation

is altered to be probabilistic, while occurring at a fixed rate. This allows the experimenter to probe

the effect of neuronal manipulations altering feeding behavior using interleaved control trials (catch

trials). We expect that the ability to alter the dynamics and probabilities of optogenetic
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manipulations will be most useful to manipulate the behavior of Drosophila in order to probe its abil-

ity to learn complex contingencies. By activating ‘reward’ and ‘punishment’ neurons in closed-loop

using different behavioral contingencies, the optoPAD system should allow the design of new oper-

ant conditioning paradigms in which the animal learns to associate the consequences of its own

behavior with specific outcomes or the statistical structure of its environment. Learning such abstract

environmental structures is a fundamental ability animals use to optimize their foraging strategies

(Chittka, 2017; Glimcher and Fehr, 2013). The extent to which Drosophila is able to perform such

proto-cognitive computations is currently an important frontier in fly systems neuroscience. We

expect that the flexibility of the optoPAD as well as its high-throughput design will allow researchers

to explore how flies adapt their behavior to complex environmental features and identify the under-

lying neuronal circuits and computations.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Genetic
reagent
(D. melanogaster)

Gr5a-GAL4 other Obtained from
Kristin Scott lab

Genetic
reagent
(D. melanogaster)

pUAS-Chrimson-mVenus BDSC BDSC ID: 55136

Genetic
reagent
(D. melanogaster)

57 F03-GAL4 BDSC BDSC ID: 46386

Genetic
reagent
(D. melanogaster)

pBDP-GAL4Uw BDSC BDSC ID: 68384

Genetic
reagent
(D. melanogaster)

W[1118] other Obtained from
Barry Dickson lab

Genetic
reagent
(D. melanogaster)

UAS-GtACR1 DOI: 10.1038/
nmeth.4148

Obtained from
Adam
Claridge-Chang lab

Genetic
reagent
(D. melanogaster)

Gr64f-GAL4 BDSC BDSC ID: 57668

Genetic
reagent
(D. melanogaster)

attP2 BDSC BDSC ID: 8622

Genetic
reagent
(D. melanogaster)

Gr66a-GAL4 other Obtained from
Bassem Hassan lab

Genetic
reagent
(D. melanogaster)

67E03-GAL4 BDSC BDSC ID: 39441

Genetic
reagent
(D. melanogaster)

SS02299-GAL4 Janelia Research
Campus;
DOI: 10.7554/elife.34272

Robot ID: 3018165

Software Custom-written
scripts in
MATLAB R2013b

MathWorks RRID: SCR_001622

Software Bonsai 2.4 https://bonsai-rx.org/,
DOI: 10.3389/
fninf.2015.00007
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Fly stocks and rearing conditions
Flies were reared at 25˚C, 70% relative humidity (RH) in the dark to prevent non-specific activation of

neurons. Flies were reared at standard density and were matched for age and husbandry conditions.

The yeast-based fly medium (YBM) contained 80 g cane molasses, 22 g sugar beet syrup, 8 g agar,

80 g corn flour, 10 g soya flour, 18 g yeast extract, 8 ml propionic acid, and 12 ml nipagin (15% in

ethanol), per liter. All data are from 24 hr wet-starved male flies unless otherwise stated. After hatch-

ing flies were aged for 5–7 days, then groups of 12–15 males were transferred to new vials and

approximately 10 wild-type female flies were added. They were kept on YBM medium containing

0.4 mM all-trans-retinal (Sigma-Aldrich, #R2500, made using a stock solution of 100 mM all-trans-ret-

inal dissolved in ethanol) for 2 days. To induce starvation, the flies were then transferred to vials con-

taining tissue paper soaked with 5 ml Milli-Q water containing 0.4 mM all-trans-retinal 24 hr before

the experiment. The starvation was chosen to increase carbohydrate appetite and to ensure robust

feeding on sucrose.

For the experiments described in Figure 1—figure supplement 1, Figure 2B, Figure 2—figure

supplement 1, Figure 4 and Figure 4—figure supplement 1 mated female flies were deprived of

yeast for 3 days on a tissue soaked with 6.5 ml of 100 mM sucrose, and 0.4 mM all-trans-retinal.

Hardware design and real-time data analysis
The optoPAD system is a new generation of the flyPAD, that was previously described in

Itskov et al. (2014). Additional hardware to the flyPAD was designed to fit on top of each of the 32

behavioral arenas and allow independent activation of 32 high-power (10 W) RGBA LEDs (ref. no.

LZ4-00MA10; LED Engin, San Jose, CA, USA). Printed circuit boards were designed using Eagle

CAD software (Cadsoft - version 6.2.0). The designs were then sent to Eurocircuits (http://www.euro-

circuits.com/) for production.

The PCBs hosting the LED (LED board) measure 5 � 5 cm and fit exactly on top of the flyPAD are-

nas supported by screws and nuts that align the two boards. The LED is placed at the center of each

board directly facing the middle of the flyPAD arena. An additional electrical circuit on each LED

board includes four MOSFET N-ch (one for each LED color) that serve as switches for the LEDs and a

set of five resistors connected in series to set the correct voltage to the pole of each individual color

LED (3.3 and 0.5 W for red; 1 and 0.5 W for amber; 2 W for green, no voltage drop resistor was used

for the blue color).

Three groups of twelve LED boards (3 � 12 = 36, four were not used) receive power and LED

control signals from a control breakout board, which hosts the microcontroller (Arduino Mega 2560).

These boards receive and distribute power from an external power supply unit (Corsair CSM 550W

80 + Gold Certified Semi-Modular ATX) through SATA power cables, allocating a maximum of 3.3 V

to both amber and blue LEDs and of 5 V to both red and green LEDs. The microcontroller sends

activation signals of 5 V to the correct transistor to be activated based on the information from serial

communication with the computer. To alter the LED brightness, we used the Voltage dial of a switch

mode bench power supply (Circuit Specialists CSI3060) to set the voltage applied to the LED.

All PCB designs can be found on the following GitHub repository: https://github.com/ribeiro-lab/

optoPAD-hardware (Goldschmidt, 2019b; copy archived at https://github.com/elifesciences-publi-

cations/optoPAD-hardware).

Real-time detection of food interactions and LED activation
The detection of food interactions in real time as well as the closed-loop control of LED illumination

was performed using a custom-written Bonsai workflow (Lopes et al., 2015). This visual program-

ming framework allows for real-time analysis of the flyPAD capacitance data sampled at 100 Hz and

is capable of online communication with actuators for closed-loop experiments.

Unlike the data processing described in Itskov et al. (2014), the optoPAD system detects when

the fly interacts with a food source in real time. To do so, the Bonsai workflow continuously takes

the absolute difference of two consecutive samples and applies a finite impulse response (FIR) filter

with a running window of 50 samples. The filtered signal is finally thresholded with a value of 120 (a.

u.), resulting in a binary signal representing if activity bouts were detected (Figure 1C). We chose

the values for the running window size and threshold based on optimizing the accuracy of the
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activity bout detection using the output of the offline detection algorithm as a standard

(Itskov et al., 2014).

The protocol for LED activation implemented in Bonsai is a series of conditional nodes that can

be programmed to perform flexible experiments.

Through this Bonsai workflow, each experiment can be programmed to run with the same proto-

col for as long as the user desires. The protocol used to control LED activation can be programmed

independently for each flyPAD capacitance channel. Every time the fly starts interacting with food, a

trial is initiated. From there, two possible behavioral outcomes are possible: 1. the fly stops interact-

ing with food before the set ‘delay’ period (such activity bouts are classified as short trials, with no

LED activation); 2. the fly keeps eating for longer than the ‘delay’ period. When the latter occurs,

and depending on the experimental design, LED activation may or may not occur. This feature is

dependent on the setting of the ‘probability of stimulation’ value. Bonsai pseudo-randomly samples

a real number between 0 and 1 from a uniform distribution and compares it to a given previously

defined probability. If this number is less or equal than the defined probability, the fly receives light

stimulation for a period of time that is set by the user prior to the experiment. Else no stimulation

occurs and the trial is considered a ‘catch-trial’, which only terminates when the fly stops interacting

with the food at the end of the activity bout. Upon termination of light stimulation, the protocol is

restarted, and the system will wait for the fly to start interacting with food again (if the fly continues

to interact with food during the light stimulation, the ongoing activity bout is considered a new activ-

ity bout). Additionally, the user can define how many stimulations will occur on each channel.

For dynamic virtual taste environment experiments (Figure 4A and B), in which the channel con-

trolling LED activation is changed every five minutes, a timer was added to the Bonsai workflow,

which after a set time instructs the software to change the experimental parameters by reading from

another configuration file.

Software can be found on the following GitHub repository: https://github.com/ribeiro-lab/opto-

PAD-software (Goldschmidt, 2019a; copy archived at https://github.com/elifesciences-publications/

optoPAD-software).

Irradiance measurements
We performed the irradiance measurements shown in Figure 2A using an optical power meter

(Thorlabs PM100D) and a standard photodiode power sensor (Thorlabs S121C). In order to accu-

rately measure how much irradiance reaches the fly upon LED illumination, we placed the sensor at

the same distance from the LED as the arena. We varied the voltage applied to the LED between

1.5 and 5 V in 0.5 V steps, and measured the peak value of power on the optical power meter upon

LED illumination. Measurements were started at 1.5 V as no measurable optical power was detected

below this voltage. We carried out each measurement three times. The irradiance was computed by

dividing the optical power measurements by the effective sensor area (14.923 mm2).

Behavioral experiments
Behavioral experiments were performed at 25˚C, 70% RH. We used flies expressing either GtACR1

(Mohammad et al., 2017) or CsChrimson (Klapoetke et al., 2014) in subsets of gustatory neurons.

The genotypes of the lines used in the manuscript are listed in the key resources table. optoPAD

assays were performed following a protocol previously described (Itskov et al., 2014). Briefly, both

wells of the optoPAD were filled with solutions containing different concentrations of sucrose

(Figures 2B and 3A: 5 mM; Figure 3B: 20 mM; Figure 3C: 100 mM; Figure 3D: 50 mM +10 mM

quinine) or 10% yeast solution (Figures 2C and 4). All solutions were in 1% agarose. Single flies were

transferred to optoPAD arenas by mouth aspiration and allowed to feed for 1 hr in a light shielded

box.

To test how different light intensities affect feeding behavior (Figure 2B and C), red (625 nm)

LED activation was set to occur 0 s after the initiation of each activity bout for the experiment shown

in Figure 2B and green (523 nm) LED activation was set to occur 0.5 s after each bout initiation for

Figure 2C. For both experiments, light stimulation was sustained for 1.5 s independent of the flies’

behavior. Based on the dose-response curves in Figure 2, we chose to use 3.5 V for the green LED

and 2.25 V for the red LED for the experiments in Figure 3.
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For the experiments aiming at inducing and repressing aversive and appetitive behaviors (Fig-

ure 3), LED activation was set to occur 0.01 s (Figure 3A), 0 s (Figure 3B), and 0.5 s (Figure 3C and

D) after an activity bout was detected in the light-triggering channel. In Figure 3A and C the red

LED was used and in Figure 3B and D the green LED was used. Light stimulation was sustained for

1.5 s independent of the behavior of the fly.

For the dynamic virtual taste environment experiment (Figure 4A and B), red LED activation was

set to occur 0.5 s after the initiation of each activity bout in the light-triggering channel (channel 1 or

two depending on the experimental block), and the light activation was sustained for 2 s indepen-

dently of the activity of the fly. For the ‘control’ channel, interactions of the fly with the food did not

trigger any LED activation.

For the experiments testing the flies’ behavioral response to activation of bitter-sensing neurons

following a delay in relation to the initiation of the activity bout (Figure 4C–H), the red LED was set

to occur 1.5, 3 or 6 s after an activity bout was detected in 90% of the trials on both food sources.

Light stimulation was sustained for 2 s. A new trial was initiated when a new interaction with food

was detected. The 10% of trials with no LED activation were terminated at the end of the respective

activity bout.

Statistics
Results of optoPAD experiments were compared using the Kruskal-Wallis test, followed by Dunn’s

multiple comparison test when more than two groups were compared or Wilcoxon rank-sum test,

followed by Bonferroni correction when multiple comparisons were made. All tests were two-tailed.
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José-Maria Moreira https://orcid.org/0000-0003-2420-7930

Pavel M Itskov https://orcid.org/0000-0002-2191-7083

Dennis Goldschmidt https://orcid.org/0000-0002-0603-7176

Kathrin Steck http://orcid.org/0000-0003-2711-2873

Samuel J Walker https://orcid.org/0000-0003-3118-8467

Carlos Ribeiro https://orcid.org/0000-0002-9542-7335

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.43924.031

Author response https://doi.org/10.7554/eLife.43924.032

Additional files
Supplementary files
. Transparent reporting form

DOI: https://doi.org/10.7554/eLife.43924.029

Data availability

Data used to generate the plots in the figures are included in the manuscript and supporting files.

The optoPAD hardware designs and software are made available on GitHub at https://github.com/

ribeiro-lab/optoPAD-hardware and https://github.com/ribeiro-lab/optoPAD-software, respectively.

Copies have been archived at https://github.com/elifesciences-publications/optoPAD-hardware and

https://github.com/elifesciences-publications/optoPAD-software.

References
Anderson DJ, Perona P. 2014. Toward a science of computational ethology. Neuron 84:18–31. DOI: https://doi.
org/10.1016/j.neuron.2014.09.005, PMID: 25277452

Branson K, Robie AA, Bender J, Perona P, Dickinson MH. 2009. High-throughput ethomics in large groups of
Drosophila. Nature Methods 6:451–457. DOI: https://doi.org/10.1038/nmeth.1328, PMID: 19412169

Brown AEX, de Bivort B. 2018. Ethology as a physical science. Nature Physics 14:653–657. DOI: https://doi.org/
10.1038/s41567-018-0093-0

Calhoun AJ, Murthy M. 2017. Quantifying behavior to solve sensorimotor transformations: advances from worms
and flies. Current Opinion in Neurobiology 46:90–98. DOI: https://doi.org/10.1016/j.conb.2017.08.006,
PMID: 28850885

Carvalho-Santos Z, Ribeiro C. 2018. Gonadal ecdysone titers are modulated by protein availability but do not
impact protein appetite. Journal of Insect Physiology 106:30–35. DOI: https://doi.org/10.1016/j.jinsphys.2017.
08.006, PMID: 28842196

Chittka L. 2017. Bee cognition. Current Biology 27:R1049–R1053. DOI: https://doi.org/10.1016/j.cub.2017.08.
008, PMID: 29017035

Corrales-Carvajal VM, Faisal AA, Ribeiro C. 2016. Internal states drive nutrient homeostasis by modulating
exploration-exploitation trade-off. eLife 5:e19920. DOI: https://doi.org/10.7554/eLife.19920, PMID: 27770569

Moreira et al. eLife 2019;8:e43924. DOI: https://doi.org/10.7554/eLife.43924 17 of 19

Tools and resources Neuroscience

https://orcid.org/0000-0003-2420-7930
https://orcid.org/0000-0002-2191-7083
https://orcid.org/0000-0002-0603-7176
http://orcid.org/0000-0003-2711-2873
https://orcid.org/0000-0003-3118-8467
https://orcid.org/0000-0002-9542-7335
https://doi.org/10.7554/eLife.43924.031
https://doi.org/10.7554/eLife.43924.032
https://doi.org/10.7554/eLife.43924.029
https://github.com/ribeiro-lab/optoPAD-hardware
https://github.com/ribeiro-lab/optoPAD-hardware
https://github.com/ribeiro-lab/optoPAD-software
https://github.com/elifesciences-publications/optoPAD-hardware
https://github.com/elifesciences-publications/optoPAD-software
https://doi.org/10.1016/j.neuron.2014.09.005
https://doi.org/10.1016/j.neuron.2014.09.005
http://www.ncbi.nlm.nih.gov/pubmed/25277452
https://doi.org/10.1038/nmeth.1328
http://www.ncbi.nlm.nih.gov/pubmed/19412169
https://doi.org/10.1038/s41567-018-0093-0
https://doi.org/10.1038/s41567-018-0093-0
https://doi.org/10.1016/j.conb.2017.08.006
http://www.ncbi.nlm.nih.gov/pubmed/28850885
https://doi.org/10.1016/j.jinsphys.2017.08.006
https://doi.org/10.1016/j.jinsphys.2017.08.006
http://www.ncbi.nlm.nih.gov/pubmed/28842196
https://doi.org/10.1016/j.cub.2017.08.008
https://doi.org/10.1016/j.cub.2017.08.008
http://www.ncbi.nlm.nih.gov/pubmed/29017035
https://doi.org/10.7554/eLife.19920
http://www.ncbi.nlm.nih.gov/pubmed/27770569
https://doi.org/10.7554/eLife.43924


Davis JD. 1973. The effectiveness of some sugars in stimulating licking behavior in the rat. Physiology & Behavior
11:39–45. DOI: https://doi.org/10.1016/0031-9384(73)90120-0, PMID: 4732426

Dethier VG. 1976. The Hungry Fly: A Physiological Study of the Behavior Associated with Feeding. Oxford,
England: Harvard University Press.

Egnor SE, Branson K. 2016. Computational analysis of behavior. Annual Review of Neuroscience 39:217–236.
DOI: https://doi.org/10.1146/annurev-neuro-070815-013845, PMID: 27090952

Fiorillo CD, Tobler PN, Schultz W. 2003. Discrete coding of reward probability and uncertainty by dopamine
neurons. Science 299:1898–1902. DOI: https://doi.org/10.1126/science.1077349, PMID: 12649484

Glimcher PW, Fehr E. 2013. Neuroeconomics: Decision Making and the Brain. 2nd ed. Amsterdam : Boston:
Academic Press.

Goldschmidt D. 2019a. optoPAD-software. GitHub. 94c5b72.https://github.com/ribeiro-lab/optoPAD-software
Goldschmidt D. 2019b. optoPAD-hardware. GitHub. 94c5b72.https://github.com/ribeiro-lab/optoPAD-hardware
Itskov PM, Moreira JM, Vinnik E, Lopes G, Safarik S, Dickinson MH, Ribeiro C. 2014. Automated monitoring and
quantitative analysis of feeding behaviour in Drosophila. Nature Communications 5:4560. DOI: https://doi.org/
10.1038/ncomms5560, PMID: 25087594

Jaeger AH, Stanley M, Weiss ZF, Musso PY, Chan RC, Zhang H, Feldman-Kiss D, Gordon MD. 2018. A complex
peripheral code for salt taste in Drosophila. eLife 7:e37167. DOI: https://doi.org/10.7554/eLife.37167,
PMID: 30307393

Jiao Y, Moon SJ, Wang X, Ren Q, Montell C. 2008. Gr64f is required in combination with other gustatory
receptors for sugar detection in Drosophila. Current Biology 18:1797–1801. DOI: https://doi.org/10.1016/j.cub.
2008.10.009, PMID: 19026541

Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter
EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton
M, Wong GK, et al. 2014. Independent optical excitation of distinct neural populations. Nature Methods 11:
338–346. DOI: https://doi.org/10.1038/nmeth.2836, PMID: 24509633

Lak A, Costa GM, Romberg E, Koulakov AA, Mainen ZF, Kepecs A. 2014. Orbitofrontal cortex is required for
optimal waiting based on decision confidence. Neuron 84:190–201. DOI: https://doi.org/10.1016/j.neuron.
2014.08.039, PMID: 25242219
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