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Abstract Experience-dependent modifications of synaptic connections are thought to change

patterns of network activities and stimulus tuning with learning. However, only a few studies

explored how synaptic plasticity shapes the response dynamics of cortical circuits. Here, we

investigated the mechanism underlying sharpening of both stimulus selectivity and response

dynamics with familiarity observed in monkey inferotemporal cortex. Broadening the distribution of

activities and stronger oscillations in the response dynamics after learning provide evidence for

synaptic plasticity in recurrent connections modifying the strength of positive feedback. Its

interplay with slow negative feedback via firing rate adaptation is critical in sharpening response

dynamics. Analysis of changes in temporal patterns also enables us to disentangle recurrent and

feedforward synaptic plasticity and provides a measure for the strengths of recurrent synaptic

plasticity. Overall, this work highlights the importance of analyzing changes in dynamics as well as

network patterns to further reveal the mechanisms of visual learning.

DOI: https://doi.org/10.7554/eLife.44098.001

Introduction
Experience-dependent changes in neural responses have been suggested to underlie the more effi-

cient and rapid processing of stimuli with learning. Human and monkeys have been reported to pro-

cess familiar stimuli with shorter response times and with less effort (Greene and Rayner, 2001;

Logothetis et al., 1995; Mruczek and Sheinberg, 2007). The possible neural correlate for such

behavior enhancement is the sharpening of stimulus selectivity that is achieved by broadening the

distribution of activities as the stimulus becomes familiar (Freedman et al., 2006; Kobatake et al.,

1998; Lim et al., 2015; McKee et al., 2013; Woloszyn and Sheinberg, 2012). Also, temporal

sharpening of neural responses with experience has been observed, which can increase the resolu-

tion of discriminating stimuli in time with learning (Meyer et al., 2014; Recanzone et al., 1992).

Modifications of synaptic connections have been thought to be one of the basic mechanisms for

learning. A repeated encounter of a stimulus would elicit a particular activity pattern in the network,

which in turn modifies synaptic connections depending on pre- and post-synaptic activities. Such

modifications of synaptic connections lead to changes in neural responses that can be a substrate to

differentiate learned and unlearned stimuli. The previous modeling works investigated the relation-

ship between synaptic plasticity and changes in network activity to find a synaptic plasticity rule that

can account for sharpening of stimulus selectivity observed with learning (Dayan and Abbott, 2005;

Gerstner and Kistler, 2002). However, whether such rules can also explain temporal changes in

neural responses is in question.

In this work, we investigate the mechanism underlying changes of response dynamics with learn-

ing. To this end, we consider neural activities recorded in inferior temporal cortex (ITC) known to be

important for visual object recognition (Miyashita, 1993; Tanaka, 1996). In ITC, changes in the

response properties with learning have been reported in several experiments (Freedman et al.,

2006; Li et al., 1993; Lim et al., 2015; Logothetis et al., 1995; McKee et al., 2013; Woloszyn and
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Sheinberg, 2012; Xiang and Brown, 1998). The average over different visual stimuli of time-aver-

aged responses decreases with familiarity, while the distribution of responses across visual stimuli

broadens with learning. The dynamics of visual responses were also found to change with familiarity

– in particular, rapid successive presentation of familiar images, but not novel images, elicits strong

periodic responses (Meyer et al., 2014).

Previously, we investigated synaptic plasticity in recurrently connected circuits that reproduces

changes in the distribution of time-averaged visual responses observed experimentally (Lim et al.,

2015). As the distribution of time-averaged visual responses of a single cell to multiple stimuli can

be a surrogate for a spatial pattern of the network to one stimulus in a homogeneous network, the

previous work mainly focused on how recurrent synaptic plasticity shapes the network pattern and

stimulus tuning. Here, we extend our previous framework to understand mechanisms underlying

changes of temporal patterns with learning. First, we demonstrate that the synaptic plasticity rule

inferred from the time-averaged responses is not sufficient to reproduce changes in response

dynamics. Next, we show that the interaction between synaptic plasticity and negative feedback

mechanisms is critical for generating stronger oscillation after learning. Using a mean-field analysis,

we identify the conditions on synaptic plasticity and negative feedback to reproduce changes in

response dynamics consistently observed in different experimental settings. Finally, we validate

these conditions through network simulations and infer the post-synaptic dependence of synaptic

plasticity from the experimental data.

Results

Effects of visual learning on response dynamics
In this section, we summarize the effects of visual experience on response dynamics obtained from

three different laboratories comparing the visual response to novel (unlearned) and familiar (learned)

stimuli in the monkey ITC (Lim et al., 2015; McKee et al., 2013; Meyer et al., 2014; Woloszyn and

Sheinberg, 2012). Two experiments measured visual responses to the presentation of one stimulus,

one in a passive viewing task (Lim et al., 2015; Woloszyn and Sheinberg, 2012) and the other in a

dimming-detection task (Freedman et al., 2006; Lim et al., 2015; McKee et al., 2013). The dura-

tion of the stimulus presentation and number of stimuli were different in the two tasks: shorter dura-

tion of stimulus presentation and a larger set of stimuli in the passive viewing task in comparison to

the dimming-detection task (Materials and methods). In both cases, the average response to familiar

stimuli was lower than that to novel stimuli with a rapid decrease of the response around 150 ms

after the stimulus onset in putative excitatory neurons (Figure 1A; Figure 5A,B for the dimming-

detection task). On the other hand, the response to the most preferred stimulus was found to

increase for familiar stimuli with broadening of the distribution of time-averaged activities

(Figure 1B,C).

In both the mean and maximal responses to familiar stimuli, a rebound of activity was observed

around 230 ms after the stimulus onset (Figure 1A,B). This is distinctive from responses to novel

stimuli showing slow decay after the transient rise. We further quantified the magnitude of the

rebound before and after learning by measuring the slope of changes in the activities at each rank

of stimuli (Figure 1D). It showed that the higher-rank familiar stimuli exhibit the stronger rebound in

putative excitatory neurons. In contrast, there is only a weak dependence between the rank of stim-

uli and the magnitude of rebound activity in inhibitory neurons (Figure 1—figure supplement 1).

The emergence of oscillatory responses after learning was also observed in different experimental

settings. In the dimming detection task with longer stimulus presentation, the average response

showed damped oscillation for familiar stimuli (Figure 5B; Freedman et al., 2006; McKee et al.,

2013). In another experiment where either two novel stimuli or two familiar stimuli were presented

rapidly in sequence, the peak response for the second familiar stimulus is as strong as the one for

the first stimulus, while the response to the novel stimulus is suppressed at the second peak

(Meyer et al., 2014). Thus, rapid successive presentation of familiar images, but not novel images,

elicits strong periodic responses. Note that although all three experiments suggest stronger oscilla-

tion after learning, its strength may vary depending on a sampling of neurons and stimuli as only

excitatory neurons with their most preferred stimuli exhibit strong oscillation after learning

(Figure 1D).
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In sum, the prominent effects of visual learning on responses of excitatory neurons are (i) reduc-

tion in average response, (ii) increase in maximum response, and (iii) stronger oscillations after learn-

ing. In the following, we show how such changes guide us to reveal a mechanism underlying visual

learning that sharpens stimulus selectivity and temporal resolution of stimuli. Note that we focus on

excitatory neurons only assuming that the dynamics of inhibitory neurons follow that of mean excit-

atory neurons, and do not contribute qualitative changes of response dynamics after learning. Such

a simplification is based on the experimental observation that input changes and the magnitude of

rebound activity depend weakly on the post-synaptic firing rates in inhibitory neurons (See Discus-

sion for further justification).
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 learninFigure 1. Changes in response dynamics of putative excitatory neurons with learning in a passive viewing task

(Lim et al., 2015; Woloszyn and Sheinberg, 2012). (A, B) Average and maximal response to familiar (blue) and

novel (red) stimuli. For each excitatory neuron, we normalized firing rates by the mean and standard deviation of

time-averaged activities over novel stimuli during stimulus presentation (80 ms-200 ms after the stimulus onset)

and took the average over stimuli (A) and the response with the highest time-averaged activity (B). Solid curves are

activities averaged over neurons, and shaded regions represent mean ± s.e.m of activities averaged over individual

neurons. The gray horizontal bar represents the visual stimulation period starting at 0 ms. (C) Distribution of time-

averaged activities during stimulus presentation. For each neuron, according to time-averaged activities, a

stimulus was rank-ordered among familiar and novel stimuli, respectively. At each rank of the stimuli, we averaged

the normalized response over neurons, and obtained the distributions of activities over different ranks of stimuli.

To avoid negative values in the x-axis on a logarithmic scale, we added two to normalized rates. (D) Rebound

strength of damped oscillation. At each rank of stimuli, the rebound strength was quantified by the slope of

changes of activities between 230 ms and 320 ms after the stimulus onset.

DOI: https://doi.org/10.7554/eLife.44098.002

The following source data and figure supplement are available for figure 1:

Source code 1. Data for Figure 1D.

DOI: https://doi.org/10.7554/eLife.44098.019

Figure supplement 1. Changes in response dynamics of putative inhibitory neurons with learning in a passive

viewing task (Woloszyn and Sheinberg, 2012).

DOI: https://doi.org/10.7554/eLife.44098.003
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Recurrent synaptic plasticity alone cannot reproduce the response
dynamics
Activity-dependent modifications of synaptic connections can be one of the key elements to explain

changes in network patterns and response dynamics with learning. Previously, we introduced a pro-

cedure to infer synaptic plasticity rules from experimental data so that networks implementing the

derived learning rules can quantitatively reproduce changes in the distribution of time-averaged

visual responses observed experimentally (Lim et al., 2015). We now extend this framework and

explore whether synaptic plasticity alone would be sufficient to explain stronger oscillatory

responses after learning.

To investigate the effect of learning on response dynamics, we considered a firing rate model

with a plasticity rule that modifies the strength of recurrent synapses as a function of the firing rates

of pre- and postsynaptic neurons. Activities of neurons are described by their firing rates ri for

i = 1,. . ., N, where N denotes the number of neurons in the network. Their dynamics are described

by the following equations

tr
dri

dt
¼�ri þF

X

WR
ij rj þ

X

WF
ij I

X
j

� �

(1)

where F is a static transfer function (f-I curve), and the total input current is the sum of the recur-

rent input
P

WR
ij rj and the feedforward input

P

WF
ij I

X
j . W

k
ij denotes the strength of synaptic connec-

tion from neuron j to neuron i with k = R or F representing recurrent and feedforward connections,

respectively. The superscript X denotes an external input, and IXi is the external input to neuron i

before learning with WF
ij ¼ dij.

We assumed that the recurrent synapses are plastic, changing their strengths according to

WR
ij ! WR

ij þ DWR
ij , which depends on the activities of both pre- and postsynaptic neurons during the

stimulus presentation. We further assumed that the learning rule is a separable function of pre- and

postsynaptic activity as

DWR
ij ¼

1

N
fR �ið ÞgR �j

� �

(2)

where f and g are post- and pre-synaptic dependence of the learning rules, respectively, and �i is

the activity of neuron i averaged during the stimulus presentation before learning.

Previously, we found that synaptic plasticity in recurrent excitatory connections is sufficient to

reproduce changes in the distribution of time-averaged visual responses observed experimentally

(Lim et al., 2015). Hebbian-type synaptic plasticity with a potentiation in high firing rates leads to an

increase of the maximal response of excitatory neurons, while overall depression leads to a decrease

of the average network response of both excitatory and inhibitory neurons (Figure 2A). With such

synaptic plasticity derived from the time-averaged activities, response dynamics in Equation (1)

shows similar changes to the time-averaged responses (Figure 2B,C). However, the temporal profile

is similar before and after learning and does not show oscillations after learning. Thus, synaptic plas-

ticity alone is not sufficient for reproducing changes in response dynamics observed experimentally,

which will be shown analytically in the next section.

Interactions between recurrent synaptic plasticity and slow negative
feedback
Another key ingredient to explain changes in response dynamics with learning can be slow negative

feedback. In a dynamical system, resonance-like behavior emerges from the interaction between

strong positive feedback and relatively slow negative feedback. Thus, enhanced resonance behavior

after learning observed experimentally may suggest that changes in synaptic connections strengthen

positive feedback in the circuit and affect the response dynamics by interacting with a slow negative

feedback mechanism. Also, the reduced response to successive stimulus presentation of novel stim-

uli (Meyer et al., 2014) can be caused by the slow recovery from negative feedback.

For generating a damped oscillatory response after learning, we found that specific negative

feedback such as firing rate adaptation is required (Figure 3). Similar to previous works investigating

the effect of adaptation on the network activity in a mean-field approach (Fuhrmann et al., 2002;

Laing and Chow, 2002; Tabak et al., 2006; Treves, 1993; van Vreeswijk and Hansel, 2001), we
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considered a linear mechanism for adaptation where the adaptation current is a low-pass filtered fir-

ing rate represented by the variable ai with time constant ta and strength k. Then the dynamics of

network activity is described by the following equations:

tr
dri
dt
¼�ri þF

P

WR
ij rj� kaiþ

P

WF
ij I

X
j

� �

ta
dai
dt
¼�ai þ ri

(3)

Intuitively, interactions between recurrent synaptic plasticity and adaptation-like negative feed-

back in Equations (2) and (3) can reproduce two effects of visual learning, increase in maximal

response and stronger oscillatory response after learning. Hebbian-type synaptic plasticity in recur-

rent connections provides strong potentiation in the connections among high firing rate neurons,

and thus, generates a cell assembly with stronger positive feedback after learning (Figure 3A). This

leads to not only an increase in the response of this cell assembly but also the emergence of oscilla-

tion under the interplay with slow adaptation currents. The strength of oscillation in the rest of the

population may depend on the synaptic strengths from these high firing rate neurons.

To show this analytically, we investigated mean-field dynamics that summarize network activity

with fewer variables (Materials and methods). To facilitate the analysis, we made two assumptions,

linear dynamics with transfer function F(x) = x, and homogeneous connectivity before learning that

reflects no correlation between novel stimuli and network structure. Under these assumptions, the

dynamics before learning is described by average activity and adaptation, �r ¼ 1

N
i

X

ri and �a ¼ 1

N
i

X

ai.

After learning, with synaptic plasticity in recurrent connections following Equation (2), recurrent con-

nections become correlated with activity pattern they learned. Increased correlation between the

learned pattern and network structure can be captured by additional variables m and n, defined as

m ¼ 1

N
i

X

gR �ið Þri and n ¼ 1

N
i

X

gR �ið Þai, which is a variation of the pattern overlap 1

N
i

X

�iri utilized pre-

viously to describe changes in dynamics with learning (Tsodyks and Feigel’man, 1988).

The variables m and n can approximately represent the activities and adaptation of high firing

rate neurons as the activities and adaptation of high firing rate neurons contribute more to m and n

variables with monotonically increasing pre-synaptic dependence gR �ið Þ (Figure 3A). Thus, potentia-

tion of recurrent inputs in high firing rate neurons provides strong positive feedback in m, while slow

adaptation mechanisms represented by n variables provide negative feedback. As the variables m

and n are only present in the dynamics after learning, qualitative changes of the response dynamics

in the network should be mainly led by their dynamics with strong potentiation in high rate neurons

(Figure 3B). Such strong potentiation and generation of damped oscillation in high rate neurons are

consistent with the observation that the rebound is strongest in those neurons (Figure 1D).
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Figure 2. Networks with synaptic plasticity in recurrent connections without slow negative feedback. (A) Example

post-synaptic dependence of recurrent synaptic plasticity inferred from changes of time-averaged responses.

Dependence of synaptic plasticity on the post-synaptic rate, f in Equation (2), shows depression for low rates and

potentiation at high rates. (B, C) Average (B) and maximal (C) response before (red) and after (blue) learning for

the network with synaptic plasticity only in recurrent connections.

DOI: https://doi.org/10.7554/eLife.44098.004
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The recurrent input from high rate neurons can lead to a damped oscillatory response in the rest

of the population (Figure 3A). The mean-field analysis shows that the strength of the damped oscil-

latory response is proportional to the strength of postsynaptic synaptic plasticity fR �ið Þ in the case of

linear dynamics. If fR for neuron i is positive (negative) corresponding to potentiation (depression) in

recurrent inputs, an oscillation in neuron i would be in phase (out of phase) with that of high rate

neurons. Previously, we proposed Hebbian-type but overall depression-dominant synaptic plasticity

in recurrent connections to minimally account for the decrease in time-averaged responses

(Lim et al., 2015). However, this would lead to out of phase oscillation in the mean and maximum

response, inconsistent with the data (Figure 1A,B). Instead, overall potentiation in recurrent inputs

with �fR >0 is required to generate in-phase oscillation in the mean and maximum response in linear

dynamics (Figure 3—figure supplement 1).

Additional synaptic plasticity for reduction in average response
We showed that recurrent synaptic plasticity could account for the emergence of damped oscillation

and sharpening neural activities by increasing the maximal response after learning. Furthermore, syn-

chronous oscillations in the mean and maximum response observed experimentally suggest overall

potentiation in recurrent inputs. However, potentiation-dominant synaptic plasticity in recurrent con-

nections would increase overall synaptic input and cannot reproduce a decrease in average activities

with learning (Figure 3—figure supplement 1A,B). The same holds for recurrent synaptic plasticity

with or without the assumption of the constant sum normalization which imposes a constraint on the

pre-synaptic dependence (Figure 3—figure supplement 2).

Instead, reduction in average response requires changes in external inputs or other recurrent

inputs such as suppression in other excitatory inputs or enhanced inhibition. Enhanced recurrent inhi-

bition can result from an increase in inhibitory activities after learning or potentiated inhibitory con-

nections onto excitatory neurons. The former is inconsistent with the experimental observations

showing a reduction in inhibitory firing rates across different stimuli (Figure 1—figure supplement

1). Also, potentiated inhibition with learning is less likely to account for a decrease of average
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DOI: https://doi.org/10.7554/eLife.44098.005

The following figure supplements are available for figure 3:

Figure supplement 1. Networks with synaptic plasticity only in recurrent connections with slow negative feedback.

DOI: https://doi.org/10.7554/eLife.44098.006

Figure supplement 2. Networks with synaptic plasticity only in recurrent connections without the constraint of the sum normalization of synaptic

weights achieved by
P

gk �j
� �

¼ 0.

DOI: https://doi.org/10.7554/eLife.44098.007
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excitatory activities - a temporal profile of inhibitory activities after learning shows a decrease of

activity almost to the baseline in the late phase of the stimulus presentation (200–250 ms after the

stimulus onset). This suggests that the effect of potentiated inhibition in the late phase is weaker

than in the early phase while reduction of excitatory activities was observed in the late phase

(Figure 1A,B).

Another possibility is a depression in recurrent excitation through different types of synapses

such as potentiation in fast AMPA-like currents and depression in slow NMDA-like currents. Depres-

sion in slow excitatory currents can lead to a decrease in excitatory activities in the late phase. How-

ever, different regulation of AMPA and NMDA currents is inconsistent with the experimental

observations showing maintenance of a constant NMDA-to-AMPA ratio under the changes of AMPA

receptors induced chemically or by an STDP protocol (Watt et al., 2000; Watt et al., 2004).

Instead of additional changes of the recurrent synaptic inputs, we considered changes in external

inputs with feedforward synaptic plasticity DWF
ij ¼ fF �ið ÞgF �j

� �

. Together with overall potentiation in

the recurrent connections, dominant depression in the feedforward connections with �fF< 0 can

reproduce the reduction of average responses over the stimuli with learning. In Figure 4, an exam-

ple network with Hebbian learning rule in recurrent connections, uniform depression in the feedfor-

ward connection, and spike adaptation mechanisms was shown to reproduce the effects of visual

learning qualitatively. With learning, the average response decreases in particular in the late phase

(Figure 4A), but maximal firing rates increased and oscillation becomes prominent especially in high

rates (Figure 4B,C). Also, in the successive presentation of two stimuli, the average response shows

stronger oscillation after learning (Figure 4D), while the rank of individual neuronal activities changes

when a new stimulus arrives (Figure 4E,F).

Note that the mean field dynamics was derived under the assumption of linear dynamics. With

synaptic or neuronal nonlinearity, some conditions identified through our mean field dynamics can

be mitigated such as less dominant potentiation in recurrent inputs with learning (Figure 6—figure

supplement 1). However, a network simulation with example nonlinearity still shows that the core

principles on the synaptic plasticity rule remain the same as strong potentiation in recurrent connec-

tions in high rate neurons, and average depression in feedforward inputs.

Network simulation and comparison with data
In this section, we validate that network models implementing the conditions identified through

mean-field equations indeed reproduce the experimental observation and allow us to infer the post-

synaptic dependence of synaptic plasticity. To illustrate this, we considered electrophysiological

data obtained in a passive viewing task and dimming-detection task (Lim et al., 2015; McKee et al.,

2013; Woloszyn and Sheinberg, 2012). In the dimming detection task, responses to fewer stimuli

were measured, and we considered the response averaged over neurons and stimuli, which was fit-

ted using mean-field dynamics (Figure 5). The external inputs and parameters of the �r and �a dynam-

ics before learning were chosen to generate no oscillations (Figure 5A; Figure 5—figure

supplement 1). Potentiation in high firing rate neurons, average potentiation of recurrent inputs and

depression in feedforward inputs were found to mimic response to familiar stimuli (Figure 5B).

This mean-field dynamics reproduces prominent features of response dynamics before and after

learning, showing damped oscillation and a decrease in average response to familiar stimuli after its

peak (Figure 5C). Furthermore, we simulated the mean response to novel and familiar stimuli for a

successive presentation of stimuli (Figure 5D). When novel stimuli are repeatedly shown, the peak

response to the second stimuli is smaller than the response to the first, due to a slow recovery from

the adaptation current. In contrast, for the serial presentation of familiar stimuli, the response to the

first stimulus decays quickly and the response to the second stimulus is less affected by the adapta-

tion current. Thus, the overall response becomes more oscillatory compared to the one for novel

stimuli.

In the experimental data obtained during the passive viewing task, the duration of stimulus pre-

sentation was shorter, but the distribution of response dynamics before and after learning could be

obtained (Figure 1C; Materials and methods). As in the dimming detection task, the external inputs

were obtained from the responses to novel stimuli. By comparing the response dynamics at each

rank of the novel and familiar stimuli, we derived the post-synaptic dependence of synaptic plasticity

in recurrent and feedforward connections. Note that the synaptic plasticity was inferred from
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normalized firing rates averaged over neurons under the assumption that the dependence of synap-

tic plasticity rules on normalized firing rates is the same across different neurons (See Discussion for

justification).

Consistent with the fitting of the mean-field dynamics to the data obtained in a dimming detec-

tion task, the average post-synaptic dependence of synaptic plasticity leads to potentiation in recur-

rent inputs and depression in feedforward inputs (Figure 6A). Furthermore, the post-synaptic

dependence in recurrent connections is an increasing function of the rank of stimuli, or equivalently,

the post-synaptic activities. It is notable that such a tendency is similar to the dependence of the

rebound magnitude to familiar stimuli on the rank of stimuli observed experimentally (Figure 1D).

Network models implementing the derived synaptic plasticity reproduce the reduction of average

activities (Figure 6B) and rebound in the late phase of stimulus presentation in both average and

maximal responses, although the maximal response after the initial rise is less well fitted (Figure 6C).

We also checked whether the key conditions for synaptic plasticity change with example nonlinear

input-output transfer function derived from the time-averaged response to novel stimuli (Figure 6—

figure supplement 1A). The derived post-synaptic dependence in both recurrent and feedforward

connections is similar to that obtained under linear dynamics with more balance between depression

and potentiation in recurrent synaptic plasticity (Figure 6—figure supplement 1B). Although the

rebound in the average activities is less well fitted compared to that with linear dynamics, the net-

work simulations agree with the data qualitatively (Figure 6—figure supplement 1C,D).
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through uniform scaling down of the external inputs, and spike-adaptation mechanisms. Mean responses reproduce the effects of visual learning

predicted in the mean-field dynamics, showing average reduction and stronger oscillations (A, D). Representative individual activities before (B,E) and

after (C,F) learning show that activities in neurons with high firing rates increase with strong oscillation after learning (E,F), but the rank of stimuli is

shuffled with the arrival of a new stimulus.

DOI: https://doi.org/10.7554/eLife.44098.008

The following source code is available for figure 4:

Source code 1. MATLAB code for Figure 4.

DOI: https://doi.org/10.7554/eLife.44098.020
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Alternative negative feedback mechanisms
Our mean field analysis and model fit to the data suggest firing rate adaptation mechanisms as a

good candidate for slow negative feedback to explain the familiarity effect on the dynamics. Here,

we explored whether two alternative negative feedback mechanisms such as delayed global inhibi-

tion or short-term depression can replace adaptation. Delayed global inhibition may arise due to

local inhibition with slow NMDA- or GABAB-like currents in inhibitory feedback pathways, or inhibi-

tory feedback from other areas. For instance, prefrontal cortex shows a familiarity effect with a long
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Figure 5. Comparison between network simulation and data obtained in a dimming-detection task. (A, B) Fitting

response dynamics (red in A and blue in B) using mean-field equations (gray in A and black in B) for novel (A) and

familiar (B) stimuli. (C,D) Simulation for one stimulus presentation (C) and successive presentation of stimuli (D).

The gray horizontal bar represents the visual stimulation period starting at 500 ms and x-axis is truncated to show

activities from their onsets. In A-C, the stimulus was presented for a duration that was a sum of a fixed duration

(650 ms shown in the dark gray) and a random duration (shown in the light gray). In D, different gray bars

represent different stimuli shown alternatively for a duration of 150 ms.

DOI: https://doi.org/10.7554/eLife.44098.009

The following source data and figure supplements are available for figure 5:

Source code 1. Data for Figure 5.

DOI: https://doi.org/10.7554/eLife.44098.021

Source code 2. MATLAB code for Figure 5.

DOI: https://doi.org/10.7554/eLife.44098.022

Figure supplement 1. Constraints on wR and k to reproduce responses to novel stimuli (shaded area).

DOI: https://doi.org/10.7554/eLife.44098.010

Figure supplement 2. Parameter search for the strengths of potentiation and adaptation (A,B) and average post-

synaptic dependence of recurrent and feedforward connections, �fR, and �fF (C).

DOI: https://doi.org/10.7554/eLife.44098.011

Figure supplement 3. Sensitivity of fitting to changes in the recurrent connectivity strength before learning, wR.

DOI: https://doi.org/10.7554/eLife.44098.012
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latency around 100 ms but with opposite sign (Rainer and Miller, 2000; Xiang and Brown, 2004),

and thus, the top-down signals from this area can serve as slow negative feedback.

We considered a model of global inhibition so that all excitatory neurons receive the same slow

inhibition whose strength is proportional to the average activity of excitatory neurons (Materials and

methods). Under the assumption of linearity, we could derive the mean field equations similar to

that with adaptation mechanisms with variables r, a and m but without variable n that mainly repre-

sents the negative feedback in high firing rate neurons (Equation (6)). Without negative feedback, m

cannot generate damped oscillations after learning in both high rate neurons and the overall popula-

tion. This suggests that slow negative feedback private to individual neurons or sub-populations is

required to generate qualitative changes in dynamics as interacting with synaptic plasticity.

Short-term depression in synaptic connections has also been suggested as a mechanism for nega-

tive feedback and generating oscillations in cortical circuits (Laing and Chow, 2002; Loebel and

Tsodyks, 2002; Tabak et al., 2006; Wang, 2010). To see whether short-term depression can repro-

duce the damped oscillatory response after learning, we considered a phenomenological model

mimicking the effect of depletion of a neurotransmitter such that when the pre-synaptic firing is

high, the synaptic input from such neuron becomes weak due to the lack of resources (Materials and

methods; Tsodyks and Markram, 1997). Under the assumption that the recurrent connection is

weak before learning, and the damped oscillation in the network is led by that in the high rate neu-

rons, we searched for a parameter set of the strength and timescale of short-term plasticity that pro-

vides the best fit to the experimental data. However, the network simulation with the best-fitted

parameters cannot generate a strong rebound, unlike the adaptation mechanisms (Figure 6—figure

supplement 2). Thus, a simple phenomenological model of short-term plasticity cannot explain the

qualitative changes in response dynamics observed experimentally.
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Figure 6. Post-synaptic dependence of synaptic plasticity in recurrent (left) and feedforward (right) connections derived from a passive viewing task (A)

and comparison between the data and network simulations for average (B) and maximal (C) responses. The external inputs were chosen so that the

response to novel stimuli is the same in the experiment and simulation (red in B,C). With the derived post-synaptic dependence in the recurrent and

feedforward connections (A), the response to familiar stimuli was simulated (black in B,C).

DOI: https://doi.org/10.7554/eLife.44098.013

The following source data and figure supplements are available for figure 6:

Source code 1. MATLAB code for Figure 6.

DOI: https://doi.org/10.7554/eLife.44098.023

Figure supplement 1. Example nonlinearity in dynamics and synaptic plasticity inferred under nonlinearity.

DOI: https://doi.org/10.7554/eLife.44098.014

Figure supplement 2. Short-term depression cannot reproduce a damped oscillation after learning.

DOI: https://doi.org/10.7554/eLife.44098.015

Figure supplement 3. Schematics of synaptic plasticity rules in different connections.

DOI: https://doi.org/10.7554/eLife.44098.016
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Discussion
In this work, we provided a mechanistic understanding of how interactions between synaptic plastic-

ity and a negative feedback mechanism implementing firing rate adaptation shape response dynam-

ics with learning. The emergence of damped oscillations after learning requires strong positive

feedback through potentiation in recurrent connections particularly among neurons with high firing

rates. Such recurrent synaptic plasticity broadens the distribution of activities, while depression in

feedforward inputs decreases average firing rates. Synaptic plasticity, therefore, enables the sparse

and efficient representation of the learned stimuli. Furthermore, the strength of rebound of damped

oscillation observed after learning can be a novel, graded measure for recurrent synaptic plasticity.

On the other hand, adaptation-like mechanisms are critical for enhanced oscillatory responses after

learning, and strongly suppresses the neural activities for the learned stimuli in particular in the late

phase of the stimulus presentation. As such temporal sharpening prepares neurons to respond to

the subsequent stimulus, our work suggests that the adaptation mechanisms together with synaptic

plasticity may play an important role in the rapid processing of the learned stimuli.

Here, we extended our previous work inferring recurrent synaptic plasticity rules from time-aver-

aged data in a static model of a cortical network to time-course data and a dynamic model with

additional spike adaptation mechanisms and feedforward synaptic plasticity (Lim et al., 2015). Ana-

lyzing time-course data allows disentangling contributions of synaptic plasticity in different connec-

tions. However, similar to the previous work, only post-synaptic dependence of the synaptic

plasticity rules can be inferred from single cell recordings under the assumption that the learning

rules are a separable function of pre- and postsynaptic rates. Also, fitting the time course poses a

limitation such that synaptic plasticity rules needed to be inferred from the data averaged over neu-

rons due to noise. On the other hand, time-averaged data allows to infer recurrent synaptic plasticity

in different neurons, which reveals a strong correlation between neural activity and the threshold

separating depression and potentiation, but no correlation when the post-synaptic activity is normal-

ized (Lim et al., 2015). Inspired by this observation, we inferred synaptic plasticity rules from normal-

ized firing rates under the assumption that synaptic plasticity rules are the same across different

neurons when inputs and rates are normalized (Figures 1 and 6). Although a direct test of this

assumption is not feasible, the relatively small variance of rebound strengths over neurons may sup-

port this assumption on the recurrent synaptic plasticity as the dependence of rebound strengths on

the rank of stimuli alternatively represents learning rules in recurrent connections (Figure 6C). Fur-

thermore, if the learning rule inferred from the time-averaged response is the combination of recur-

rent and feedforward synaptic plasticity, the same learning rules of this mixture and recurrent

connections across different neurons would justify the assumption on the feedforward plasticity (Fig-

ure 6—figure supplement 3).

Our work provides a reconciling perspective between two prominent classes of synaptic plasticity

models suggested for familiarity detection and associative memory in ITC. Depression in the feedfor-

ward connections required to lower average response after learning reasserts the role of feedfor-

ward synaptic plasticity suggested for familiarity detection (Bogacz and Brown, 2003; Norman and

O’Reilly, 2003; Sohal and Hasselmo, 2000). On the other hand, most theoretical works implement-

ing synaptic plasticity in recurrent connections have focused on associative memory and the emer-

gence of attractors with learning (Amit and Brunel, 1997; Pereira and Brunel, 2018; Sohal and

Hasselmo, 2000). Unlike most of the previous works focusing on one-type of synaptic plasticity, our

analysis proposed that both recurrent and feedforward synaptic plasticity are required to reproduce

changes in spatial and temporal patterns underlying familiarity detection. A recent study investi-

gated the memory capacity for associative memory under recurrent synaptic plasticity whose form

was derived from neural activities related to familiarity detection (Pereira and Brunel, 2018). Simi-

larly, it can be further investigated how the feedforward and recurrent synaptic plasticity rules

derived from the data for familiarity detection contribute to other types of memory, and how a

memory capacity changes dynamically during the stimulus presentation with slow spike adaptation

mechanisms.

As a substrate for slow negative feedback, firing rate adaptation mechanisms have been sug-

gested to be critical in generating network oscillations and synchrony (Ermentrout et al., 2001;

Fuhrmann et al., 2002; La Camera et al., 2004; Laing and Chow, 2002; Tabak et al., 2006;

van Vreeswijk and Hansel, 2001; Wang, 2010), and in optimal information transmission under a
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particular form of synaptic plasticity (Hennequin et al., 2010). The effect of synaptic plasticity on

enhancing synchrony in the recurrent synaptic circuits also has been explored theoretically

(Gilson et al., 2010; Karbowski and Ermentrout, 2002; Morrison et al., 2007). Consistent with

these previous works, our work suggests that the interplay between synaptic plasticity and adapta-

tion with the time constant consistent with that of cellular adaptation mechanisms (Benda and Herz,

2003) generate synchronous damped oscillations after learning. Note that our analysis based on the

data obtained from single cell physiology is limited to firing rate synchrony, and how spike-time cor-

relation between neurons changes with visual learning needs to be further explored. Also, our work

emphasizes the role of adaptation in different types of recognition memory. Previously, the adapta-

tion mechanisms in the temporal cortex have been suggested to encode the recency of stimuli,

which is typically measured by suppression of the response to the repetition of a stimulus

(Meyer and Rust, 2018; Miller et al., 1991; Vogels, 2016; Xiang and Brown, 1998). As the time

scale of repetition suppression lasts up to seconds, it may require the adaptation mechanisms on the

much longer time scale (Sanchez-Vives et al., 2000). Thus, adaptation on various time scales

(La Camera et al., 2006; Pozzorini et al., 2013) may be required for different types of recognition

memory.

In our work, we assumed that inhibition minimally contributes to shaping response dynamics with

learning for the following reasons. First, no dependence of input changes on post-synaptic firing

rates in inhibitory neurons observed experimentally suggests that changes in inhibitory activities with

learning can reflect the reduction of average

excitatory activities and thereafter, excitatory

inputs to inhibitory neurons without synaptic plas-

ticity in the excitatory (E)-to-inhibitory (I) connec-

tions (Lim et al., 2015). On the other hand, anti-

Hebbian synaptic plasticity in the I-to-E connec-

tions can have similar effects as Hebbian-synaptic

plasticity in the E-to-E connections. Alternatively,

overall potentiation in the I-to-E connections can

provide stronger negative feedback or can

replace the role of feedforward synaptic plastic-

ity. However, as the dynamics of inhibitory neu-

rons show strong suppression almost to the

baseline in the late phase of the stimulus presen-

tation after learning (Figure 1—figure supple-

ment 1), neither anti-Hebbian synaptic plasticity

nor potentiation can account for an increase of

maximal response of excitatory neurons in the

early phase and overall reduction in activities in

the late phase (Figure 1). Thus, we assumed that

changes in the inhibitory pathway are less likely

to induce oscillation or suppression in the excit-

atory neurons. It is notable that the interaction

between synaptic plasticity in both recurrent

excitatory and inhibitory connections was sug-

gested to reproduce increased transient

response with learning (Moldakarimov et al.,

2006). Although the homeostatic inhibitory plas-

ticity proposed in this work cannot reproduce

damped oscillatory response observed in ITC, we

cannot rule out the role of inhibitory synaptic

plasticity that can be complementary to the

mechanisms proposed in our work.

The enhanced oscillation for familiar stimuli

investigated here was around 5 Hz, which is in

the range of theta oscillations. Such a low-fre-

quency oscillation has been discussed in visual
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Figure 7. Enhanced oscillation through competitive

interactions between different stimuli. (A) Two mutually

inhibitory populations selectively responding to stimuli

1 and 2, respectively. The dynamics of each population

follows the dynamics of m in the mean-field description

for a single familiar stimulus in Figures 3A,5. (B) Time

course of visual responses of two populations with

different stimulus onsets (black and gray bars below).

Stimulus 2 was present 500 ms after the onset of

stimulus 1, and the population two was assumed to be

silent before the arrival of stimulus 2. After the onset of

stimulus 2, visual response selective to stimulus one

was transiently suppressed and showed stronger

oscillation compared to that under the single stimulus

presentation.

DOI: https://doi.org/10.7554/eLife.44098.017
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search to characterize overt exploration or sampling behaviors such as saccadic or microsaccadic eye

movements (Otero-Millan et al., 2008; Buzsaki, 2011) and to underlie covert shift of attention that

samples different stimuli rhythmically (Dugué et al., 2015; Fiebelkorn et al., 2013; Landau and

Fries, 2012). In line with these studies, Rollenhagen and Olson (2005) observed that low-frequency

oscillation became stronger when another stimulus was present together. Competitive interactions

between populations representing different stimuli were suggested to generate oscillation with

fatigue mechanism (Moldakarimov et al., 2005; Rollenhagen and Olson, 2005). Based on the

adaptation mechanisms proposed in the current work, competition between two different familiar

stimuli can generate stronger oscillation at a similar frequency. In the mean-field dynamics with two

mutually inhibitory populations each of which mimics the maximum response to a single familiar

stimulus, stronger oscillation but with the similar frequency with that for the single stimulus presenta-

tion was reproduced in the presentation of two stimuli (Figure 7). This may indicate low-frequency

damped oscillators for a single familiar stimulus can be a building block for a rhythmic sampling of

multiple stimuli and covert attentional shift through competitive interactions.

Overall, our work resonates with perspectives emphasizing the importance of dynamics in under-

standing cognitive functions (Bargmann and Marder, 2013; Kopell et al., 2014). As an extension of

our previous work that inferred the synaptic plasticity rules from changes in spatial patterns, addi-

tional analysis of response dynamics revealed the role of slow adaptation currents in shaping

response dynamics. Different contributions to activity changes of recurrent and feedforward synaptic

plasticity suggested in our work can be further utilized to examine how each synaptic plasticity

engages during the progress of learning. Also, although we suggested a local circuit model for visual

learning, interactions with other areas might also be important – for instance, the interactions

between ITC and perirhinal cortex may form positive feedback given the adjacency of these two

areas and similar familiarity effects observed experimentally (Xiang and Brown, 1998). On the other

hand, prefrontal cortex showing opposite effects of familiarity with a long latency may provide slow

negative feedback (Xiang and Brown, 2004). To dissect the interaction between multiple regions,

one can analyze time course data investigating latencies and qualitative changes in dynamics in

these areas such as the emergence of oscillatory response after learning.

Materials and methods

Mean-field dynamics
To derive the mean field dynamics from Equation (3), we assumed linear dynamics with F(x) = x and

uniform recurrent connectivity before learning WR
ij ¼ wR=N. Note that uniform connection can be

replaced by random connection, which is analogous to the state where the network connectivity is

stabilized after learning of a large number of uncorrelated activity patterns, but not correlated with

the stimulus of interest (Lim et al., 2015). We also assumed
P

gk �j
� �

¼ 0 so that the sum of synaptic

weights over the presynaptic neurons is preserved with learning. The external input to neuron i

before learning is defined as IXi with WF
ij ¼ dij.

Before learning, the mean-field dynamics can be obtained by taking an average over neurons,

which yields a two-dimensional system of differential equations in terms of �r ¼ 1

N
i

X

ri and

�a ¼ 1

N
i

X

ai. After learning, with Wk
ij ! Wk

ij þ
1

N
fk �ið Þgk �j

� �

, Equation (3) becomes

tr
dri
dt
¼�riþwr

1

N
j

X

rj þ fR �ið Þ 1

N
j

X

gR �j
� �

rj� kai þ IXi þ fF �ið Þ 1

N

P

gF �j
� �

IXj

ta
dai
dt
¼�aiþ ri

The mean-field dynamics is four-dimensional with additional variables m¼ 1

N
i

X

gR �ið Þri and

n¼ 1

N
i

X

gR �ið Þai. The dynamics of m and n can be obtained by multiplying gR �j
� �

to Equation (3) and

taking the average over neurons as
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tr

d 1

N

P

j

gR �jð Þrj
i

dt
¼� 1

N

P

j

gR �j
� �

rj þwr
1

N

P

j

gR �j
� �

1

N

P

j

rj þ
1

N

P

j

fR �j
� �

gR �j
� �

m

�k 1

N

P

j

gR �j
� �

aj þ k 1

N

P

j

gR �j
� �

IXj þ 1

N

P

j

fF �j
� �

gR �j
� �

IFX

ta

d 1

N

P

j

gR �j
� �

aj

dt
¼�

1

N

X

j

gR �j
� �

ajþ
X

j

gR �j
� �

rj

With
P

gk �j
� �

¼ 0, the second term in the first equation disappears (note that without
P

gk �j
� �

¼ 0, this term remains and provides feedback from �r to the m dynamics as in Figure 3—fig-

ure supplement 2). Then, the mean-field dynamics after learning is given as

tR
d�r
dt
¼��rþwR�rþ�fRm� k�aþ�IX þ�fFIFX

tA
d�a
dt
¼��aþ�r

tR
dm
dt
¼�mþ fgRm� knþ IMX þ fgFIFX

tA
dn
dt
¼�nþm

(4)

with

�r¼ 1

N
i

X

ri; �a¼ 1

N
i

X

ai

m¼ 1

N
i

X

gR �ið Þri; n¼ 1

N
i

X

gR �ið Þai:
(5)

In Equation (4), �fR;F ¼
1

N
i

X

fR;F �ið Þ is the average post-synaptic dependence of recurrent and feed-

forward synaptic plasticity, fgk ¼
1

N
i

X

fk �ið ÞgR �ið Þ is the average of the product of post- and pre-synap-

tic dependence f and g. I represent the external inputs

where �IX ¼
1

N

X

IXi ; IFX ¼
1

N

X

gF �ið ÞIXi ; IMX ¼ 1

N

X

gR �ið ÞIXi .

To describe visual responses under the successive presentation of stimuli (Meyer et al., 2014),

we consider learning of two stimuli. Changes of synaptic connections after two stimuli become

Wk
ij ! Wk

ij þ DW
k;1
ij þ DW

k;2
ij where superscripts 1 and 2 represent the indices of the stimuli. With the

same synaptic plasticity rule as in Equation (2), �fR;F and fgR;F for different stimuli are the same, and

the external input is the sum of the inputs IXi ¼ I
X;1
i þ I

X;2
i . For simplicity, we assume that the interac-

tion of learning two stimuli is minimal such that two stimuli are uncorrelated as
X

fk �l1j

� �

gk �l2j

� �

¼ 0

and
X

I
X;l1
j gk �l2j

� �

¼ 0 for l1, l2 = 1,2 but l1 6¼ l2. Then, by defining the overlap variables as

m ¼ 1

N

X

gR �1j

� �

þ gR �2j

� �� �

rj, n ¼ 1

N

X

gR �1j

� �

þ gR �2j

� �� �

aj, and inputs as

IFX ¼ 1

N

X

gF �1i
� �

þ gF �2i
� �� �

IXi and IMX ¼ 1

N

X

gR �1i
� �

þ gR �2i
� �� �

IXi , the dynamics after learning two

stimuli is the same as for that stimulus given in Equation (4).

Constraints on parameters in the mean-field dynamics
In this section, we describe the conditions on parameters in the mean-field dynamics Equation (4) to

reproduce changes of response dynamics with learning qualitatively. Changes in response dynamics

showing stronger oscillation after learning imposes a condition on the m and n dynamics in Equa-

tion (4), and thus the constraints on the strength of potentiation, fgR, parameters for adaptation, k

and tA, and time constant tR (Figure 3B). Also, response dynamics to novel stimuli such as no

damped oscillation before learning and reduced response in the successive presentation of novel

stimuli leads to constraints on the dynamics of �r and �a before learning, thus, k, tA, tR, and connectiv-

ity strength before learning wR (Figure 5—figure supplement 1).
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Under the linear assumption, the dynamics is characterized by the eigenvalues of the system, and

the eigenvalues of the m and n dynamics are given as

�1þ fgR
� �

=tR � 1=tA �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1þ fgR
� �

=tR þ 1=tA
� 	2

�4k= tRtAð Þ

q

. The transition to overdamped oscilla-

tion occurs when the eigenvalue becomes a complex number, that is,

�1þ fgR
� �

=tR þ 1=tA
� 	2

�4k= tRtAð Þ changes its sign. This provides a separatrix (red to blue region in

Figure 3B). Also, the stability requiring a negative real part of eigenvalues imposes two other condi-

tions, fgR<1þ tR=tA, and �1þ fgR
� �

=tR � 1=tA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1þ fgR
� �

=tR þ 1=tA
� 	2

�4k= tRtAð Þ

q

<0, that is,

fgR � k � 1<0 (two lines on the right side in Figure 3B).

Similarly, the eigenvalues of linear dynamics of �r and �a before learning are given as

�1þ wRð Þ=tR � 1=tA �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1þ wRð Þ=tR þ 1=tAf g2�4k= tRtAð Þ
q

, and no oscillation before learning

requires no complex eigenvalues, that is, �1þ wRð Þ=tR þ 1=tAf g2�4k= tRtAð Þ � 0 (solid curve in Fig-

ure 5—figure supplement 1). Another condition is that the second peak is lower than the first peak

in the successive presentation of two novel stimuli. To derive analytical expression, we made the fol-

lowing assumptions � i) neural activity changes linearly during the rising and decaying phases, and

ii) during the rising phase, the adaptation variable �a and external input are constant. We denote t0
and t1 as the duration of the rising and decaying phases, r0 and r1 are activities at the end of the ris-

ing and decaying phases with �r = 0 and �a = 0 as the baseline before the stimulus presentation. Also,

if we denote I0 as the constant input during the rising phase, then approximately, r0 ¼ I0t0=teff where

teff ¼ tR= 1� wRð Þ. During the decaying phase of the first stimulus presentation, �r decreases linearly

from r0 to r1, and then at the end of the presentation of the first stimulus,

�a ¼ r0 1� exp �t1=tAð Þð Þ þ r1 � r0ð Þ 1� tA=t1 1� exp �t1=tAð Þð Þf g � a1.

Now based on the second assumption during the rising phase of the second stimulus presenta-

tion, the input becomes I0 � a1k and the expression for the second peak becomes

I0 � a1kð Þ t0
tR= 1�wRð Þ þ r1. Then the condition that the second peak is lower than the first peak gives

I0 � a1kð Þ t0
tR= 1�wRð Þ þ r1<r0. Replacing I0 using r0 ¼ I0t0=teff leads to the condition

r1=r0�tR=t0
1�exp �t1=tAð Þ� 1�r1=r0ð Þ tA=t0 exp �t1=tAð Þ�1ð Þþ1ð Þ< 1� wRð Þk (dotted curve in Figure 5—figure supplement 1).

Network simulation in Figure 4
In Figure 4, we illustrated the dynamics of an example network with synaptic plasticity in feedfor-

ward and recurrent connections, and spike adaptation mechanisms. The network dynamics follows

Equation (3) and as in the mean-field dynamics, we assumed linear dynamics with F(x) = x and uni-

form recurrent connectivity before learning WR
ij ¼ wR=N. The input was modeled as a sum of a con-

stant input Iconst and time-varying one which is the sum of two exponential functions

Idyn ¼ exp �t=t1ð Þ � exp �t=t2ð Þ with its strength �i varying across neurons as IXi ¼ Iconst þ �iIdyn. For

recurrent synaptic plasticity, Hebbian learning rule such as DWR
ij ¼

a
Nvar �ð Þ �i �j �

��
� �

was considered

where a is the strength of the plasticity. For feedforward synaptic plasticity, uniform scaling down of

the time-varying input was considered such that IXi changes to IXi ¼ Iconst þ g�iIdyn after learning.

For the successive presentation of two stimuli, the changes in the recurrent connection become

WR
ij ! WR

ij þ DW
R;1
ij þ DW

R;2
ij with uncorrelated patterns �1i and �2i . The duration of each stimulus pre-

sentation is denoted as P1 and the external input correlated with one stimulus decays linearly during

P2 when another stimulus is on. The parameters used in Figure 4 are N = 2000, wR = 0, k = 1.8,

tR = 5 ms, tA = 200 ms, t1 = 150 ms, t2 = 50 ms, P1 = 150 ms and P2 = 100 ms. �i is assumed to fol-

low a gamma distribution with shape parameter three and a = 0.9. Iconst is adjusted so that the base-

line firing rate is 5 Hz, and g = 0.4.

Fitting experimental data in Figures 5,6
In Figure 5, activities in ITC neurons for the dimming detection task were fitted using the mean field

dynamics given in Equation (4). Under the assumption of a homogeneous network, activities to dif-

ferent stimuli can serve as a surrogate for activities of different neurons to one stimulus. Thus, we

took an average of firing rates over stimuli (eight novel stimuli and 10 familiar stimuli for each neu-

ron) and over 41 neurons classified as putative excitatory neurons (see more details in Lim et al.,
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2015). Note that as the time-course data without taking an average over neurons is noisy and the

number of stimuli is small, only the parameters for the mean-field dynamics could be inferred from

the data from the dimming-detection task.

Before learning, the response dynamics is only determined by average variables �r and �a, and by

the parameters wR, k, tR, and tA, which need to reproduce the data showing no damped oscillations

before learning and suppressed response to the presentation of the second novel stimuli (Figure 5—

figure supplement 1). Given wR, k, tR, and tA, the external input was modeled as the sum of two

exponential functions aexp �t=t1ð Þ � bexp �t=t2ð Þ þ b� a and their parameters are chosen such that

the simulation fits the activities before learning (Figure 5A). Note that since we assume that the

inhibitory activities follow the excitatory activities instantaneously, wR represents WEE �WEIW IE, and

can be negative. In the dynamics of m and n after learning, the strength of positive feedback is fgR in

Equation (4), analogous to potentiation in high firing rate neurons. Together with parameters for

slow adaptation currents, fgR should be chosen to generate the oscillation with the period around

150 ms (Figure 5—figure supplement 2A,B). The external input for m is also modeled as the sum of

two exponential functions, and given m and n dynamics and the external input from the novel

response, �fR;F were chosen to fit the magnitude of oscillation and reduction in firing rates in the

mean response for familiar stimuli given the dynamics of m (Figure 5B; Figure 5—figure supple-

ment 2C).

In the simulation of the successive stimulus presentation in Figure 5C D, all the parameters are

the same as in Figure 5A B and the external inputs for the first and second stimuli have the same

temporal profile except for different onsets. During the presentation of the second stimuli, the exter-

nal input for the first stimulus decays exponentially with a time constant of 50 ms. The parameters

used in Figure 5 are wR = 0, k = 1.8, tR = 5 ms, tA = 200 ms, fgR = 0.9, �fR = 0.3, �fF = �0.7, a = 6,

b = 5, t0 = 700 ms, t1 = 40 ms for the mean external input and a = b = 5, t0 = 400 ms, t1 = 20 ms for

the external input of the m dynamics. Note that for a wide range of wR with the same parameters

except a, b, t0, and t1 adjusted to reproduce response to novel stimuli, the simulation fit the data

well (Figure 5—figure supplement 3).

In the passive viewing task in Figure 6, responses to 125 novel and 125 familiar stimuli were mea-

sured, and 14 putative excitatory neurons were classified to show both potentiation and depression

when the distributions of time-averaged activities before and after learning were compared (see

more details in Lim et al., 2015). Time-course data at each rank of the stimuli in each neuron was

noisy, and averaging over neurons was required to reduce noise. For this, we normalized activities in

each neuron and took the average of these normalized activities over neurons at each rank

(Figure 1).

To infer post-synaptic dependence of synaptic plasticity rules on normalized activities, we consid-

ered a network consisting of 125 neurons whose dynamics are described by Equation (3) and fit

time-course data before and after learning. We set the parameters to be the same as in Figure 5,

and fitted external inputs IX tð Þ and post-synaptic dependence of the feedforward and recurrent con-

nections, fR;F . The external input to each neuron was obtained to reproduce the response for novel

stimuli at each rank as follows - Discretization of the dynamic equations in Equation (3) yields
tr
dt

rnovi t þ dtð Þ � rnovi tð Þ
� �

¼ �rnovi tð Þ þF wr�r
nov
i tð Þ � kanovi tð Þ þ IXi tð Þ

� �

where rnovi tð Þ is the firing rate for the

novel stimulus at rank i, and anovi tð Þ is a low-pass filtered rnovi tð Þ. Given wR = 0, tR = 5 ms with the time

step 5 ms to be the same as that in the data, the external input can be expressed as

IXi tð Þ ¼ F�1 rnovi t þ dtð Þ
� �

þ kanovi tð Þ, and thus, it is determined by activities for novel stimuli.

The post-synaptic dependence of the synaptic plasticity was obtained to fit the activities for famil-

iar stimuli. As the single cell recordings do not allow inference on the pre-synaptic dependence, we

assumed its form which is gR;F = 1 for the highest rank and 0 otherwise such that m in Equation (4)

is the response to the familiar stimulus at the highest rank. In this case, discretization of the dynamic

equation for familiar stimuli becomes

tr
dt

r
fam
i t þ dtð Þ � r

fam
i tð Þ

� �

¼ �r
fam
i tð Þ þF wr�r

fam
i tð Þ þ fR;ir

fam
max tð Þ � ka

fam
i tð Þ þ IXi tð Þ þ fF;iI

X
max tð Þ

� �

. fR;F were fit-

ted to mimic the response to familiar stimuli at each rank - the number of unknowns is 125 times 2

(125fR and 125fF ) and the number of data points to fit is 125 times 44 where 44 is the number of

time steps so it is analogous to underdetermined system. We used the least square method with

larger weights in the late phase to capture the rebound better (weight 5 from 230 ms after the
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stimulus onset, and otherwise 1; different weights do not affect the performance qualitatively, not

shown here). Note that in fitting and simulating the response to familiar stimuli, we used rfammax tð Þ from

the data to prevent the fitting error in rfammax tð Þ from spreading over the network.

For nonlinear dynamics in Figure 6—figure supplement 1, the transfer function F xð Þ was

obtained from the time-averaged response for novel stimuli – for each rank of novel stimuli, we took

the time-averaged response in the time window between 75 ms and 200 ms after stimulus onset.

Under the assumption that the transfer function F xð Þ is monotonically increasing and the distribution

of synaptic inputs to novel stimuli follow Gaussian statistics, the transfer function is obtained by

matching the input current and time-averaged response at the same rank (Lim et al., 2015).

Models for alternative negative feedback mechanisms
Replacing adaptation ai in Equation (3) as aI which is an exponential filtered �r with strength kI and

time constant tA, we can derive the mean-field dynamics of the model for the global inhibition as

tR
d�r
dt
¼��rþwR�rþ�fRm� kI�aI þ�IX þ�fFIFX

tA
d�aI

dt
¼��aI þ�r

tR
dm
dt
¼�mþ fgRmþ IMX þ fgFIFX

(6)

which is similar to Equation (4), but without n dynamics.

The short-term depression is modeled by a variable x which represents the fraction of resources

available after the depletion of neurotransmitters and therefore adjusts the strength of the synaptic

connections (Tsodyks and Markram, 1997). The network activity is thus described by the following

equations

tr
dri
dt
¼�ri þ

P

WR
ij xjrjþ IXj

dxj
dt
¼

1�xj
tx

�gxjrj
:

where tX and g represent the time constant and strength of short-term depression. Before the

stimulus presentation, x is initialized to its steady states given the parameters and baseline activity,

and WR before and after learning is the same as in Equation (3). To see whether short-term depres-

sion can reproduce the oscillatory response after learning, we considered the case that the recurrent

connection is weak before learning, and the oscillation in the network is led by that in the high rate

neurons. With larger pre-synaptic dependence gR for the high rate neurons, their dynamics can be

approximated as

tr
drm
dt
¼�rmþ f Rmg

R
mxmrmþ IXm

dxm
dt

¼ 1�xm
tx

�gxmrm
:

We fitted the parameters f Rmg
R
m and g analogous to the strengths of long-term synaptic plasticity

and short-term plasticity, respectively (Figure 6—figure supplement 2). When we set tR = 5 ms, tx
= 200 ms, IXm was obtained from the maximal response to the novel stimuli. The best fitting parame-

ters to the maximal response to the familiar stimuli are f Rmg
R
m = 2.56 and g = 0.125, and the time

course with the best-fitted parameters cannot generate oscillation (Figure 6—figure supplement 2).

Models for competitive interactions between two stimuli
Experimentally, stronger oscillation at around 5 Hz was observed in the presence of another stimulus

in the visual field, which was accounted for by competitive interactions between the populations

selective to each stimulus (Moldakarimov et al., 2005; Rollenhagen and Olson, 2005). Following

these previous works, we considered two mutually inhibitory populations where each population is

selective to one of two stimuli and its dynamics follow the dynamics of m in the mean-field descrip-

tion under the presence of a single stimulus. Then the dynamics of two populations are given as

follows:

tR
dmi

dt
¼�mi þF fgRmi � kni �wmjþ Im;i

� �

tA
dni
dt
¼�ni þmi

where population indices i,j = 1 or two where i 6¼ j, and wc denotes the strength of the mutual
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inhibition, set to be 0.1. F is the input current-output rate transfer function which was assumed to

be piece-wise linear as F(x) = x for x��3 and 0 otherwise. The remaining parameters and variables

are the same as in Figure 5 as fgR = 0.9, k = 1.8, tR= 5 ms, tA= 200 ms, Im;i ¼ exp �t=t1ð Þ� exp �t=t2ð Þ

where t1 = 400 ms and t2 = 20 ms.
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