
*For correspondence:

asinger@gatech.edu

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 22

Received: 11 December 2018

Accepted: 28 July 2019

Published: 29 July 2019

Reviewing editor: Frances K

Skinner, Krembil Research

Institute, University Health

Network, Canada

Copyright Zhang et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Sub-second dynamics of theta-gamma
coupling in hippocampal CA1
Lu Zhang1, John Lee2, Christopher Rozell1,2, Annabelle C Singer1*

1Coulter Department of Biomedical Engineering, Georgia Institute of Technology
and Emory University, Atlanta, United States; 2School of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, United States

Abstract Oscillatory brain activity reflects different internal brain states including neurons’

excitatory state and synchrony among neurons. However, characterizing these states is

complicated by the fact that different oscillations are often coupled, such as gamma oscillations

nested in theta in the hippocampus, and changes in coupling are thought to reflect distinct states.

Here, we describe a new method to separate single oscillatory cycles into distinct states based on

frequency and phase coupling. Using this method, we identified four theta-gamma coupling states

in rat hippocampal CA1. These states differed in abundance across behaviors, phase synchrony

with other hippocampal subregions, and neural coding properties suggesting that these states are

functionally distinct. We captured cycle-to-cycle changes in oscillatory coupling states and found

frequent switching between theta-gamma states showing that the hippocampus rapidly shifts

between different functional states. This method provides a new approach to investigate oscillatory

brain dynamics broadly.

DOI: https://doi.org/10.7554/eLife.44320.001

Introduction
Oscillatory brain activity is thought to play a key role in how groups of neurons interact

(Buzsáki et al., 2013; Colgin, 2016; Fries, 2015). Furthermore, oscillatory activity serves as a read-

out of internal network states: oscillations (typically recorded extracellularly) reflect rhythmic fluctua-

tions in excitability, and therefore periods during which neurons are more or less likely to respond to

excitatory inputs by generating action potentials (Cardin, 2016; Fries, 2015; Roberts et al., 2013;

Rohenkohl et al., 2018; Sohal, 2016). As a result, oscillations are theorized to produce temporal

windows for communication between neurons, sometimes called ‘communication via coherence.’ In

fact, different frequencies of oscillations have been proposed to route communication between dif-

ferent subregions of the hippocampus (Colgin, 2011; Colgin et al., 2009; Fernández-Ruiz et al.,

2017; Lasztóczi and Klausberger, 2016; Schomburg et al., 2014). Rapid changes in oscillatory

activity could facilitate flexible shifts in communication between different ensembles of cells or brain

regions. However, current methods to assess oscillatory activity average neural signals over long

consecutive time periods (Canolty et al., 2006; Le Van Quyen and Bragin, 2007), obscuring

moment-to-moment changes in these signals that may indicate rapid changes in communication

between brain regions (Huys et al., 2014; Tognoli and Kelso, 2009). Thus new methods to assess

dynamic changes in oscillatory activity are sorely needed. Furthermore, oscillatory activity is often

characterized based only on frequency content (Buzsáki and Draguhn, 2004; Wang, 2010) even

though extensive evidence points to interactions between different types of oscillations

(Axmacher et al., 2010; Colgin, 2011; Fiebelkorn et al., 2018). Faster oscillations are often nested

in slower oscillations with the faster oscillations appearing at a particular phase of the slower oscilla-

tion (Canolty and Knight, 2010; Jirsa and Müller, 2013), such as gamma (30–150 Hz) nested in

theta (6–12 Hz) in the hippocampus (HPC), parietal cortex and prefrontal cortex (PFC), as well as
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delta (4 Hz)-gamma (30–100 Hz) coupling in PFC and ventral tegmental area (VTA) (Buzsáki et al.,

2003; Fujisawa and Buzsaki, 2011; Scheffzük et al., 2011; Sirota et al., 2008; Tamura et al.,

2017; Tort et al., 2013; Tort et al., 2009; Tort et al., 2008; Trimper et al., 2014; Zhang et al.,

2016). Thus methods to analyze oscillatory activity must take into account oscillatory coupling and

phase relationships across frequencies in addition to the frequency content of a particular oscillation.

Oscillatory activity has been especially well-studied in HPC with close attention to the relationship

between oscillations, behavior, and neural spiking activity. Three subtypes of gamma oscillations

(30–150 Hz), characterized by different frequency content, nest in different phases of theta oscilla-

tions (6–12 Hz) in hippocampal CA1 (Amemiya and Redish, 2018; Andersen et al., 2006; Buz-

sa�ki, 2006; Colgin et al. (2009); Klausberger and Somogyi (2008); Lasztóczi and Klausberger,

2016; Schomburg et al., 2014). Slow gamma (30–50 Hz), which is dominant in stratum (str.) radia-

tum (rad), is associated with input from the CA3 subregion of HPC and is thought to play a role in

memory retrieval (Bieri et al., 2014; Colgin, 2015a; Igarashi et al., 2014; Tort et al., 2009).

Medium gamma (60–120 Hz), which is most active in str. lacunosum-moleculare (lm), is associated

with input from layer III of the entorhinal cortex (EC3) and is thought to encode ongoing sensory

information (Bieri et al., 2014; Cabral et al., 2014; Newman et al., 2013; Takahashi et al., 2014).

Fast gamma (>120 Hz), is thought to represent local neural activity in str. pyramidal (pyr) of CA1

(Schomburg et al., 2014; Sullivan et al., 2011).

While prior work has examined the origins of different gamma oscillations during theta in HPC,

the temporal organization of these oscillations is poorly understood because current analysis meth-

ods obscure moment-to-moment change in theta-gamma coupling. Indeed, prior work has hypothe-

sized that CA1 rapidly shifts between inputs from CA3, which are thought important for memory

retrieval, and inputs from EC, which are thought to process ongoing sensory experiences. If such

rapid shifts occur, they would be reflected by rapid shifts between different types of gamma from

one theta cycle to the next (Gupta et al., 2012; Hasselmo et al., 2002; Hasselmo and Stern, 2014;

Mizuseki et al., 2009). Alternatively, CA1 and theta-gamma coupling may remain in a single state

over multiple theta cycles.

In this paper, we describe a novel two-step analysis method to track individual theta cycles based

on gamma frequency content and gamma’s preferred phase of theta. First, we cluster theta-gamma

coupling into different states using signal processing and machine learning methods. Second, we

track moment-to-moment changes in theta-gamma coupling following Markov processes using ran-

dom process theory. In the clustering phase, we found four theta-gamma coupling states without

assuming the number of states that exist. These four states correspond to both previously reported

theta-gamma coupling, namely slow, medium, and fast gamma (Colgin et al., 2009;

Schomburg et al., 2014), and new states, namely two distinct fast gammas. In the second phase of

the analysis, we tracked dynamic state changes including occurrences and dynamic transitions

between states before, during, and after a spatial exploration task. We found rapid changes in

theta-gamma coupling states from one theta cycle to the next. Finally, we found neural codes, spe-

cifically spatial information and phase precession differed across the identified theta-gamma states

(TG states), supporting that these states have distinct functional roles. Indeed, these theta-gamma

coupling states in CA1 have distinct pairwise phase consistency (PPC) with other hippocampal subre-

gions and abundance during different behaviors and REM sleep. Together these results reveal that

CA1 rapidly shifts between four theta-gamma coupling states that likely reflect distinct computa-

tional processes in the hippocampus. This new approach provides a new way to investigate and cat-

egorize oscillatory brain dynamics and their related brain states broadly without averaging across

consecutive time periods.

Results

Community and k-means clustering separates individual theta-gamma
coupling states
Previous work has observed that gamma oscillations in hippocampal CA1 differ in frequency content

and preferred theta phase (Bieri et al., 2014; Colgin et al., 2009; Lasztóczi and Klausberger,

2016; Schomburg et al., 2014), and therefore we used this information to classify each theta cycle

into different TG states. We calculated a frequency and theta phase power matrix (FPP, see
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Materials and methods) using wavelets for each individual theta cycle from local field potentials

(LFPs) recorded in hippocampal CA1 pyramidal layer (Figure 1A; Figure 1—figure supplement 1)

during awake behavior. Each individual theta cycle was represented by a FPP vector with 1260

dimensions (20 phases � 81 frequencies; Figure 1B). Then we grouped the FPP vectors of all theta

cycles for each animal using machine learning methods (Figure 1C,D,E, see Materials and methods).

We applied k-means clustering with k determined by community clustering to categorize FPPs into 4

TG coupling states (see Materials and methods). In the data analyzed, the recording sites cover

approximately the pyramidal layer (spanning 160 or 200 mm in depth depending on the number of

recording sites in each shank) and do not cover all layers of the CA1 region, like str. rad or str. lm.

All clusters of FPP detected across recording sites had high within-group correlations over time

showing that TG state categorization was similar across channels over time (Figure 1—figure sup-

plement 2B right panel). The results generated by the k-means method with four clusters, were

highly robust across all recording sites within the pyramidal layer. Based on our observation, how-

ever, the peak frequency of the ‘medium’ gamma band (second column in Figure 1—figure supple-

ment 2A, right panel) became higher (as high as high gamma) on recording sites toward the stratum

oriens side of the pyramidal layer. Thus, we suggest using data recorded near the pyramidal layer

center or below (toward stratum radiatum side) for this analysis method to preserve the frequency

characteristics of ‘medium gamma’. We also examined current source density (CSD) across recording

depths for the four TG states (Figure 1—figure supplement 3). However because the recording

sites do not span str. rad and str. lm, the input layers of CA1 and expected sources of slow and

medium gamma, respectively (Colgin et al., 2009), the interpretation of CSD was unclear. In short,

we used k-means clustering with k determined by community clustering to produce robust

clustering.

Four theta-gamma states detected during awake behaviors and REM
Four clusters were found in the LFPs and theta cycle classification was very similar across different

recording depths of the pyramidal layer for each theta cycle (Figure 1—figure supplement 2). We

then characterized these four TG states quantitatively based on their FPPs. We computed a mean

FPP (m-FPP) for each cluster for each LFP recorded in the center of the pyramidal layer and identi-

fied the m-FPP’s ‘gamma field’ (above 95% of the peak m-FPP, see Materials and methods). Using

the center of gravity of the gamma field, we characterized the preferred frequency and theta-phase

of the m-FPP for each TG state (Figure 1D, triangles). The gravity frequency and theta-phase were

used as features for matching all clusters across electrodes, sessions, and animals (see

Materials and methods for details).

In all rats during awake periods, we found four clusters (Figure 1F) that differed significantly from

the other clusters in terms of preferred frequency (p < 0.001, F3, 210 (gamma states)=1160.02, one-

way ANOVA repeated Measures; paired t-test, q < 0.05, FDR correction for six comparisons) and/or

theta phase (Parametric Watson-Williams multi-sample test (Berens, 2009); q < 0.05, FDR correction

for six comparisons): (1) a low frequency cluster (gravity frequency, GF = 36.07±5.38 Hz, n = 71,

Table 1), which is denoted as slow gamma (S-gamma). (2) a medium-frequency cluster (GF =

99.12±17.15 Hz, n = 71, Table 1) denoted as medium gamma (M-gamma), (3) a high-frequency clus-

ter (GF = 127.72±11.28, n = 71, Table 1) with a preferred phase early in the theta cycle (-2.57±0.83

radians, n = 71, Table 1) denoted as early fast gamma (EF-gamma) and (4) a high-frequency cluster

(GF = 131.83±8.80, n = 71, Table 1) with a preferred phase late in the theta cycle (2.12±0.77 radians,

n = 71, Table 1) denoted as late fast gamma (LF-gamma). The phase-difference between EF- and

LF-gammas was around one quarter of a theta cycle when one considers that phase is cyclic.

The clustering of TG states described above was done for recordings during awake behavior. We

then repeated the same analysis for data recorded from REM periods independently. We also

extracted four TG states during REM periods from all rats (Figure 1G). The gravity frequency and

theta phase were comparable with the states we found in awake periods (Table 1). Thus, we found

four similar TG states during both theta dominated awake behavior and REM sleep.

We next wondered how well each theta cycle fit into these different TG states. To address this,

we determined how similar each single theta cycle was to each TG state cluster and if theta cycles

could be similar to more than one cluster. We computed the correlation between the FPP of each

theta cycle and the mean FPP of theta cycles of the same state (intra-cluster correlation) or the other

states (inter-cluster correlation). Almost all intra-cluster correlations were higher than the maximum

Zhang et al. eLife 2019;8:e44320. DOI: https://doi.org/10.7554/eLife.44320 3 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.44320


Figure 1. Clustering individual theta cycles based on cross-frequency coupling in hippocampal CA1. (A) A raw LFP recording trace with twelve

successive theta cycles from CA1 in an awake rat. (B) FPP for each theta cycle in A. (C) Correlation matrix of 2000 FPPs, organized based on k-means

clustering. (D) Average FPPs across different theta cycles within the four clusters (n = 13720, 11404, 10745 and 14104 theta cycles from top to bottom)

from one rat (Cicero, S09102014) during awake periods. Triangles indicate the center of gravity (see Materials and methods). (E) Individual example LFP

traces for the four TG states, respectively. (F) Density plot of the frequency and theta phase for the center of gravity of the four types of gamma fields

(fields were defined as 95% of peak value and above) detected from all rats during awake periods, left; frequency for the center of gravity (mean ± sd,

n = 71 channels from 9 rats), middle, * denotes significant difference (paired t-test, q < 0.05, FDR correction for multiple comparisons); the distribution

of theta phase for the center of gravity for the four TG states, right. (G) As in F from all rats during REM periods (mean ± sd, n = 64 channels from 8

rats). FPP: frequency and theta phase power. sd: standard deviation. TG: theta-gamma.

DOI: https://doi.org/10.7554/eLife.44320.002

The following figure supplements are available for figure 1:

Figure supplement 1. LFP recordings at different recording depths.

DOI: https://doi.org/10.7554/eLife.44320.003

Figure supplement 2. Clustering of wavelet power in frequency and theta phase domains.

DOI: https://doi.org/10.7554/eLife.44320.004

Figure 1 continued on next page
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inter-cluster correlations (the highest of the three inter-cluster correlations for each theta cycle; see

Materials and methods) and on more than 50% of theta cycles intra-cluster correlations were 0.15

higher than the maximum inter-cluster correlations (Figure 1—figure supplement 4). In other words,

the FPP of those theta cycles were much more similar to its TG state than the other three states.

This suggests that most, but not all, theta cycles could be clearly classified into one specific TG state.

Around 20% of theta cycles had a difference between intra- and maximum inter-cluster correlation

that was close to zero, specifically less than 0.05 (Figure 1—figure supplement 4), showing that

those samples share some similarities with at least two TG states. This analysis was performed with

five-fold cross validation (see Materials and methods). Overall, our results suggest that the four TG

states are distinct from each other, while some individual theta cycles have features of multiple TG

states.

We then performed a cross-validation across channels within the same animals and across animals

to understand how clustering differed across recordings. Within the same session or animal, we

selected signals from one given recording channel as a training channel and the others (different

channels within the same animal or different animals) as testing channels. For the training channel,

we calculated average FPPs from within the same theta-gamma states as reference FPP (as in

Figure 1D). We then calculated how similar each testing theta cycle is to this training data by com-

puting the correlation between the testing FPP and the reference FPP. The test theta cycle was

assigned to a theta-gamma state based on the reference FPP state with which it had the highest cor-

relation. Consequently, this analysis produced a new theta-gamma coupling state assignment based

on clustering from a different animal or channel. By comparing this new theta-gamma state assign-

ment with the theta-gamma state determined based on clustering of the testing channel, we calcu-

lated the accuracy of predicting the theta-gamma state across channels or animals. The cross

validation was in general above chance levels (25% because a given theta cycle could be in four

states), but highly variable ranging from 0.30 to 0.96 (Figure 1—figure supplement 5 top panel).

We also tested our approach on tetrode data (Figure 1—figure supplement 6). The frequency

and theta phase features for the center of gravity of different clusters varied across tetrodes. We

found that in many tetrode recordings, slow gamma occurred at the peak of theta (0 phase; Fig-

ure 1—figure supplement 6, purple rectangle) similar to what we found in data recorded from sili-

cone probes and the four clusters appear similar to those found with probe data. However, in other

Figure 1 continued

Figure supplement 3. Averaged current source densities across channels for each TG cluster.

DOI: https://doi.org/10.7554/eLife.44320.005

Figure supplement 4. Intra-cluster sample correlation versus inter-cluster sample correlation.

DOI: https://doi.org/10.7554/eLife.44320.006

Figure supplement 5. Cross-validation for individual theta cycle assignments.

DOI: https://doi.org/10.7554/eLife.44320.007

Figure supplement 6. Clustering of tetrode data.

DOI: https://doi.org/10.7554/eLife.44320.008

Table 1. Frequency and phase of gamma power fields for each TG state.

Frequency (mean ± sd) and phase (circular mean ± circular sd) for the centers of gravity of the mean

FPPs for LFPs recorded from all animals in data sets Hc-11 and Hc-3 during awake (71 recordings in

nine animals) and REM (64 recordings in eight animals) periods. sd: standard deviation.

Wake (n = 71 recordings) REM (n = 64 recordings)

FPP cluster Frequency (Hz) Phase (rad) Frequency (Hz) Phase (rad)

S-gamma 36.07 ± 5.38 0.58 ± 0.51 39.28 ± 9.69 0.74 ± 0.53

M-gamma 99.12 ± 17.15 �0.04 ± 0.88 93.36 ± 23.16 �0.01 ± 0.96

EF-gamma 127.72 ± 11.28 �2.57 ± 0.83 131.97 ± 17.31 �2.67 ± 1.19

LF-gamma 131.83 ± 8.80 2.12 ± 0.77 136.80 ± 13.04 1.68 ± 0.88

DOI: https://doi.org/10.7554/eLife.44320.009
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tetrode recordings, slow gamma occurred near the trough of theta and the four clusters only spo-

radically identified medium gamma clearly. These differences may be due to the exact location of

the tetrode relative to the pyramidal layer. For probe recordings, data from all channels were used

to select the channel with the highest ripple power for clustering. Since this step cannot be per-

formed in the same manner for tetrode recordings, we recommend selecting a channel with slow

gamma at the peak of theta for clustering analysis when using tetrode recordings.

Rapid behavior-dependent theta-gamma state transitions
Because each TG-state is thought to reflect a different computational state and coupling among hip-

pocampal subregions, we investigated when these states occur and how the hippocampal network

transitions between them. Transitions between TG states have important implications for how the

network switches between different computational regimes. For instance, the network may persist in

a single state for many theta cycles or switch states from one theta cycle to the next. Treating each

theta cycle as an individual event, we examined a series of theta cycles as Markov chains (Figure 2A;

Figure 2—figure supplement 1). We examined state occurrences as well as transitions from the cur-

rent state to the next state for both awake exploration and REM periods, respectively (Figure 2—

figure supplements 2 and 3). First, we found rapid switches between different TG states with transi-

tion probabilities ranging from 0.15 to 0.36 and the probability of remaining in the same state rang-

ing from 0.15 to 0.49 (Figure 2B,C; Figure 2—figure supplements 2 and 3). Thus, the network

remained in the same state less than half of the time showing for the first time that CA1 undergoes

rapid TG state shifting.

TG transition probabilities changed depending on the behavior state of the animals. We com-

pared the occurrence of each state and state transition when animals ran in a novel linear or circular

track to periods when animals were in their home cage before and after the track sessions during

waking periods. We found the occurrence of S-gamma states as well as transitions from all states to

S-gamma decreased when animals ran in a track compared to pre- and post-track awake periods

(Figure 2B; Figure 2—figure supplement 2AB, the first column; p < 0.001, F38, 266 (TG states transi-

tion parameters � session)=11.07, two-way ANOVA repeated measures; paired t-test, q < 0.05, FDR

correction for 60 comparisons). In contrast, both the occurrence of and transitions to M-gamma and

EF-gamma were significantly enhanced when animals ran in the track compared to pre- and post-

track sessions (Figure 2B). Occurrences of M-gamma as well as S/M/EF-gammafiM-gamma transi-

tions were enhanced (Figure 2B; Figure 2—figure supplement 2AB, the second column; paired

t-test, q < 0.05, FDR correction for 60 comparisons). EF-gamma occurrence and EF-gammafiEF-

gamma transition were also higher in the track (Figure 2B; Figure 2—figure supplement 2AB, the

third column). S/M-gammafiEF-gamma transitions were significantly increased if using a weaker sig-

nificance threshold (paired t-test, q < 0.1, FDR correction for 60 comparisons). Furthermore, we also

calculated the state transitions during early, middle, and late trials by separating the track session tri-

als into three sections with the same number of trials each. Over the course of the trials, the environ-

ment was initially very novel and became less novel over trials. However, there was no difference in

the transition matrix and occurrence of TG-states over these early, middle, and late trials as the track

became less novel (p = 0.462, F2, 14 (course) = 0.82; p = 0.112, F38, 266 (TG states transition parame-

ters � course) = 1.32; two-way ANOVA repeated Measures; paired t-test, q > 0.1, FDR

correction for 60 comparisons).

During REM periods, we compared the occurrence of each state and state transition in the home

cage before and after navigation in a novel environment (note that there are no REM periods during

the track session). We found no significant differences using a strong significance threshold (paired

t-test, q > 0.05, FDR correction for 20 comparisons). Using a weaker significance threshold (paired

t-test, q < 0.1, FDR correction for 20 comparisons), we found decreased S-gammafiS-gamma transi-

tions (Figure 2C; Figure 2—figure supplement 3B; p = 0.008, t7 = 3.70, paired t-test) and increased

S-gammafiLF-gamma transitions (Figure 2C; Figure 2—figure supplement 3B; p = 0.007, t7 = -

3.73, paired t-test). Thus, few differences were observed except for decreased S-gamma to

S-gamma transitions and enhanced S-gamma to LF-gamma transitions over the entire REM period.

REM sleep is reported to be important for memory formation and consolidation (Boyce et al.,

2016; Buzsáki, 1998; Diekelmann and Born, 2010; Peever and Fuller, 2017; Rasch and Born,

2015; Rasch and Born, 2013); however, it is not clear whether there are dynamic changes over the

course of REM sleep. Interestingly, at the beginning of REM both before and after track sessions,
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S-gamma occurred more frequently than the other states, persisting for approximately the first 20-

30s of REM (Figure 3; p < 0.001, F21, 609 (TG states � Time) = 4.69, two-way ANOVA repeated

Measures). As time progressed, the occurrence of S-gamma decreased gradually, and stabilized. In

contrast, the other gamma states were stable across time during REM (Figure 3). These novel results

show that S-gamma is significantly higher than other theta-gamma coupling states during early REM.
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Figure 2. TG state transitions in awake and REM periods. (A) An example LFP trace is shown with each theta trough marked by vertical lines and an

illustration of TG state transitions below. (B) Transition matrices and occurrence probabilities of the four states summarized during pre-maze (left), maze

(middle) and post-maze (right) periods respectively for all rats during awake periods (n=8 sessions from 4 animals in Hc-11). Paired t-tests were

performed across pre-, post-, and maze periods for 20 dynamic parameters including 16 (4 states � 4 states) transitions and 4 state occurrences. Only

significant changes from the pre-maze period (paired t-test, q < 0.05, FDR correction for 60 comparisons) are highlighted and color coded in red

(increased prevalence) and blue (decreased prevalence), less strict statistics are highlighted by a dashed line for q < 0.1. (C) The same as B for REM

periods. Because there is no REM during maze exploration, pre and post maze comparisons were made. None of the 20 parameters reached

significance (paired t-test, q > 0.05, FDR correction for 20 comparisons); S-gammafiS-gamma and S-gammafiLF-gamma are reduced and enhanced

respectively by using less strict statistics (q < 0.1, FDR correction for 20 comparisons).

DOI: https://doi.org/10.7554/eLife.44320.010

The following figure supplements are available for figure 2:

Figure supplement 1. LFP examples during awake sessions.

DOI: https://doi.org/10.7554/eLife.44320.011

Figure supplement 2. Transition matrix and occurrence of the four TG states during awake periods.

DOI: https://doi.org/10.7554/eLife.44320.012

Figure supplement 3. Transition matrix and occurrence of the four TG states during REM.

DOI: https://doi.org/10.7554/eLife.44320.013

Figure supplement 4. Automatic behavior state detection.

DOI: https://doi.org/10.7554/eLife.44320.014
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Changes in CA1 coupling with CA3 and EC during different theta-
gamma states
Different frequencies of gamma are theorized to couple-specific hippocampal subregions to support

different functional states. Therefore, if the TG state transitions we found indicate switching between

different functional states, then we would expect these states to have different coupling with other

hippocampal subregions. Accordingly, we next calculated coupling of LFPs between CA1 and CA3

or between CA1 and EC and how they differed between these four TG states during awake periods.

To achieve this, we calculated the pair-wise phase consistency (PPC) between LFPs recorded from

CA1 and EC or CA1 and CA3 on each theta cycle using wavelets, as done previously

(Rohenkohl et al., 2018; Vinck et al., 2012), for dual recordings in CA1 and CA3 (five sessions from

two animals) or CA1 and EC (five sessions from three animals) from the Hc-3 data set (see

Materials and methods). During exploration, we found a dominant peak in CA1-CA3 PPC in the slow

gamma band (20-50 Hz) only during S-gamma states (Figure 4A top left; B left, blue arrow; p <

0.001, F213, 17040 (TG states � Frequency) = 44.80, two-way ANOVA repeated measures; paired

t-test, q < 0.05, FDR correction for 486 (81 Frequencies � 6 states pairs) comparisons), which was

not present in CA1-EC PPC (Figure 4A top right; B middle and right). In contrast, CA1-EC PPC

showed a dominant peak in the medium gamma band (60-120 Hz) in M-gamma states in some

recordings (Figure 4A , top right). Furthermore, combined data across all recordings revealed higher

CA1-EC PPC above 70Hz in M-, EF-, and LF-gamma states than in the S-gamma state (Figure 4B

middle, p < 0.001, F48, 3840 (TG states � Frequency) = 29.17, two-way ANOVA repeated measures;

and Figure 4B right, p < 0.001, F78, 6240 (TG states � Frequency) = 40.13, two-way ANOVA

repeated measures; paired t-test, q < 0.05, FDR correction for 486 comparisons). Particularly, CA1-

EC PPC was highest for the 60-80 Hz band and the 100-140 Hz band for M-gamma and EF-gamma

states, respectively (Figure 4B , middle and right, purple and green arrows).

As during awake behavior, CA1-CA3 PPC during REM was the highest in S-gamma states in the

slow gamma band (Figure 4C left, p < 0.001, F21, 1680 (GT states � Frequency) = 10.48, two-way

ANOVA repeated measures; paired t-test, q < 0.05, FDR correction for 486 comparisons), however

it is important to note that this data is drawn from one session in one animal. CA1-EC PPC (four ses-

sions from three animals) showed peaks in 40-70 Hz within the M-gamma state (Figure 4C top right),

which was higher than the other three states although it was not significant (Figure 4D right, purple

arrow).

To summarize, S-gamma states had the strongest CA3-CA1 PPC in the slow gamma band in both

REM and awake periods. In contrast, EC-CA1 PPC was strongest in M-gamma states and EF-gamma

states in the medium and high gamma bands, respectively. EC-CA1 PPC also showed the lowest

Figure 3. Low gamma dominates early REM. State occurrence rates were calculated in 4s bins starting from REM

onset from 0 to 120s for pre- and post-maze periods respectively (mean ± sem, n=8 sessions from 4 animals in Hc-

11). * represents significant differences found across the four TG states (one way repeated measures ANOVA, q <

0.05, FDR correction for 30 comparisons). sem, standard error of the mean.

DOI: https://doi.org/10.7554/eLife.44320.015
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Figure 4. EC-CA1 and CA3-CA1 phase synchrony in the four TG states during awake and REM periods. (A)

Examples of CA3-CA1 pairwise phase consistency (PPC, top left) and EC-CA1 PPC (top right) as a function of

frequency and theta phase for each TG state during awake periods. The corresponding CA1 spectrum is shown

below and the highlighted region (translucent rectangle) was used to calculate the average PPC between LFPs

(see Materials and methods). (B) Average PPC (mean ± sem, n=72 CA1-CA3 channel pairs from five sessions in two

animals, n=17 CA1-EC2/3 channel pairs from five sessions in three animals, n=27 CA1-EC4/5 channel pairs from

five sessions in three animals) within the highlighted theta phase interval in A across animals during awake

periods. PPC was compared across TG states across frequencies (81 frequency samples from 20 to 180 Hz), TG

states that were significant from all other states were highlighted by the corresponding color bar above (paired

t-test, q < 0.05, FDR correction of 486 = 6 states pairs � 81 Frequency sample comparisons). (C) As in (A) but

during REM periods. (D) As in (B) but during REM periods (n=8 CA1-CA3 channel pairs from one session in one

Figure 4 continued on next page
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values in medium and high gamma band during S-gamma states during awake and REM periods.

Together, these results show that these four TG states in CA1 differ in their phase synchrony with

CA3 and EC. The stronger CA3-CA1 synchrony during S-gamma and EC-CA1 synchrony during

M-gamma are comparable with previous findings (Colgin et al., 2009), that originally identified slow

and medium gammas (which were called slow and fast gammas in that publication). However, stron-

ger EC-CA1 synchrony during EF-gamma and the difference between EF- and LF-gamma synchrony

has not previously been reported.

Spiking during S-gamma has lower spatial information and phase
precession
Different types of gamma are hypothesized to reflect different hippocampal functions and previous

work has shown different spatial coding properties during slow and medium gamma (Amemiya and

Redish, 2018; Bieri et al., 2014; Colgin et al., 2009; Fernández-Ruiz et al., 2017; Zheng et al.,

2016). Thus, we wondered if hippocampal firing patterns or spatial coding differed across the four

TG states we identified. First, we characterized firing rates in each gamma state to determine if spik-

ing was equally distributed across different states, and then we characterized spike-field phase syn-

chrony to determine if phase modulation was similar across different states. Neurons fired at lower

rates in the S-gamma state for both interneurons and putative pyramidal cells (Figure 5—figure sup-

plement 1). Across all theta cycles, interneurons showed significantly higher spike-field phase syn-

chrony than pyramidal cells in the theta band as well as slow and medium gamma bands,

represented by their higher spike-LFP PPC values (Figure 5A); while pyramidal cells showed higher

PPC values in the high gamma band (Figure 5A). When we calculated PPCs for each TG state, we

found pyramidal cells showed almost no difference in spike-LFP PPCs across states (Figure 5—fig-

ure supplement 4). In contrast, interneurons had significantly higher PPCs in S-gamma states in the

slow gamma band (Figure 5B) and we found significant differences in interneurons’ PPCs in the

medium gamma band across TG states (Figure 5B).

We next tested whether place cell activity differed across the four TG states. We found that spa-

tial information was similar across M-, EF-, and LF- gamma periods but lower during S-gamma. We

examined the firing properties of place cells across states. In general, place cells fired at lower rates

(1.19 ± 0.91 Hz) in S-gamma states (Figure 5—figure supplement 1). Peak firing rate (p<0.001, F3,

423 (TG states)=65.75, one-way ANOVA repeated measures) and spatial information (p<0.001, F3, 423
(TG states)=30.99, one-way ANOVA repeated Measures) were also lower in the S-gamma state

(Figure 5CD; paired t-test, q < 0.05, FDR correction for six comparisons). We also calculated the

above parameters when animals traveled at different speeds. We found more S-gamma when ani-

mals did not move (Figure 5—figure supplement 2A). Furthermore, animal speed did not seem to

account for differences in cells’ firing properties across TG states (Figure 5—figure supplement 2).

Additionally, we found low spatial information (<1 bits/theta cycle with 67% of having <0.1 bits/

theta) in the occurrence of TG state events, for periods when animals ran faster than 5 cm/s, the

same criteria used for calculating the spatial information of place cells (Figure 5—figure supplement

3). These results show that the spatial preference of TG states is much lower than that of place cells

(>1.2 bits/spike for more than 90% of the cells). Furthermore, these results show that S-gamma has

lower spatial information and is more likely to occur when animals are moving slowly.

We then examined phase precession in each TG state because previous reports suggest phase

precession is under dual entorhinal and CA3 control (Amemiya and Redish, 2018; Fernández-

Ruiz et al., 2017). First, we calculated the phase-precession for spikes that fired in each TG state by

calculating phase-position regression and correlations across spikes that occurred during that TG

state (Figure 5E, top). Generally, because separating spikes into their respective TG states reduced

the number of spikes, the phase-position regression slope (p=0.002, F4, 564 (gamma states)=4.33,

one way ANOVA repeated measures; paired t-test, q < 0.05, FDR correction for 10 comparisons;)

Figure 4 continued

animal, n=34 CA1-EC2/3 channel pairs from four sessions in three animals, n=22 CA1-EC4/5 channel pairs from

four sessions in three animals). FDR: false discover rate. sem: standard error of the mean.
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Figure 5. Interneurons and place cell activity in the four TG states. (A) Spike-field pairwise phase consistency (PPC)

for interneurons (n=100) and pyramidal cells (mean ± sem, n=266), * represents significant cell-type differences

(one-way repeated measures ANOVA, q < 0.05, FDR correction from 33 comparisons). (B) Spike-field PPC of

interneurons in the four TG states. * indicates significant differences across TG states (one way repeated measures

ANOVA, q < 0.05, FDR correction from 33 comparisons). (C) Peak firing rate of place cells (n=142) for different TG

states. * indicates significant differences (paired t test, q < 0.05, FDR correction for six comparisons). (D) Spatial

information of place cells (n=142) for different TG states. * indicates significant differences (paired t test, q < 0.05,

FDR correction for 6 comparisons). (E) Phase precession of an example unit (Unit 1008, rat Achilles S11012013) for

four different TG states, thick black line shows phase-position regression (top). Phase precession of the same unit

after randomly deleting 38 spikes (represented by �), the minimum number of spikes of the four states, from each

TG state (bottom). The place field entry and exit were normalized to 0 and 1, respectively, on the x axis; the

phase-position correlation coefficient, r, is shown above each figure. (F) Slope of phase-position regression (n=142

fields) for each TG state (top panel) and after deleting spikes for each TG state (for each unit, results are averaged

from 100 random deletions). Black dots indicate measures from including all spikes. * indicates significant

differences (paired t test, q < 0.05, FDR correction for 10 comparisons); + indicates comparison reached

significance threshold of q < 0.1. (G) As in (F) for phase-position correlation of the 142 place fields. sem, standard

error of the mean.

DOI: https://doi.org/10.7554/eLife.44320.017

The following figure supplements are available for figure 5:

Figure supplement 1. Firing rates of single units during the four TG states in awake periods.

DOI: https://doi.org/10.7554/eLife.44320.018

Figure supplement 2. Neural firing properties across different animal speeds.

DOI: https://doi.org/10.7554/eLife.44320.019

Figure supplement 3. TG event occurrence as a function of animal spatial position.

DOI: https://doi.org/10.7554/eLife.44320.020

Figure supplement 4. Pairwise phase consistency of pyramidal cells in the four gamma states.

DOI: https://doi.org/10.7554/eLife.44320.021
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and phase-position correlation (p<0.001, F4, 564 (gamma states)=7.73, one way ANOVA repeated

measures; paired t-test, q < 0.05, FDR correction for 10 comparisons) were lower in each state than

when all spikes in all states were included (Figure 5FG, top). Comparing the TG states to each other,

phase precession in S-gamma states showed a trend of being weaker than the other three, although

it was not significantly different (p>0.05, paired t-test) except for the phase-position correlation with

LF-gamma (Figure 5G, top).

To control for differences in the number of spikes in each state, we deleted spikes from each

gamma state until all states had the same number of spikes and re-calculated phase precession

(Figure 5E, bottom). The number of spikes deleted was determined by the lowest spike population

in the four states, which was usually S-gamma. The same number of spikes was deleted randomly

100 times and phase precession was calculated using the remaining spikes, then the results were

averaged across the 100 deletion cases. For the slope of phase precession, after controlling for spike

counts, no difference (p=0.14, F4, 564 (gamma states)=1.75, one way ANOVA repeated measures)

was found in S-gamma (p=0.71, t141 = 0.38 paired t-test), EF-gamma (p=0.73, t141 = 0.35 paired

t-test) and LF-gamma (p=0.22, t141 = 1.23 paired t-test) compared to raw values in which no spikes

were deleted. Deleting spikes from M-gamma states did slightly increase the slope value (p=0.02,

t141 = 2.42 paired t-test) though the change was not significant (Figure 5F, bottom; q > 0.05, FDR

correction for 10 comparisons). Controlling for spike counts significantly affected phase-position cor-

relations (p=0.04, F4, 564 (gamma states)=2.48, one-way ANOVA repeated measures). Phase-position

correlations were significantly higher in M-gamma (p=0.02, t141 = 2.42 paired t-test; q < 0.1, FDR

correction for 10 comparisons) and LF-gamma (p=0.01, t141 = 2.54 paired t-test; q < 0.1, FDR

correction for 10 comparisons, Figure 5G, bottom). These results show that spikes from M and LF-

gamma made a significant contribution to theta phase precession. Thus, we show for the first time

that place cell firing in M-, EF-, and LF-gamma states contributed to spatial tuning significantly more

than in S-gamma; while M- and LF-gamma contributed to phase precession significantly more than

other states.

Discussion
Here, we describe a novel method to classify individual theta cycles into distinct theta-gamma cou-

pling states by combining signal processing and machine learning. We investigated theta-gamma

coupling in individual theta cycles based on both frequency and theta phase features in an assump-

tion-free manner. Leveraging the ability to classify every theta-cycle, we calculated inter-theta states

transitions for the first time. We identified four distinct TG states and found that they dynamically

changed from one cycle to the next. The rapid switching between TG states coupled with distinct

CA3-CA1 and EC-CA1 coherence in different states supports the theory that theta oscillations facili-

tate rapid changes in information flow through the hippocampal circuit. We also show distinct inter-

neuron spike-field coherence and pyramidal cell spatial coding in different TG states. Together,

these rapid changes in theta-gamma coupling states from one theta-cycle to the next coupled with

the distinct coherence and neural coding of different TG states shows that the HPC rapidly shifts

between distinct functional states.

Single-cycle classification of theta-gamma coupling based on frequency
and phase
To cluster single theta cycles into different states, we used k-means clustering with k (the number of

clusters) determined by community clustering. K-means clustering, which is a partially supervised

learning method, gave robust clustering results across str. pyr. The identified TG state for each theta

cycle was highly correlated across all recording depths, revealing that this method is robust regard-

less of the exact electrode position within the CA1 stratum pyramidale (MATLAB code to perform

this analysis is provided, see Materials and methods). Clustering was performed on datasets

recorded from the CA1 pyramidal layer (Hc-3 and Hc-11). These recordings spanned 160 or 200 mm

targeted to the pyramidal layer and may include some areas above and below the pyramidal layer

but did not cover all input layers of CA1. We found highly comparable results from two different

datasets suggesting that this approach is consistent and robust in processing LFPs recorded from

the pyramidal layer of hippocampal CA1 from rats. However, clustering results from other layers,

regions or species has yet to be determined. Because we found variability in cross validation
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analyses across animals and channels, we recommend others apply our method to identify TG states

in their own data directly instead of using the TG states we identified as a standard. For tetrode

recordings, we found some variation in clustering across channels with similar clusters observed on

channels that had slow gamma at the peak of theta. Thus, we recommended selecting such a chan-

nel with slow gamma at the peak of theta for clustering analysis when using tetrode recordings.

Together, these results show that this is a robust method to track the dynamics of theta-gamma cou-

pling. Importantly, this approach is readily applied to track dynamic changes of any type of cross-fre-

quency coupling in any brain region or in other applications. Furthermore, this method can also

identify the existence of sub-groups of other types of oscillatory events.

We examined how similar each theta cycle was to different TG states. Most theta cycles were

highly correlated with just one TG state but some (~20%) individual theta cycles were correlated

with multiple TG states. These results show that while most theta cycles fit into only one TG state,

some theta cycles may have features of multiple TG states. As a result we conclude that these four

TG states can mix or overlap within a single theta cycle.

Several recent papers have investigated hippocampal theta or theta-gamma coupling on a cycle-

by-cycle basis (Dvorak et al., 2018; Lopes-Dos-Santos et al., 2018; Zheng et al., 2016). Dvorak

et al. detected single gamma events directly in the pyramidal layer and revealed fluctuations in the

ratio of slow and medium gamma occurrences (Dvorak et al., 2018). Similarly, we also show slow

and medium gamma components are detected within the pyramidal layer and TG occurrences fluc-

tuate over time. They further found that the ratio of slow to medium-gamma reaches a local maxi-

mum before animals have to avoid a part of the environment where they have previously been

punished. Lopes-dos-Santos et al. classified single theta cycles based on their spectral components

using frequency decompositions of LFP recordings and independent component analysis (ICA) and

identified four theta-gamma components in the hippocampus (Lopes-Dos-Santos et al., 2018).

Although they identified the same number (four) of theta-gamma components as we did, the fre-

quency and phase of their four theta-gamma states differed. Specifically they identified a theta-beta

component (with beta around 22 Hz) in addition to previously characterized slow, medium, and fast

gammas. We identified two fast gamma states in addition to previously characterized slow and

medium gammas. These differences may be due to different frequency bands included in analysis

(10–200 Hz in their case and 20–180 Hz in our analysis) and different methods. We did not include

10–20 Hz in our analysis because that is generally considered out of the gamma range. Furthermore,

their method would be unable to separate fast gamma into two states because their method does

not take into account the theta phase at which the gamma oscillations occur. While their analysis is a

significant step forward in examining theta-gamma coupling, it has several limitations. ICA makes

strong theoretical assumptions of the existence of independent non-Gaussian sources in the system

and the number of independent components. Furthermore, this approach results in negative pow-

ered components that are hard to interpret. More importantly, their ICA decomposition uses only

frequency information within each single theta cycle while we use information in both frequency and

phase domains. Using theta phase information is crucial for separating EF- and LF- gammas. Further-

more, phase information is thought to be a key component of frequency coupling. Thus, our

approach could be more suitable for tracking theta-gamma coupling based on both frequency and

theta-phase features. While others have investigated hippocampal theta or theta-gamma coupling

on a cycle-by-cycle basis our method it the first to: (1) classify of theta-gamma coupling using both

frequency and phase information and (2) characterize state transition between theta-gamma states.

It is important to note that our method depends on accurate estimation of theta phase. We found

some ‘medium’ gamma theta cycles were misclassified into EF-gamma clusters on recordings from

deep pyramidal layers, and this misclassification may be due to less accurate estimation of theta

phase at that recording location. The separation of EF- and LF- gammas especially depends on accu-

rate theta phase estimation because both EF- and LF- gammas occur near the theta trough and they

have overlapping frequency content. However, EF- and LF- gammas differed in their coupling with

EC. Thus, further investigation is needed to establish whether there are three or four distinct theta-

gamma states in hippocampal CA1.
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Relationship to and extension of previously identified theta-gamma
coupling
Our approach identified both previously identified TG states and new states. The S-gamma state we

detected in both awake and REM periods, is dominant in the range of 30–50 Hz and nested in the

descending phase of pyramidal theta, which is consistent with slow gamma reported previously

(Colgin et al., 2009; Schomburg et al., 2014). Additionally, we found stronger CA3-CA1 coupling

in 20–50 Hz in S-gamma states, as reported previously (Colgin et al., 2009; Lasztóczi and Klaus-

berger, 2016; Schomburg et al., 2014). The M-gamma state we found falls into the frequency

range of 60–120 Hz nested in the peak of pyramidal theta, which corresponds to medium gamma

reported previously, first identified as fast gamma in Colgin et al. (2009) and later called medium or

fast gamma (Colgin, 2015b; Fernández-Ruiz et al., 2017; Lasztóczi and Klausberger, 2016). We

observed higher EC-CA1 coupling in 60–80 Hz or 40–70 Hz in M-gamma states than the other three

states during awake periods and REM periods, respectively. These results agree with prior reports

showing stronger CA3-CA1 synchrony during S-gamma and stronger EC-CA1 synchrony during

M-gamma (Colgin, 2015b; Fernández-Ruiz et al., 2017; Lasztóczi and Klausberger, 2016). Finally,

the EF-gamma and LF-gamma we identified fell into the >120 Hz range but occurred at different

phases of theta with EF-gamma at the beginning of the theta ascending phase and LF-gamma at the

late descending phase. Both EF- and LF-gamma are similar to fast gamma reported nesting in the

trough of pyramidal theta but are quite distinct from each other in theta phase (Amemiya and

Redish, 2018; Fernández-Ruiz et al., 2017; Lasztóczi and Klausberger, 2016). In addition, higher

EC-CA1 coupling was observed in EF-gamma than in LF-gamma. Together, these results suggest

that EF- and LF-gamma are distinct and that they are two sub-types of fast gamma not previously

differentiated.

Changes in internal states during behavior and sleep
Distinct patterns of LFP activity reflect different internal brain states in terms of the excitatory state

of individual neurons, synchrony among neurons, and interactions between brain regions. These

internal brain states are thought to reflect different computational states and therefore brain func-

tions. However exactly how different brain functions map onto such states remains unclear, in part

because our ability to detect such states is limited. Current signal processing methods to identify

oscillatory states typically require many continuous oscillatory cycles and therefore have inadequate

temporal resolution to detect rapid state changes. In the hippocampus, different gamma frequencies

have been linked to different hippocampal functions including processing incoming sensory informa-

tion, memory encoding, and memory retrieval. However, different studies have come to conflicting

conclusions as to which type of gamma is related to which function (see Colgin, 2015a for review).

Here, we describe a method that captures dynamic cycle-to-cycle changes in oscillatory coupling

states. Using our approach, we calculated the dynamics of TG states at single-cycle resolution includ-

ing state occurrence and transitions. This method will allow for more precise study of oscillatory

states and therefore will help ascertain how these states relate to different brain computations and

functions.

Generally, we found frequent cycle-to-cycle switching between different TG states showing that

the hippocampus can rapidly shift between these different proposed functional states. These sub-

second dynamic changes of TG states suggest that not only individual theta cycles but also cycle-by-

cycle transitions should be further studied to understand hippocampal function.

Some hippocampal states are thought to prioritize the processing of external sensory information

over memory retrieval. Stronger EC-CA1 than CA3-CA1 interactions are expected in such a state

because EC is thought to provide CA1 with ongoing sensory information (Bieri et al., 2014;

Cabral et al., 2014; Newman et al., 2013; Takahashi et al., 2014), while CA3 is believed to be

essential for memory retrieval (Bieri et al., 2014; Colgin, 2015a; Igarashi et al., 2014; Tort et al.,

2009). Furthermore, one would expect that processing sensory information would be especially

important when animals explore a novel environment. Consistent with these studies, we found

M-gamma but not S-gamma fit with these expected roles in sensory processing with dominant EC-

CA1 coupling in the medium gamma band. We found significantly decreased S-gamma and

increased M- and EF-gamma, supporting the notion that M- and EF-gamma but not S-gamma reflect

sensory processing that is expected during exploration of a novel environment. During waking, CA1-
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EC4/5 coupling was significantly stronger in the high gamma band during EF-gamma and was signifi-

cantly weaker during S-gamma than other states, with M- and LF-gamma in between. These results

could arise from stronger CA1-EC4/5 coupling during EF-gamma or they could indicate that EF- and

LF-gamma undergo different transformations within CA1. Furthermore, we found lower spatial infor-

mation during S-gamma than during other states; and S-gamma spikes made no significant contribu-

tion to theta phase precession, while M- and LF-gamma did. Together, these results suggest a role

for M- and EF- and LF-gamma in this sensory information processing. However, we also found signifi-

cantly higher CA3-CA1 coupling in the slow gamma band during both S- and M-gamma than during

other states with higher coupling in S- than in M-gamma. These results suggest that M-gamma may

also play a role in CA3-CA1 interactions, which has not been reported previously (Cabral et al.,

2014; Colgin, 2015a; Newman et al., 2013; Takahashi et al., 2014; Tort et al., 2009).

Prior work revealed that as animals run faster, the frequency of gamma oscillations also tends to

be faster (Ahmed and Mehta, 2012; Colgin, 2015a; Kemere et al., 2013). Consistent with these

papers, we observed S-gamma was more likely to occur when animals moved slowly. Kemere et al.

further showed that the relationship between gamma power and animal speed was stronger in a

novel environment than in a familiar environment (Kemere et al., 2013). While, we did not explicitly

examine the relationship between TG state occurrences and animal speed in novel versus familiar

environments, we did detect some non-significant differences between novel and familiar environ-

ments. We observed trends of lower occurrences of S-gamma (p=0.18, t7 = �1.47, early vs middle)

and higher occurrences of M-gamma (p=0.08, t7 = 2.05, early vs middle) in early trials, when the

environment was more novel, although these differences were not significant.

While theta-gamma coupling has often been studied during waking and spatial navigation, less is

known about REM (Fernández-Ruiz et al., 2017; Montgomery et al., 2008; Schomburg et al.,

2014). This is especially important because REM sleep, during which theta predominates, is impor-

tant for memory consolidation (Boyce et al., 2016; Diekelmann and Born, 2010; Grosmark et al.,

2012; Louie and Wilson, 2001). Here, for the first time, we show that S-gamma is significantly

higher than other TG states during early REM. This could point to a role for S-gamma in memory

consolidation or homeostasis (Borbély, 1982; Borbély et al., 2016; Tononi and Cirelli, 2014;

Tononi and Cirelli, 2003; Watson et al., 2016), as both are hypothesized functions of REM sleep.

While S-gamma dominated during early REM, we also observed slightly decreased S-gamma to

S-gamma transitions and enhanced S-gamma to LF-gamma transitions over the entire REM period

after navigation in a novel environment. These interactions of S-gamma and LF-gamma could be

related to synapse re-scaling according to the synaptic homeostasis hypothesis (Borbély, 1982;

Borbély et al., 2016; Tononi and Cirelli, 2014; Tononi and Cirelli, 2003).

Different theta-gamma states have distinct neural spiking and theta
phase precession
Inhibitory interneurons participate in the generation of gamma oscillations widely in the brain

(Buzsáki and Wang, 2012). We found distinct spike field phase synchrony patterns in interneurons

during different TG states, indicating that these cells are differentially modulated in different gam-

mas. Separating each TG state, interneurons were more strongly modulated at 20–60 Hz during

S-gamma states and at 60–120 Hz during M-, EF-, and LF-gamma states, while pyramidal cell modu-

lation did not vary significantly from one TG state to another. These differential effects on interneu-

ron and pyramidal cell firing may be because interneurons are more strongly driven by gammas

from CA3 and EC, known local gamma generators (Fernández-Ruiz et al., 2017; Lasztóczi and

Klausberger, 2016; Lasztóczi and Klausberger, 2014; Somogyi et al., 2014).

We also examined how different TG states contributed to theta phase precession. While phase

precession has been well characterized over many theta cycles (Dragoi and Buzsáki, 2006;

Huxter et al., 2008; O’Keefe and Burgess, 2005; O’Keefe and Recce, 1993; Schmidt et al.,

2009), few studies have focused on how phase precession varies across theta cycles. Recent studies

suggest phase precession varies across single traversals of an environment or in different theta-

gamma coupling states (Amemiya and Redish, 2018; Zheng et al., 2016). We found significantly

weaker phase precession for spikes occurring in S-gamma than those in the other states and higher

phase precession for spikes occurring in M- and LF-gamma. Together these results suggest that dif-

ferent TG states play distinct roles in hippocampal spatial coding.
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For decades, many studies have examined hippocampal function in spatial navigation and learn-

ing and memory (Buzsáki, 2005; Buzsáki et al., 2002; Buzsáki and Llinás, 2017; Eichenbaum, 2014;

Grosmark et al., 2012; Harris et al., 2002; Hok et al., 2007; Huxter et al., 2008; Ito et al., 2015;

Itskov et al., 2008; Kitamura et al., 2017; Kraus et al., 2013; Manns and Eichenbaum, 2009;

McNaughton et al., 2006; Mizuseki et al., 2011; Montgomery and Buzsáki, 2007; Moreno et al.,

2016; Moser et al., 2017; Moser et al., 2008; O’Keefe, 1976; O’Keefe and Dostrovsky, 1971;

O’Keefe and Recce, 1993; Okuyama et al., 2016; Rolls, 2016; Rolls et al., 2005; Rolls and Wirth,

2018; Roy et al., 2017; Sirota and Buzsáki, 2005; Squire et al., 2015; Terrazas, 2005;

Yamamoto and Tonegawa, 2017). Precise spike timing relationships have been observed with dif-

ferent types of hippocampal oscillations over milliseconds to hundreds of milliseconds and this spik-

ing timing can encode spatial sequences traversing seconds to minutes (Carr et al., 2012;

Davidson et al., 2009; Deng et al., 2016; Dragoi and Buzsáki, 2006; Dragoi and Tonegawa,

2011; Genzel et al., 2017; Grosmark et al., 2012; Gupta et al., 2010; Karlsson and Frank, 2009;

Lee and Wilson, 2002; Montgomery et al., 2008; Pastalkova et al., 2008; Wilson and McNaugh-

ton, 1994). However, prior research has not characterized single cycles of an oscillation nor their

inter-event dynamics. Here, we proposed new methods to separate single theta cycles based on

both frequency and phase information. Using this approach, we then investigated theta-gamma cou-

pling dynamics. We found these different states were distinct in a variety of ways beyond frequency

and phase content, including their interactions with CA3 and EC, prevalence during exploratory

behavior and REM, spatial information, and theta phase precession. Our approach and these results

will provide new perspectives to understand oscillatory states and hippocampal functions during dif-

ferent behaviors.

Materials and methods

Animals and data acquisition
Biological replicates in this work were defined as electrodes or experimental sessions or animals in

different analyses. In total ten rats (Hc-11 and Hc-3 data sets) were included for analysis of probe

recordings from two different public data sets produced in the Buzsaki lab and previously published

(Chen et al., 2016; Diba and Buzsáki, 2008; Grosmark and Buzsáki, 2016b; Mizuseki et al.,

2009); all data are available at https://crcns.org/data-sets/hc. Details are summarized in

Supplementary file 1. These electrophysiological recordings used silicon-probes (NeuroNexus, Ann

Arbor, MI) with 4 shanks and 8 sites per shank, 6 shanks and 10 sites per shank, or 8 shanks and 8

sites per shank. Probe recording sites were vertically staggered along the shank with 20 mm spacing

between sites. Each site had an area of 160 mm2 and an impedance of 1–3 MW. Spike sorting was

done by KlustaKwick (https://klusta.readthedocs.io/en/latest/) for automatic spike sorting, then by

Klusters (http://klusters.sourceforge.net/) for manual adjustment. A third data set (Hc-19) recorded

from one rat was used for testing our method on tetrode data.

Hc-11 dataset
The Hc-11 data set is composed of 6- or 8-shank bilateral silicon-probe multi-cellular electrophysio-

logical recordings performed on four male Long-Evans rats in the Buzsáki lab at NYU

(Grosmark and Buzsáki, 2016a). These recordings were performed to assess the effect of novel spa-

tial learning on hippocampal CA1 neural firing and LFP patterns in naı̈ve animals. Each session con-

sisted of a long (~4 hr) PRE rest/sleep epoch home cage recording performed in a familiar room,

followed by a novel maze running epoch (~45 min) in which the animals were transferred to a novel

room, and water-rewarded to run on a novel maze. All protocols were approved by the Institutional

Animal Care and Use Committee of New York University.

Hc-3 dataset
The Hc-3 data set is composed of 4- or 8-shank bilateral silicon-probe multi-cellular electrophysio-

logical recordings performed on eleven male Long-Evans rats in the Buzsáki lab at Rutgers University

(Mizuseki et al., 2013). Recordings were made in CA1, CA3, or entorhinal cortex (EC) of the right

dorsal hippocampus. The individual silicon probes were attached to micromanipulators and moved

independently. Only experiments that satisfied two criteria were included: (1) Dual recordings were
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performed either in CA1 and CA3, or CA1 and EC and (2) animal behavior included either sleep ses-

sions or linear maze sessions. All protocols were approved by the Institutional Animal Care and Use

Committee of Rutgers University (protocol No. 90–042).

Hc-19 dataset
The Hc-19 data set included one male Long-Evans rat with multiple tetrode recordings from right

dorsal CA1 (Ciliberti et al., 2018a). Data were collected during pre-run, sleep, and post-run periods

during a spatial navigation task (Ciliberti et al., 2018b). All protocols were approved by the KU

Leuven (Leuven, Belgium) animal ethics committee and are in accordance with the European Council

Directive, 2010/63/EU.

Identification of non-REM, REM, and wake episodes
For the Hc-11 data set, rapid eye movement sleep (REM) and non-REM sleep (NREM) episodes were

scored by the Buzsaki lab and described in Grosmark et al. (2012), and Grosmark and Buzsáki

(2016b). In brief, REM and NREM periods were detected based on the LFP power ratio in theta (5–

11 Hz) and delta (1–4 Hz) and electromyographic (EMG) signals. These periods were manually

adjusted with visual inspection of whitened power spectra (using a low-order autoregressive model)

and raw traces (Mizuseki et al., 2011; Mizuseki et al., 2009; Sirota et al., 2008). Falsely detected

short segments were removed.

In the Hc-3 data set, EMG signals were not recorded but calculated from LFPs because EMG

recordings have been reported to be highly correlated with intracranial derived LFPs

(Schomburg et al., 2014). Behavior states (REM, NREM, wake) were detected with MATLAB based

SleepScoreMaster (https://github.com/buzsakilab/buzcode/) (Grosmark and Buzsáki, 2016b). First,

LFPs from each CA1 channel were converted into spectrograms and PCA was performed to separate

different spectral components. The first principal component (PC1) of each spectrogram represented

periods with power in low frequencies, specifically with strong differences between frequencies < 25

Hz and frequencies in the gamma range (40 Hz-100Hz). PC scores in PC1 were a bimodal distribution

and a threshold at the distribution’s trough was set to separate the NREM states (high PC1 scores)

from all other behaviors. Similar methods using a cutoff at the minimum of the bimodal distributions

were applied in both narrow band theta power ratio (5–10 Hz/2–20 Hz) and EMGs. High theta power

and low EMGs represented REM period. Other states were then classified as arousal. Awake states

were defined as arousal for at least 7 min. We also tested this method on the Hc-11 data set, and

the results were comparable to traditional sleep scoring methods, described above (Figure 2—fig-

ure supplement 4).

LFPs data selection
To isolate CA1 recorded signals from the pyramidal layer center, we computed the highest ripple

power (root mean square of filtered LFPs in 150–250 Hz) among all recording channels within the

same shank (Figure 1—figure supplement 1). This pyramidal layer channel was used for further

analysis unless otherwise noted. Channels at top or bottom sites were excluded. In data recorded

from CA3 and EC (from Hc-3) we used the best channel for slow wave and theta separation, which

was identified by using SleepScoreMaster (https://github.com/buzsakilab/buzcode/) (Grosmark and

Buzsáki, 2016b).

Wavelet spectrum normalized by theta phase
To decompose each theta cycle into its time-frequency decomposition, LFPs were first down sam-

pled to 625 Hz for faster subsequent calculations. Morelet wavelets were then applied to the LFP

using the default setting of Morlet wavelet transform  xð Þ ¼ e�x2=2 cos 5x in the MATLAB Wavelet

toolbox (Mathworks, Natick, MA) to produce a time-frequency representation of LFP power. The

wavelet power spectrum WS t; fð Þ was smoothed ±2Hz in the frequency direction and ± 8ms in the

time direction with boxcar smoothing around each local time-frequency point t; fð Þ. The wavelet

power spectrum was z-scored across time for a given frequency. Instantaneous theta phase � tð Þ was

calculated using Hilbert transform on the LFP in the theta band (5-10Hz). We then extracted a time-

frequency decomposition matrix for each individual theta
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cycle Ak ¼ at;f ¼ WS t; fð Þ; t ¼ Tk; Tk þ 1; � � � ; Tkþ1

� 	

, where Ak is the kth theta period detected such

that

� Tkð Þ ¼ 0
�; � Tkþ1ð Þ ¼ 360

�

� Tk þ pð Þ<� Tk þ qð Þ; for any p<q and Tk þ q� Tkþ1

As the duration of the theta cycle varies, we separated each theta cycle into 20 phase bins, thus

Ak was normalized into a 81 Frequencyð Þ� 20 theta phaseð Þ power (FPP) matrix, could be also denoted

as Ak f ; �ð Þ. 20 phase bins were chosen for the theta phase analysis as this was sufficient to robustly

extract phase features of the four gammas with acceptable computational demands. Note that,

although Morlet wavelets are widely applied in LFP analysis, other wavelets such as Morse wavelets

might produce better frequency and phase estimates.

Clustering power in wide gamma band across theta cycles
To separate theta cycles into different theta-gamma coupling states, two clustering methods were

applied in succession: community clustering and k-means clustering. Community clustering was

employed to identify the exact number of clusters for subsequent k-means clustering in an unsuper-

vised, data-driven fashion. K-means clustering was used for subsequent analyses because it was com-

putationally more efficient than community clustering and it more reliably extracted medium gamma

oscillations in the deep pyramidal layer of CA1. For clustering, the FPP for each theta cycle was con-

sidered as points in 1620 dimensional space (81 frequencies� 20 phases). A FPP matrix was also con-

structed to calculate current source density (CSD), defined as a CSD-FPP matrix by calculating

wavelet power of CSD as a function of LFP theta phase. To facilitate the testing of pattern consis-

tency between LFP and CSD in the phase-frequency of FPP, we averaged CSD-FPP matrices within

clusters.

Community clustering
Community clustering is an unsupervised method that identifies the number of clusters or communi-

ties in a scalable greedy fashion using principled heuristics. Based on graph theory, n nodes

Ak; k ¼ 1; 2; � � � ; n of a graph are assigned into c communities si 2 1; 2; . . . ; cf g; that is each node is

assigned to a community si, where i ¼ 1; 2; . . . ; n. Q-modularity of a weighted graph is defined as

the edge weights within the community minus the expected edge weights (Leicht and Newman,

2008); that is Q ¼ 1

m
i;j

X

ðBi;j � pi;jÞ di;j, where di;j ¼ 1 if si ¼ sj and 0 otherwise; pi;j ¼ kikj=m represents

the expected edge weight between vertex i and j; m is total the weight of all vertexes. B is the adja-

cent matrix, where Bi;j is the exact edge weight between node i and node j. In this study, the adja-

cent matrix B is defined as B ¼ C þ 1, where Ci;j is the Pearson correlation between Ai and Aj. Thus

we avoid negative edge weights. Maximizing the Q-modularity produces the community structure

with the densest intra-community connections and sparsest inter-communities connections. We

applied the community detection algorithm to greedily maximize Q-modularity using the Louvain

method (Blondel et al., 2008) with the corresponding MATLAB package (Jeub et al., 2011; http://

netwiki.amath.unc.edu/GenLouvain).

Community clustering failed to detect medium gamma states in deeper parts of the pyramidal

layer of CA1 (Figure 1—figure supplement 2A left panel). In such cases, community clustering may

have misclassified ’medium’ gamma theta cycles into the EF-gamma cluster based on the observa-

tion that two gamma fields are observed in this cluster (third column in Figure 1—figure supple-

ment 2A, left panel), one in the high gamma range occurred at the ascending phase of theta and

the other with lower frequency occurred at later theta phases. Therefore, we used community clus-

tering to determine the appropriate number of clusters (four) in an unsupervised, data-driven fashion

but used k-means clustering for more robust clustering across the pyramidal layer. K-means cluster-

ing was computationally more efficient than community clustering and more reliably extracted

medium gamma oscillations in the deep pyramidal layer.
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k-means clustering
k-means clustering assigns the n power samples Ai in frequency-phase domain to exactly one of k

clusters defined by centroids, where k is chosen before clustering (Lloyd, 1982). A distance matrix

D is used for clustering. Here, we use Pearson correlation distance D ¼ 1� C, where Di;j quantifies

the distance between any pair of theta cycles Ai and Aj. The Pearson correlation (c) is a standard sim-

ilarity measure (cf. distance if 1-c) in image processing especially because it is invariant to power

(Kaur et al., 2012). In using Pearson correlation as a distance measure for k-means, we are actually

treating the FPP as a normalized image, and clustering based on notions of image similarity. It

remains unknown how best to extract and quantify both frequency and phase features for theta-

gamma coupling, especially considering that phase is circular. Note that in our analysis, phase wrap-

ping does not affect the results. The correlation is computed from the same points or bins (in fre-

quency and phase) between one image (FPP) and another. In other words, we are using Eulerian

representation instead of Lagrangian representation (Batchelor, 2000). Therefore, the geometrical

relationship between bins does not matter: if adjacent bins have similar values or those values are on

opposite sides of the image does not affect the correlation. Here, we applied the k-means++ algo-

rithm implemented in MATLAB Statistics and Machine Learning Toolbox (Mathworks, Natick, MA).

Gamma fields were defined as above a threshold of 95% of the peak of the average FPP within

one cluster. The gravity frequency and theta phase for the center of gravity of each gamma fields

was extracted. Thus, the feature of a specific cluster could be represented by the gravity frequency

and gravity theta phase of its gamma field. Gravity frequency is defined as the weighted averaged

of all frequencies (y coordinates) of points within the gamma field, while gravity phase is the

weighted averaged (circularly) of all phases (x coordinates) of points within the gamma field. The

weight of each point in the gamma field is defined by the power value at that point in the FPP. Sort-

ing the gravity frequencies of the four clusters generated through k-means from one channel of LFP

signal, the first and second lowest gravity frequencies corresponded to L- and M-gamma clusters,

respectively. The higher two gravity frequencies were fast gammas, and were further separated as

EF- and LF- gamma based on their gravity theta phase. The early/late notation was based on the

phase of these high gammas relative to the phase of M-gamma. Our MATLAB code of the above

protocol, including other MATLAB sub functions for clustering individual theta cycles with any LFP

signals recorded from hippocampal CA1 region, can be found on our github (Zhang, 2019; copy

archived at https://github.com/elifesciences-publications/IndividualThetaCluster).

Intra-cluster correlation versus inter-cluster correlation
Intra-cluster correlation was the correlation value between a single theta cycle’s FPP and the mean

FPP of the state that theta cycle was assigned. The maximum inter-cluster correlation was the largest

correlation value between a theta cycle’s FPP and the mean FPP of every other state (not including

the state that the theta cycle is assigned). The difference between intra-cluster correlation and max

inter-cluster correlation (Figure 1—figure supplement 4) represented the difference of one given

theta cycle between its assigning state and other states. Intra-cluster correlation, �intra, and maximum

inter-cluster correlation, �max�inter, were defined as follows:

�intra ið Þ¼
4
corr FPPi; FPP

k
� �

; ji ¼ k

�max�inter ið Þ¼
4
max corr FPPi; FPP

k
� �� 	� �

; ji 6¼ k:

where FPPi denotes any given theta cycle in the training set (sample size N), clustered in state ji,

where i ¼ 1; 2; . . . ; N and ji 2 {1, 2, 3, 4}. The mean FPP for the four states was denoted as

FPPk; k¼ 1; 2; 3; 4:corr indicates Pearson correlation. We performed a five-fold cross validation,

where FPPk was calculated from training data sets and the sample FPPi was from test data sets with

5 repetitions. Similar results were found with and without cross-validation (data not shown).

Cross-validation for individual theta cycle assignment
Within the same session or animal, we selected signals from one given recording channel as a train-

ing channel and the signals from different channels in the same animal or channels from different ani-

mals as testing channels to perform cross-validation within (intra-animal) or across (inter-animal)
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animals, respectively. For the training channel, average FPPs were calculated for each theta-gamma

state as reference FPP (as in Figure 1D). We then calculated how similar each theta cycle was

between the testing and training data by computing the correlation between the testing FPP and

the reference FPP. New TG state assignments for individual theta cycles from the testing channel

were made and compared to the original assignment to calculate cross-validation accuracy (Fig-

ure 1—figure supplement 5).

Pair-wise phase consistency for spike-field analysis
To quantify spike-field phase synchronization, we calculated the pair-wise phase consistency (PPC)

between LFP and spikes. PPC is unbiased by the number of trials and less effected by the number of

recorded spikes than conventional phase-locking analysis (Vinck et al., 2012). In short, PPC for a

given frequency band f is calculated with the following equation (for details refer to Vinck et al.,

2012):

PPC fð Þ ¼
1

Mj j Mj j � 1ð Þm2M

X

l2M; l 6¼m

X

PNm

k¼1

PNl

j¼1
Uk;m fð Þ �Uj;l fð Þ

NmNl

in which Mj j is number of trials in total, Uk;m is the instantaneous phase of filtered LFP at frequency

f when the kth spike occurs during trial m. Nm and Nl are the number of spikes in trial m and

l, respectively. The instantaneous phase of filtered LFP was calculated through Hilbert transform.

PPC was calculated for 6Hz wide frequency bands from 2 to 200 Hz (33 frequency points). Neurons

included in the spike field analysis had to satisfy the following two criteria: (1) neurons fired in at

least 10 trials during the navigation task and (2) firing rates were higher than 5Hz for interneurons

(n=100) and higher than 2Hz for pyramidal cells (n=266), respectively. Putative pyramidal cells and

interneurons were classified in the public data set Hc-11 (Grosmark and Buzsáki, 2016a) based on

their differences in firing rate, peak to trough duration, complex bursting firing and afterhyperpolari-

zation. In total 562 pyramidal cells and 128 interneurons were well sorted and classified.

Pair-wise phase consistency for LFP-LFP phase synchrony
We calculated the phase synchrony between LFPs recorded in CA1 and EC or CA1 and CA3 on each

theta cycle using wavelets in similar way to the spike-field PPC calculation (Vinck et al., 2012), as

shown previously (Rohenkohl et al., 2018). The wavelet cross spectrum Bk between two signals

x tð Þ and y tð Þ (e.g. signals from CA1 and EC or CA1 and CA3) was calculated for the kth theta cycle

as Bk ¼ bt;f ¼ WC t; fð Þ; t ¼ Tk; Tk þ 1; � � � ; Tkþ1

� 	

, in which WC t; fð Þ denotes the wavelet cross spec-

trum around each local time-frequency point t; fð Þ. Similar to the FPP matrix Ak f ; �ð Þ defined above,

Bk was normalized into a 81 Frequencyð Þ � 20 theta phaseð Þ cross-spectrogram (FPC) matrix, denoted

as Bk f ; �ð Þ. Thus Wk f ; �ð Þ¼
4
angle Bk f ; �ð Þð Þ is the phase lag between the two signals for a given fre-

quency f and theta phase �. The pair-wise phase consistency for LFP-LFP analysis is then defined as

follows:

PPC f ; �ð Þ ¼

PN
k¼1

PN
j¼1

Wk f ; �ð Þ �Wj f ; �ð Þ�N

N N� 1ð Þ

where N is total number of hippocampal theta cycles. This PPC ranges from -1 to 1 and measures

the consistency of the phase lag between the two signals in different frequency bands and theta

phases, where -1 denotes no phase locking while 1 denotes a fixed phase lag between two LFPs

across all theta cycles.

LFP gamma power is not uniformly distributed across all theta phases and therefore we selected

specific phases of theta in which to compute PPC. EC and CA3 are considered source regions of

CA1 gamma and, in line with these areas as gamma sources, we observed that the EC-CA1 and

CA3-CA1 PPC increased slightly earlier than CA1 gamma power. Thus to measure the possible driv-

ing force for CA1 gamma power, we averaged the PPC within a phase interval around the gamma

field center but shifted to include earlier phases. Specifically, PPC was averaged from the gravity

phase center minus seven phase standard deviations to the gravity phase center plus one phase

standard deviation. These phase standard deviations were calculated within the CA1 gamma field.
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Place cell analysis
Firing rate as function of animal position in the environment, or a firing rate map, was computed for

putative pyramidal cells. Only running periods were included (speed � 5 cm/s). Linear and circular

linear tracks were divided into 5 cm bins. Animal position was smoothed through locally-weighted

scatter plot smoothing (Lowess) with a 21-sample window (0.525s) (Hen et al., 2004). The firing rate

map was computed by dividing the spike count map by the occupancy map, after both maps were

smoothed with 5-bin boxcar functions. These firing rate maps were used to detect place fields in

place cells.

To determine if a cell was a place cell, its spatial information was compared to that of its shuffled

spike train. Spatial information of each cell was calculated as:

Spatial Information¼
i

X

pi
li

l
log2

li

li

where li was the firing rate at the ith bin, l was the overall mean firing rate, and pi was the probabil-

ity of the animal being in the ith bin (occupancy in the ith bin / total recording time). Spatial informa-

tion was calculated based on an adaptive smoothed firing map (as in Skaggs et al., 1996). A cell

was defined as a place cell when its spatial information was above the 95th percentile of the shuffled

data (Langston et al., 2010) and its peak firing rate was > 2Hz. To compute shuffled data, for a

given cell, spike timestamps were shuffled 100 times by a random interval between 20s and 20s less

than the duration of recording session, with the end of the trial wrapped to the beginning to allow

for circular displacements.

We performed additional analyses to control for animal speed on neuronal firing rate and spatial

information. Animals’ behavior was separated into standing still (<5 cm/s), walking (5–15 cm/s), run-

ning (15–60 cm/s), and fast running (>60 cm/s) based on the speed distributions of the four theta-

gamma states, respectively, specifically based on the observation that S-gamma occurred at a differ-

ent rate than the other TG states during some speeds (described in Results). Spatial parameters

were calculated for speed categories for the four TG states.

Phase precession was calculated within each place field of place cells. A place field was defined

as a region consisting at least three adjacent bins with firing rates higher than 20% of the peak firing

rate. Place fields were normalized such that 0 denoted the entrance and one denoted the exit of the

place field. Phase precession was defined as significant negative linear-circular correlation (p<0.05,

linear-circular correlation test) between the animal’s position in the place field and the theta phase

at the time of the spike (Berens, 2009). Linear-circular regression was as in Kempter et al. (2012).

To characterize phase precession in each TG state, we first calculated phase precession using all

spikes that occurred within theta cycles that were deemed of that TG state. Next, to control for dif-

ferences in the number of spikes across different TG states, spikes were randomly deleted from each

state until all states had the same number of total spikes. This randomized spike deletion was

repeated 100 times to calculate the averaged phase-precession parameter for each place field. Place

fields involved in phase precession analysis satisfied the following criteria: (1) significant phase pre-

cession; (2) at least 100 spikes occurred in the place field; (3) at least 10 spikes occurred in the place

field in any of the TG states. In total 142 out of 223 place fields from 142 place cells were included.
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Buzsáki G, Logothetis N, Singer W. 2013. Scaling brain size, keeping timing: evolutionary preservation of brain
rhythms. Neuron 80:751–764. DOI: https://doi.org/10.1016/j.neuron.2013.10.002, PMID: 24183025
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Mizuseki K, Sirota A, Pastalkova E, Buzsáki G. 2009. Theta oscillations provide temporal windows for local circuit
computation in the entorhinal-hippocampal loop. Neuron 64:267–280. DOI: https://doi.org/10.1016/j.neuron.
2009.08.037, PMID: 19874793
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sharp waves, ripples, and fast gamma oscillation: influence of dentate and entorhinal cortical activity. Journal of
Neuroscience 31:8605–8616. DOI: https://doi.org/10.1523/JNEUROSCI.0294-11.2011, PMID: 21653864

Takahashi M, Nishida H, David Redish A, Lauwereyns J. 2014. Theta phase shift in spike timing and modulation
of gamma oscillation: a dynamic code for spatial alternation during fixation in rat hippocampal area CA1.
Journal of Neurophysiology 111:1601–1614. DOI: https://doi.org/10.1152/jn.00395.2013

Tamura M, Spellman TJ, Rosen AM, Gogos JA, Gordon JA. 2017. Hippocampal-prefrontal theta-gamma
coupling during performance of a spatial working memory task. Nature Communications 8:2182. DOI: https://
doi.org/10.1038/s41467-017-02108-9, PMID: 29259151

Terrazas A. 2005. Self-Motion and the hippocampal spatial metric. Journal of Neuroscience 25:8085–8096.
DOI: https://doi.org/10.1523/JNEUROSCI.0693-05.2005

Tognoli E, Kelso JA. 2009. Brain coordination dynamics: true and false faces of phase synchrony and
metastability. Progress in Neurobiology 87:31–40. DOI: https://doi.org/10.1016/j.pneurobio.2008.09.014,
PMID: 18938209

Tononi G, Cirelli C. 2003. Sleep and synaptic homeostasis: a hypothesis. Brain Research Bulletin 62:143–150.
DOI: https://doi.org/10.1016/j.brainresbull.2003.09.004, PMID: 14638388

Tononi G, Cirelli C. 2014. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory
consolidation and integration. Neuron 81:12–34. DOI: https://doi.org/10.1016/j.neuron.2013.12.025

Tort AB, Kramer MA, Thorn C, Gibson DJ, Kubota Y, Graybiel AM, Kopell NJ. 2008. Dynamic cross-frequency
couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze
task. PNAS 105:20517–20522. DOI: https://doi.org/10.1073/pnas.0810524105, PMID: 19074268

Tort AB, Komorowski RW, Manns JR, Kopell NJ, Eichenbaum H. 2009. Theta-gamma coupling increases during
the learning of item-context associations. PNAS 106:20942–20947. DOI: https://doi.org/10.1073/pnas.
0911331106, PMID: 19934062

Tort AB, Scheffer-Teixeira R, Souza BC, Draguhn A, Brankačk J. 2013. Theta-associated high-frequency
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